Browse Source

:new: fat32文件系统的mkdir

fslongjin 2 years ago
parent
commit
d775af70c7

+ 4 - 1
kernel/common/Makefile

@@ -3,10 +3,13 @@ CFLAGS += -I .
 
 kernel_common_subdirs:=libELF
 
-all: 
+all: glib.o
 	@list='$(kernel_common_subdirs)'; for subdir in $$list; do \
     		echo "make all in $$subdir";\
     		cd $$subdir;\
     		$(MAKE) all CFLAGS="$(CFLAGS)";\
     		cd ..;\
 	done
+
+glib.o: glib.c
+	gcc $(CFLAGS) -c glib.c -o glib.o

+ 31 - 0
kernel/common/glib.c

@@ -0,0 +1,31 @@
+#include "glib.h"
+
+/**
+ * @brief 测量来自用户空间的字符串的长度,会检验地址空间是否属于用户空间
+ * @param src
+ * @param maxlen
+ * @return long
+ */
+long strnlen_user(const char *src, unsigned long maxlen)
+{
+
+    unsigned long size = strlen(src);
+    // 地址不合法
+    if (!verify_area((uint64_t)src, size))
+        return 0;
+
+    return size <= maxlen ? size : maxlen;
+}
+
+long strnlen(const char *src, unsigned long maxlen)
+{
+
+    if (src == NULL)
+        return 0;
+    register int __res = 0;
+    while (src[__res] != '\0' && __res < maxlen)
+    {
+        ++__res;
+    }
+    return __res;
+}

+ 13 - 13
kernel/common/glib.h

@@ -168,7 +168,7 @@ static inline struct List *list_next(struct List *entry)
 }
 
 //计算字符串的长度(经过测试,该版本比采用repne/scasb汇编的运行速度快16.8%左右)
-static inline int strlen(char *s)
+static inline int strlen(const char *s)
 {
     if(s == NULL)
         return 0;
@@ -180,6 +180,15 @@ static inline int strlen(char *s)
     return __res;
 }
 
+/**
+ * @brief 测量字符串的长度
+ * 
+ * @param src 字符串
+ * @param maxlen 最大长度
+ * @return long 
+ */
+long strnlen(const char *src, unsigned long maxlen);
+
 void *memset(void *dst, unsigned char C, ul size)
 {
 
@@ -530,18 +539,9 @@ static inline uint64_t copy_to_user(void *dst, void *src, uint64_t size)
  * @param maxlen
  * @return long
  */
-long strnlen_user(void *src, unsigned long maxlen)
-{
-
-    unsigned long size = strlen(src);
-    // 地址不合法
-    if (!verify_area((uint64_t)src, size))
-        return 0;
-
-    return size <= maxlen ? size : maxlen;
-}
+long strnlen_user(const char *src, unsigned long maxlen);
 
-char *strncpy(char *Dest, char *Src, long Count)
+char *strncpy(char *Dest, const char *Src, long Count)
 {
     __asm__ __volatile__("cld	\n\t"
                          "1:	\n\t"
@@ -560,7 +560,7 @@ char *strncpy(char *Dest, char *Src, long Count)
     return Dest;
 }
 
-long strncpy_from_user(void *dst, void *src, unsigned long size)
+long strncpy_from_user(char *dst, const char *src, unsigned long size)
 {
     if (!verify_area((uint64_t)src, size))
         return 0;

+ 3 - 1
kernel/exception/trap.c

@@ -186,6 +186,7 @@ void do_general_protection(struct pt_regs *regs, unsigned long error_code)
             printk_color(RED, BLACK, "Refers to a descriptor in the current GDT;\n");
 
     printk_color(RED, BLACK, "Segment Selector Index:%#010x\n", error_code & 0xfff8);
+    traceback(regs);
     while (1)
         hlt();
 }
@@ -223,7 +224,8 @@ void do_page_fault(struct pt_regs *regs, unsigned long error_code)
     printk_color(RED, BLACK, "\n");
 
     printk_color(RED, BLACK, "CR2:%#018lx\n", cr2);
-
+    
+    traceback(regs);
     current_pcb->state = PROC_STOPPED;
     while (1)
         hlt();

+ 92 - 0
kernel/filesystem/VFS/VFS.c

@@ -4,6 +4,8 @@
 #include <common/errno.h>
 #include <mm/mm.h>
 #include <mm/slab.h>
+#include <process/ptrace.h>
+#include <process/process.h>
 
 // 为filesystem_type_t结构体实例化一个链表头
 static struct vfs_filesystem_type_t vfs_fs = {"filesystem", 0};
@@ -164,4 +166,94 @@ int vfs_fill_dentry(void *buf, ino_t d_ino, char *name, int namelen, unsigned ch
 
     // 返回dirent的总大小
     return sizeof(struct dirent) + namelen;
+}
+
+/**
+ * @brief 创建文件夹
+ * 
+ * @param path(r8) 路径
+ * @param mode(r9) 模式
+ * @return uint64_t
+ */
+uint64_t sys_mkdir(struct pt_regs *regs)
+{
+    const char *path = (const char *)regs->r8;
+    kdebug("path = %s", path);
+    mode_t mode = (mode_t)regs->r9;
+    uint32_t pathlen;
+    if (regs->cs & USER_CS)
+        pathlen = strnlen_user(path, PAGE_4K_SIZE - 1);
+    else
+        pathlen = strnlen(path, PAGE_4K_SIZE - 1);
+
+    if (pathlen == 0)
+        return -ENOENT;
+
+    int last_slash = -1;
+
+    // 查找最后一个'/',忽略路径末尾的'/'
+    for (int i = pathlen - 2; i >= 0; --i)
+    {
+        if (path[i] == '/')
+        {
+            last_slash = i;
+            break;
+        }
+    }
+
+    // 路径格式不合法(必须使用绝对路径)
+    if (last_slash < 0)
+        return ENOTDIR;
+
+    char *buf = (char *)kmalloc(last_slash + 1, 0);
+    memset(buf, 0, pathlen + 1);
+
+    // 拷贝字符串(不包含要被创建的部分)
+    if (regs->cs & USER_CS)
+        strncpy_from_user(buf, path, last_slash);
+    else
+        strncpy(buf, path, last_slash);
+    buf[last_slash + 1] = '\0';
+    // 查找父目录
+    struct vfs_dir_entry_t *parent_dir = vfs_path_walk(buf, 0);
+
+    if (parent_dir == NULL)
+    {
+        kfree(buf);
+        return -ENOENT;
+    }
+    kfree(buf);
+
+    // 检查父目录中是否已经有相同的目录项
+    if (vfs_path_walk(path, 0) != NULL)
+    {
+        // 目录中已有对应的文件夹
+        kwarn("Dir '%s' aleardy exists.", path);
+        return -EEXIST;
+    }
+
+    struct vfs_dir_entry_t *subdir_dentry = (struct vfs_dir_entry_t *)kmalloc(sizeof(struct vfs_dir_entry_t), 0);
+    memset((void *)subdir_dentry, 0, sizeof(struct vfs_dir_entry_t));
+
+    if (path[pathlen - 1] == '/')
+        subdir_dentry->name_length = pathlen - last_slash - 2;
+    else
+        subdir_dentry->name_length = pathlen - last_slash - 1;
+    subdir_dentry->name = (char *)kmalloc(subdir_dentry->name_length + 1, 0);
+    memset((void *)subdir_dentry->name, 0, subdir_dentry->name_length + 1);
+
+    
+    for (int i = last_slash + 1, cnt = 0; i < pathlen && cnt < subdir_dentry->name_length; ++i, ++cnt)
+    {
+        subdir_dentry->name[cnt] = path[i];
+    }
+    ++subdir_dentry->name_length;
+
+    kdebug("last_slash=%d", last_slash);
+    kdebug("name=%s", path + last_slash + 1);
+    subdir_dentry->parent = parent_dir;
+    kdebug("to mkdir, parent name=%s", parent_dir->name);
+    int retval = parent_dir->dir_inode->inode_ops->mkdir(parent_dir->dir_inode, subdir_dentry, 0);
+    kdebug("retval = %d", retval);
+    return 0;
 }

+ 13 - 1
kernel/filesystem/VFS/VFS.h

@@ -108,7 +108,19 @@ struct vfs_super_block_operations_t
 struct vfs_inode_operations_t
 {
     long (*create)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode);
+    /**
+     * @brief 在文件系统中查找指定的目录项
+     * @param parent_inode 父目录项(在这个目录下查找)
+     * @param dest_dEntry 构造的目标目录项的结构体(传入名称,然后更多的详细信息将在本函数中完成填写)
+     *
+     */
     struct vfs_dir_entry_t *(*lookup)(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dEntry);
+    /**
+     * @brief 创建文件夹
+     * @param inode 父目录的inode
+     * @param dEntry 新的文件夹的dentry
+     * @param mode 创建文件夹的mode
+     */
     long (*mkdir)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode);
     long (*rmdir)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry);
     long (*rename)(struct vfs_index_node_t *old_inode, struct vfs_dir_entry_t *old_dEntry, struct vfs_index_node_t *new_inode, struct vfs_dir_entry_t *new_dEntry);
@@ -173,6 +185,6 @@ struct vfs_dir_entry_t *vfs_path_walk(char *path, uint64_t flags);
 
 /**
  * @brief 填充dentry
- * 
+ *
  */
 int vfs_fill_dentry(void *buf, ino_t d_ino, char *name, int namelen, unsigned char type, off_t offset);

+ 288 - 10
kernel/filesystem/fat32/fat32.c

@@ -38,6 +38,22 @@ struct vfs_superblock_t *fat32_register_partition(uint8_t ahci_ctrl_num, uint8_t
     return vfs_mount_fs("FAT32", (void *)(&DPT->DPTE[part_num]), VFS_DPT_MBR, buf, ahci_ctrl_num, ahci_port_num, part_num);
 }
 
+/**
+ * @brief 计算短目录项文件名的校验和
+ *
+ * @param name 短目录项文件名字符串(长度为11)
+ * @return uint8_t 校验和
+ */
+static uint8_t fat32_ChkSum(uint8_t *name)
+{
+    uint8_t chksum = 0;
+    for (uint8_t i = 0; i < 11; ++i)
+    {
+        chksum = ((chksum & 1) ? 0x80 : 0) + (chksum >> 1) + *name;
+        ++name;
+    }
+    return chksum;
+}
 /**
  * @brief 读取指定簇的FAT表项
  *
@@ -75,19 +91,19 @@ uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t
     // 计算每个扇区内含有的FAT表项数
     // FAT每项4bytes
     uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
-    uint32_t buf[256];
+    uint32_t *buf = kmalloc(fsbi->bytes_per_sec, 0);
     memset(buf, 0, fsbi->bytes_per_sec);
 
     ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
-                            (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+                            (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
 
     buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff);
     // 向FAT1和FAT2写入数据
     ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
-                            (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+                            (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
     ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1,
-                            (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
-
+                            (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+    kfree(buf);
     return 0;
 }
 
@@ -95,7 +111,7 @@ uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t
  * @brief 在父目录中寻找指定的目录项
  *
  * @param parent_inode 父目录项的inode
- * @param dest_inode 搜索目标目录项的inode
+ * @param dest_dentry 搜索目标目录项
  * @return struct vfs_dir_entry_t* 目标目录项
  */
 struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dentry)
@@ -134,10 +150,10 @@ struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, stru
             if (tmp_dEntry->DIR_Attr == ATTR_LONG_NAME)
                 continue;
 
-            // 跳过无效页表项、空闲页表
+            // 跳过无效目录项、空闲目录
             if (tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00 || tmp_dEntry->DIR_Name[0] == 0x05)
                 continue;
-
+            // kdebug("short name [%d] %s\n 33333==[%#02x]", i / 32, tmp_dEntry->DIR_Name, tmp_dEntry->DIR_Name[3]);
             // 找到长目录项,位于短目录项之前
             struct fat32_LongDirectory_t *tmp_ldEntry = (struct fat32_LongDirectory_t *)tmp_dEntry - 1;
 
@@ -184,6 +200,7 @@ struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, stru
             js = 0;
             for (int x = 0; x < 8; ++x)
             {
+                // kdebug("value = %#02x", tmp_dEntry->DIR_Name[x]);
                 switch (tmp_dEntry->DIR_Name[x])
                 {
                 case ' ':
@@ -349,6 +366,10 @@ find_lookup_success:; // 找到目标dentry
         p->attribute |= VFS_ATTR_DEVICE;
 
     dest_dentry->dir_inode = p;
+    dest_dentry->dir_ops = &fat32_dEntry_ops;
+    list_init(&dest_dentry->child_node_list);
+    list_init(&dest_dentry->subdirs_list);
+
     kfree(buf);
     return dest_dentry;
 }
@@ -667,9 +688,13 @@ uint64_t fat32_find_available_cluster(fat32_sb_info_t *fsbi)
         {
             // 找到空闲簇
             if ((buf[j] & 0x0fffffff) == 0)
+            {
+                kfree(buf);
                 return i * ent_per_sec + j;
+            }
         }
     }
+    kfree(buf);
     return 0;
 }
 
@@ -876,9 +901,262 @@ long fat32_create(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dentry
 {
 }
 
-// todo: mkdir
-int64_t fat32_mkdir(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode)
+/**
+ * @brief 在父亲inode的目录项簇中,寻找连续num个空的目录项
+ *
+ * @param parent_inode 父inode
+ * @param num 请求的目录项数量
+ * @param mode 操作模式
+ * @param res_sector 返回信息:缓冲区对应的扇区号
+ * @param res_cluster 返回信息:缓冲区对应的簇号
+ * @param res_data_buf_base 返回信息:缓冲区的内存基地址(记得要释放缓冲区内存)
+ * @return struct fat32_Directory_t* 符合要求的entry的指针(指向地址高处的空目录项,也就是说,有连续num个≤这个指针的空目录项)
+ */
+struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *parent_inode, uint32_t num, uint32_t mode, uint32_t *res_sector, uint64_t *res_cluster, uint64_t *res_data_buf_base)
 {
+    kdebug("find empty_dentry");
+    struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
+    fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
+
+    uint8_t *buf = kmalloc(fsbi->bytes_per_clus, 0);
+    memset(buf, 0, fsbi->bytes_per_clus);
+
+    // 计算父目录项的起始簇号
+    uint32_t cluster = finode->first_clus;
+
+    struct fat32_Directory_t *tmp_dEntry = NULL;
+    // 指向最终的有用的dentry的指针
+    struct fat32_Directory_t *result_dEntry = NULL;
+
+    while (true)
+    {
+        // 计算父目录项的起始LBA扇区号
+        uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
+
+        // 读取父目录项的起始簇数据
+        ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+        tmp_dEntry = (struct fat32_Directory_t *)buf;
+        // 计数连续的空目录项
+        uint32_t count_continuity = 0;
+
+        // 查找连续num个空闲目录项
+        for (int i = 0; (i < fsbi->bytes_per_clus) && count_continuity < num; i += 32, ++tmp_dEntry)
+        {
+            if (!(tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00))
+            {
+                count_continuity = 0;
+                continue;
+            }
+
+            if (count_continuity == 0)
+                result_dEntry = tmp_dEntry;
+            ++count_continuity;
+        }
+
+        // 成功查找到符合要求的目录项
+        if (count_continuity == num)
+        {
+            result_dEntry += (num - 1);
+            *res_sector = sector;
+            *res_data_buf_base = (uint64_t)buf;
+            *res_cluster = cluster;
+            return result_dEntry;
+        }
+
+        // 当前簇没有发现符合条件的空闲目录项,寻找下一个簇
+        uint old_cluster = cluster;
+        cluster = fat32_read_FAT_entry(fsbi, cluster);
+        if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到符合要求的空目录项
+        {
+            // 新增一个簇
+            cluster = fat32_find_available_cluster(fsbi);
+            kdebug("try to allocate a new cluster to parent dentry, cluster=%d, old_cluster=%d", cluster, old_cluster);
+            if (cluster == 0)
+            {
+                kerror("Cannot allocate a new cluster!");
+                while (1)
+                    pause();
+            }
+            fat32_write_FAT_entry(fsbi, old_cluster, cluster);
+            fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8);
+
+            // 将这个新的簇清空
+            sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
+            void *tmp_buf = kmalloc(fsbi->bytes_per_clus, 0);
+            memset(tmp_buf, 0, fsbi->bytes_per_clus);
+            ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+            kfree(tmp_buf);
+        }
+    }
+}
+/**
+ * @brief 创建文件夹
+ * @param inode 父目录的inode
+ * @param dEntry 新的文件夹的dentry
+ * @param mode 创建文件夹的mode
+ */
+int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dEntry, int mode)
+{
+
+    // 先检查是否有重名的目录项,然后分配一个簇
+
+    // 文件系统超级块信息
+    fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
+    // 父目录项的inode
+    struct fat32_inode_info_t *parent_inode_info = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
+    // ======== todo:检验名称的合法性
+
+    // ====== 找一块连续的区域放置新的目录项 =====
+
+    // 计算总共需要多少个目录项
+    uint32_t cnt_longname = (dEntry->name_length + 25) / 26;
+    if (cnt_longname == 0)
+        cnt_longname = 1;
+
+    // 空闲dentry所在的扇区号
+    uint32_t tmp_dentry_sector = 0;
+    // 空闲dentry所在的缓冲区的基地址
+    uint64_t tmp_dentry_clus_buf_addr = 0;
+    uint64_t tmp_parent_dentry_clus = 0;
+    // 寻找空闲目录项
+    struct fat32_Directory_t *empty_fat32_dentry = fat32_find_empty_dentry(parent_inode, cnt_longname + 1, 0, &tmp_dentry_sector, &tmp_parent_dentry_clus, &tmp_dentry_clus_buf_addr);
+    kdebug("found empty dentry");
+    // ====== 为新的文件夹分配一个簇 =======
+    uint32_t new_dir_clus = fat32_find_available_cluster(fsbi);
+    kdebug("new_dir_clus=%d", new_dir_clus);
+    fat32_write_FAT_entry(fsbi, new_dir_clus, 0x0ffffff8);
+
+    // ====== 填写短目录项
+    memset(empty_fat32_dentry, 0, sizeof(struct fat32_Directory_t));
+    {
+        int tmp_index = 0;
+        // kdebug("dEntry->name_length=%d", dEntry->name_length);
+        for (tmp_index = 0; tmp_index < min(8, dEntry->name_length); ++tmp_index)
+        {
+            if (dEntry->name[tmp_index] == '.')
+                break;
+            empty_fat32_dentry->DIR_Name[tmp_index] = dEntry->name[tmp_index];
+        }
+
+        // 不满的部分使用0x20填充
+        while (tmp_index < 11)
+        {
+            // kdebug("tmp index = %d", tmp_index);
+            dEntry->name[tmp_index] = 0x20;
+            ++tmp_index;
+        }
+    }
+
+    empty_fat32_dentry->DIR_Attr = ATTR_DIRECTORY;
+    empty_fat32_dentry->DIR_FileSize = fsbi->bytes_per_clus;
+    empty_fat32_dentry->DIR_FstClusHI = (uint16_t)((new_dir_clus >> 16) & 0x0fff);
+    empty_fat32_dentry->DIR_FstClusLO = (uint16_t)(new_dir_clus & 0xffff);
+
+    // 计算校验和
+    uint8_t short_dentry_ChkSum = fat32_ChkSum(empty_fat32_dentry->DIR_Name);
+    // todo: 填写短目录项中的时间信息
+
+    // ======== 填写长目录项
+    uint32_t current_name_index = 0;
+    struct fat32_LongDirectory_t *Ldentry = (struct fat32_LongDirectory_t *)(empty_fat32_dentry - 1);
+    for (int i = 1; i <= cnt_longname; ++i, --Ldentry)
+    {
+        Ldentry->LDIR_Ord = i;
+
+        for (int j = 0; j < 5; ++j, ++current_name_index)
+        {
+            if (current_name_index < dEntry->name_length)
+                Ldentry->LDIR_Name1[j] = dEntry->name[current_name_index];
+            else
+                Ldentry->LDIR_Name1[j] = 0xffff;
+        }
+        for (int j = 0; j < 6; ++j, ++current_name_index)
+        {
+            if (current_name_index < dEntry->name_length)
+                Ldentry->LDIR_Name2[j] = dEntry->name[current_name_index];
+            else
+                Ldentry->LDIR_Name2[j] = 0xffff;
+        }
+        for (int j = 0; j < 2; ++j, ++current_name_index)
+        {
+            if (current_name_index < dEntry->name_length)
+                Ldentry->LDIR_Name3[j] = dEntry->name[current_name_index];
+            else
+                Ldentry->LDIR_Name3[j] = 0xffff;
+        }
+        Ldentry->LDIR_Attr = ATTR_LONG_NAME;
+        Ldentry->LDIR_FstClusLO = 0;
+        Ldentry->LDIR_Type = 0;
+        Ldentry->LDIR_Chksum = short_dentry_ChkSum;
+    }
+    // 最后一个长目录项的ord要|=0x40
+    Ldentry->LDIR_Ord = 0xe5 | 0x40;
+
+    // ====== 将目录项写回磁盘
+    ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, tmp_dentry_sector, fsbi->sec_per_clus, tmp_dentry_clus_buf_addr, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+    // ====== 初始化新的文件夹的目录项 =====
+    {
+        void *buf = kmalloc(fsbi->bytes_per_clus, 0);
+        struct fat32_Directory_t *new_dir_dentries = (struct fat32_Directory_t *)buf;
+        memset((void *)new_dir_dentries, 0, fsbi->bytes_per_clus);
+
+        // 新增 . 目录项
+        new_dir_dentries->DIR_Attr = ATTR_DIRECTORY;
+        new_dir_dentries->DIR_FileSize = 0;
+        new_dir_dentries->DIR_Name[0] = '.';
+        for (int i = 1; i < 11; ++i)
+            new_dir_dentries->DIR_Name[i] = 0x20;
+        
+        new_dir_dentries->DIR_FstClusHI = empty_fat32_dentry->DIR_FstClusHI;
+        new_dir_dentries->DIR_FstClusLO = empty_fat32_dentry->DIR_FstClusLO;
+
+        // 新增 .. 目录项
+        ++new_dir_dentries;
+        new_dir_dentries->DIR_Attr = ATTR_DIRECTORY;
+        new_dir_dentries->DIR_FileSize = 0;
+        new_dir_dentries->DIR_Name[0] = '.';
+        new_dir_dentries->DIR_Name[1] = '.';
+        for (int i = 2; i < 11; ++i)
+            new_dir_dentries->DIR_Name[i] = 0x20;
+        new_dir_dentries->DIR_FstClusHI = (unsigned short)(parent_inode_info->first_clus >> 16) & 0x0fff;
+        new_dir_dentries->DIR_FstClusLO = (unsigned short)(parent_inode_info->first_clus) & 0xffff;
+
+        // 写入磁盘
+
+        uint64_t sector = fsbi->first_data_sector + (new_dir_clus - 2) * fsbi->sec_per_clus;
+        ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
+    }
+    // ===== 初始化inode ====
+
+    struct vfs_index_node_t *finode = (struct vfs_index_node_t *)kmalloc(sizeof(struct vfs_index_node_t), 0);
+    memset(finode, 0, sizeof(struct vfs_index_node_t));
+    finode->attribute = VFS_ATTR_DIR;
+    finode->blocks = fsbi->sec_per_clus;
+    finode->file_ops = &fat32_file_ops;
+    finode->file_size = fsbi->bytes_per_clus;
+    finode->inode_ops = &fat32_inode_ops;
+    finode->sb = parent_inode->sb;
+    finode->private_inode_info = (fat32_inode_info_t *)kmalloc(sizeof(fat32_inode_info_t), 0);
+    memset(finode->private_inode_info, 0, sizeof(fat32_inode_info_t));
+    fat32_inode_info_t *p = (fat32_inode_info_t *)finode->private_inode_info;
+    p->first_clus = new_dir_clus;
+    p->dEntry_location_clus = tmp_parent_dentry_clus;
+    p->dEntry_location_clus_offset = empty_fat32_dentry - (struct fat32_Directory_t *)tmp_dentry_clus_buf_addr;
+    // todo: 填写fat32_inode_info的信息
+
+    // 初始化dentry信息
+    list_init(&dEntry->child_node_list);
+    list_init(&dEntry->subdirs_list);
+    dEntry->dir_ops = &fat32_dEntry_ops;
+    dEntry->dir_inode = finode;
+
+    // 注意:parent字段需要在调用函数的地方进行设置
+    // 注意:需要将当前dentry加入父目录的subdirs_list
+
+    // 释放在find empty dentry中动态申请的缓冲区
+    kfree((void *)tmp_dentry_clus_buf_addr);
+
+    return 0;
 }
 
 // todo: rmdir

+ 21 - 10
kernel/syscall/syscall.c

@@ -270,7 +270,7 @@ uint64_t sys_read(struct pt_regs *regs)
     void *buf = (void *)regs->r9;
     int64_t count = (int64_t)regs->r10;
 
-   // kdebug("sys read: fd=%d", fd_num);
+    // kdebug("sys read: fd=%d", fd_num);
 
     // 校验文件描述符范围
     if (fd_num < 0 || fd_num > PROC_MAX_FD_NUM)
@@ -489,7 +489,13 @@ uint64_t sys_chdir(struct pt_regs *regs)
         return -EFAULT;
 
     // 计算输入的路径长度
-    int dest_path_len = strnlen_user(dest_path, PAGE_4K_SIZE);
+    int dest_path_len;
+    if (regs->cs & USER_CS)
+    {
+        dest_path_len = strnlen_user(dest_path, PAGE_4K_SIZE);
+    }
+    else
+        dest_path_len = strnlen(dest_path, PAGE_4K_SIZE);
 
     // 长度小于等于0
     if (dest_path_len <= 0)
@@ -504,9 +510,13 @@ uint64_t sys_chdir(struct pt_regs *regs)
         return -ENOMEM;
 
     memset(path, 0, dest_path_len + 1);
-
-    // 将字符串从用户空间拷贝进来, +1是为了拷贝结尾的\0
-    strncpy_from_user(path, dest_path, dest_path_len + 1);
+    if (regs->cs & USER_CS)
+    {
+        // 将字符串从用户空间拷贝进来, +1是为了拷贝结尾的\0
+        strncpy_from_user(path, dest_path, dest_path_len + 1);
+    }
+    else
+        strncpy(path, dest_path, dest_path_len + 1);
 
     struct vfs_dir_entry_t *dentry = vfs_path_walk(path, 0);
 
@@ -605,7 +615,7 @@ uint64_t sys_wait4(struct pt_regs *regs)
     uint64_t pid = regs->r8;
     int *status = (int *)regs->r9;
     int options = regs->r10;
-    void *rusage = (void*)regs->r11;
+    void *rusage = (void *)regs->r11;
 
     struct process_control_block *proc = NULL;
     struct process_control_block *child_proc = NULL;
@@ -647,11 +657,11 @@ uint64_t sys_wait4(struct pt_regs *regs)
 
 /**
  * @brief 进程退出
- * 
+ *
  * @param exit_code 退出返回码
- * @return uint64_t 
+ * @return uint64_t
  */
-uint64_t sys_exit(struct pt_regs * regs)
+uint64_t sys_exit(struct pt_regs *regs)
 {
     return process_do_exit(regs->r8);
 }
@@ -689,5 +699,6 @@ system_call_t system_call_table[MAX_SYSTEM_CALL_NUM] =
         [14] = sys_execve,
         [15] = sys_wait4,
         [16] = sys_exit,
-        [17 ... 254] = system_call_not_exists,
+        [17] = sys_mkdir,
+        [18 ... 254] = system_call_not_exists,
         [255] = sys_ahci_end_req};

+ 9 - 0
kernel/syscall/syscall.h

@@ -74,6 +74,15 @@ uint64_t sys_brk(struct pt_regs *regs);
  */
 uint64_t sys_sbrk(struct pt_regs *regs);
 
+/**
+ * @brief 创建文件夹
+ * 在VFS.c中实现
+ * @param path(r8) 路径
+ * @param mode(r9) 模式
+ * @return uint64_t 
+ */
+uint64_t sys_mkdir(struct pt_regs * regs);
+
 ul sys_ahci_end_req(struct pt_regs *regs);
 
 // 系统调用的内核入口程序

+ 1 - 0
kernel/syscall/syscall_num.h

@@ -27,5 +27,6 @@
 #define SYS_EXECVE 14 // 执行新的应用程序
 #define SYS_WAIT4 15 // 等待进程退出
 #define SYS_EXIT 16 // 进程退出
+#define SYS_MKDIR 17 // 创建文件夹
 
 #define SYS_AHCI_END_REQ 255    // AHCI DMA请求结束end_request的系统调用

+ 4 - 2
user/apps/shell/shell.c

@@ -5,7 +5,7 @@
 #include <libKeyboard/keyboard.h>
 #include <libc/string.h>
 #include <libc/stddef.h>
-
+#include <libc/sys/stat.h>
 #include "cmd.h"
 
 #define pause_cpu() asm volatile("pause\n\t");
@@ -73,7 +73,9 @@ int main()
     int kb_fd = open(kb_file_path, 0);
     // printf("keyboard fd = %d\n", kb_fd);
     print_ascii_logo();
-
+    printf("before mkdir\n");
+    mkdir("/aaac", 0);
+    printf("after mkdir\n");
     main_loop(kb_fd);
     while (1)
         ;

+ 4 - 1
user/libs/libc/sys/Makefile

@@ -1,8 +1,11 @@
 
-all: wait.o
+all: wait.o stat.o
 
 CFLAGS += -I .
 
 
 wait.o: wait.c
 	gcc $(CFLAGS) -c wait.c -o wait.o
+
+stat.o: stat.c
+	gcc $(CFLAGS) -c stat.c -o stat.o

+ 7 - 0
user/libs/libc/sys/stat.c

@@ -0,0 +1,7 @@
+#include "stat.h"
+#include<libsystem/syscall.h>
+
+int mkdir(const char *path, mode_t mode)
+{
+    return syscall_invoke(SYS_MKDIR, (uint64_t)path, (uint64_t)mode, 0,0,0,0,0,0);
+}

+ 4 - 0
user/libs/libc/sys/stat.h

@@ -0,0 +1,4 @@
+#pragma once
+#include <libc/sys/types.h>
+
+int mkdir(const char *path, mode_t mode);

+ 1 - 0
user/libs/libsystem/syscall.h

@@ -21,6 +21,7 @@
 #define SYS_EXECVE 14 // 执行新的应用程序
 #define SYS_WAIT4 15 // 等待进程退出
 #define SYS_EXIT 16 // 进程退出
+#define SYS_MKDIR 17 // 创建文件夹
 
 /**
  * @brief 用户态系统调用函数