#include "process.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int __rust_demo_func(); // #pragma GCC push_options // #pragma GCC optimize("O0") spinlock_t process_global_pid_write_lock; // 增加pid的写锁 long process_global_pid = 1; // 系统中最大的pid extern void system_call(void); extern void kernel_thread_func(void); ul _stack_start; // initial proc的栈基地址(虚拟地址) extern struct mm_struct initial_mm; extern struct signal_struct INITIAL_SIGNALS; extern struct sighand_struct INITIAL_SIGHAND; extern void process_exit_sighand(struct process_control_block *pcb); extern void process_exit_signal(struct process_control_block *pcb); // 设置初始进程的PCB #define INITIAL_PROC(proc) \ { \ .state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \ .mm = &initial_mm, .thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \ .virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \ .wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL, .sig_blocked = 0, \ .signal = &INITIAL_SIGNALS, .sighand = &INITIAL_SIGHAND, \ } struct thread_struct initial_thread = { .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .fs = KERNEL_DS, .gs = KERNEL_DS, .cr2 = 0, .trap_num = 0, .err_code = 0, }; // 初始化 初始进程的union ,并将其链接到.data.init_proc段内 union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)}; struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0}; // 为每个核心初始化初始进程的tss struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS}; /** * @brief 回收进程的所有文件描述符 * * @param pcb 要被回收的进程的pcb * @return uint64_t */ uint64_t process_exit_files(struct process_control_block *pcb); /** * @brief 释放进程的页表 * * @param pcb 要被释放页表的进程 * @return uint64_t */ uint64_t process_exit_mm(struct process_control_block *pcb); /** * @brief 切换进程 * * @param prev 上一个进程的pcb * @param next 将要切换到的进程的pcb * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。 * 这里切换fs和gs寄存器 */ #pragma GCC push_options #pragma GCC optimize("O0") void __switch_to(struct process_control_block *prev, struct process_control_block *next) { initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp; // kdebug("next_rsp = %#018lx ", next->thread->rsp); // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, // initial_tss[0].ist1, // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, // initial_tss[0].ist6, initial_tss[0].ist7); __asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs)); __asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs)); __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs)); __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs)); } #pragma GCC pop_options /** * @brief 打开要执行的程序文件 * * @param path * @return struct vfs_file_t* */ struct vfs_file_t *process_open_exec_file(char *path) { struct vfs_dir_entry_t *dentry = NULL; struct vfs_file_t *filp = NULL; // kdebug("path=%s", path); dentry = vfs_path_walk(path, 0); if (dentry == NULL) return (void *)-ENOENT; if (dentry->dir_inode->attribute == VFS_IF_DIR) return (void *)-ENOTDIR; filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0); if (filp == NULL) return (void *)-ENOMEM; filp->position = 0; filp->mode = 0; filp->dEntry = dentry; filp->mode = ATTR_READ_ONLY; filp->file_ops = dentry->dir_inode->file_ops; return filp; } /** * @brief 加载elf格式的程序文件到内存中,并设置regs * * @param regs 寄存器 * @param path 文件路径 * @return int */ static int process_load_elf_file(struct pt_regs *regs, char *path) { int retval = 0; struct vfs_file_t *filp = process_open_exec_file(path); if ((long)filp <= 0 && (long)filp >= -255) { kdebug("(long)filp=%ld", (long)filp); return (unsigned long)filp; } void *buf = kmalloc(PAGE_4K_SIZE, 0); memset(buf, 0, PAGE_4K_SIZE); uint64_t pos = 0; pos = filp->file_ops->lseek(filp, 0, SEEK_SET); retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos); retval = 0; if (!elf_check(buf)) { kerror("Not an ELF file: %s", path); retval = -ENOTSUP; goto load_elf_failed; } #if ARCH(X86_64) // 暂时只支持64位的文件 if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64) { kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]); retval = -EUNSUPPORTED; goto load_elf_failed; } Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf; // 暂时只支持AMD64架构 if (ehdr.e_machine != EM_AMD64) { kerror("e_machine=%d", ehdr.e_machine); retval = -EUNSUPPORTED; goto load_elf_failed; } #else #error Unsupported architecture! #endif if (ehdr.e_type != ET_EXEC) { kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type); retval = -EUNSUPPORTED; goto load_elf_failed; } // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry); regs->rip = ehdr.e_entry; current_pcb->mm->code_addr_start = ehdr.e_entry; // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, // ehdr.e_phnum); 将指针移动到program header处 pos = ehdr.e_phoff; // 读取所有的phdr pos = filp->file_ops->lseek(filp, pos, SEEK_SET); filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos); if ((unsigned long)filp <= 0) { kdebug("(unsigned long)filp=%d", (long)filp); retval = -ENOEXEC; goto load_elf_failed; } Elf64_Phdr *phdr = buf; // 将程序加载到内存中 for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr) { // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld // phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type); // 不是可加载的段 if (phdr->p_type != PT_LOAD) continue; int64_t remain_mem_size = phdr->p_memsz; int64_t remain_file_size = phdr->p_filesz; pos = phdr->p_offset; uint64_t virt_base = 0; uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量 if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐 virt_base = phdr->p_vaddr & PAGE_2M_MASK; else // 接下来只有4K页的映射 virt_base = phdr->p_vaddr & PAGE_4K_MASK; beginning_offset = phdr->p_vaddr - virt_base; remain_mem_size += beginning_offset; while (remain_mem_size > 0) { // kdebug("loading..."); int64_t map_size = 0; if (remain_mem_size >= PAGE_2M_SIZE) { uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys; struct vm_area_struct *vma = NULL; int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma); // 防止内存泄露 if (ret == -EEXIST) free_pages(Phy_to_2M_Page(pa), 1); else mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa); // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE); io_mfence(); memset((void *)virt_base, 0, PAGE_2M_SIZE); map_size = PAGE_2M_SIZE; } else { // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小) map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE); // 循环分配4K大小内存块 for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE) { uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0)); struct vm_area_struct *vma = NULL; int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma); // kdebug("virt_base=%#018lx", virt_base + off); if (val == -EEXIST) kfree(phys_2_virt(paddr)); else mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr); // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE); io_mfence(); memset((void *)(virt_base + off), 0, PAGE_4K_SIZE); } } pos = filp->file_ops->lseek(filp, pos, SEEK_SET); int64_t val = 0; if (remain_file_size > 0) { int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size; val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos); } if (val < 0) goto load_elf_failed; remain_mem_size -= map_size; remain_file_size -= val; virt_base += map_size; } } // 分配2MB的栈内存空间 regs->rsp = current_pcb->mm->stack_start; regs->rbp = current_pcb->mm->stack_start; { struct vm_area_struct *vma = NULL; uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys; int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma); if (val == -EEXIST) free_pages(Phy_to_2M_Page(pa), 1); else mm_map_vma(vma, pa, 0, PAGE_2M_SIZE); } // 清空栈空间 memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE); load_elf_failed:; if (buf != NULL) kfree(buf); return retval; } /** * @brief 使当前进程去执行新的代码 * * @param regs 当前进程的寄存器 * @param path 可执行程序的路径 * @param argv 参数列表 * @param envp 环境变量 * @return ul 错误码 */ #pragma GCC push_options #pragma GCC optimize("O0") ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[]) { // kdebug("do_execve is running..."); // 当前进程正在与父进程共享地址空间,需要创建 // 独立的地址空间才能使新程序正常运行 if (current_pcb->flags & PF_VFORK) { // kdebug("proc:%d creating new mem space", current_pcb->pid); // 分配新的内存空间分布结构体 struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0); memset(new_mms, 0, sizeof(struct mm_struct)); current_pcb->mm = new_mms; // 分配顶层页表, 并设置顶层页表的物理地址 new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0)); // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零 memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2); // 拷贝内核空间的页表指针 memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2); } // 设置用户栈和用户堆的基地址 unsigned long stack_start_addr = 0x6ffff0a00000UL; const uint64_t brk_start_addr = 0x700000000000UL; process_switch_mm(current_pcb); // 为用户态程序设置地址边界 if (!(current_pcb->flags & PF_KTHREAD)) current_pcb->addr_limit = USER_MAX_LINEAR_ADDR; current_pcb->mm->code_addr_end = 0; current_pcb->mm->data_addr_start = 0; current_pcb->mm->data_addr_end = 0; current_pcb->mm->rodata_addr_start = 0; current_pcb->mm->rodata_addr_end = 0; current_pcb->mm->bss_start = 0; current_pcb->mm->bss_end = 0; current_pcb->mm->brk_start = brk_start_addr; current_pcb->mm->brk_end = brk_start_addr; current_pcb->mm->stack_start = stack_start_addr; // 关闭之前的文件描述符 process_exit_files(current_pcb); // 清除进程的vfork标志位 current_pcb->flags &= ~PF_VFORK; // 加载elf格式的可执行文件 int tmp = process_load_elf_file(regs, path); if (tmp < 0) goto exec_failed; // 拷贝参数列表 if (argv != NULL) { int argc = 0; // 目标程序的argv基地址指针,最大8个参数 char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3)); uint64_t str_addr = (uint64_t)dst_argv; for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc) { if (*argv[argc] == NULL) break; // 测量参数的长度(最大1023) int argv_len = strnlen_user(argv[argc], 1023) + 1; strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1); str_addr -= argv_len; dst_argv[argc] = (char *)str_addr; // 字符串加上结尾字符 ((char *)str_addr)[argv_len] = '\0'; } // 重新设定栈基址,并预留空间防止越界 stack_start_addr = str_addr - 8; current_pcb->mm->stack_start = stack_start_addr; regs->rsp = regs->rbp = stack_start_addr; // 传递参数 regs->rdi = argc; regs->rsi = (uint64_t)dst_argv; } // kdebug("execve ok"); regs->cs = USER_CS | 3; regs->ds = USER_DS | 3; regs->ss = USER_DS | 0x3; regs->rflags = 0x200246; regs->rax = 1; regs->es = 0; return 0; exec_failed:; process_do_exit(tmp); } #pragma GCC pop_options /** * @brief 内核init进程 * * @param arg * @return ul 参数 */ #pragma GCC push_options #pragma GCC optimize("O0") ul initial_kernel_thread(ul arg) { kinfo("initial proc running...\targ:%#018lx", arg); scm_enable_double_buffer(); ahci_init(); fat32_init(); rootfs_umount(); // 使用单独的内核线程来初始化usb驱动程序 // 注释:由于目前usb驱动程序不完善,因此先将其注释掉 // int usb_pid = kernel_thread(usb_init, 0, 0); kinfo("LZ4 lib Version=%s", LZ4_versionString()); __rust_demo_func(); // 对completion完成量进行测试 // __test_completion(); // // 对一些组件进行单元测试 // uint64_t tpid[] = { // ktest_start(ktest_test_bitree, 0), ktest_start(ktest_test_kfifo, 0), ktest_start(ktest_test_mutex, 0), // ktest_start(ktest_test_idr, 0), // // usb_pid, // }; // kinfo("Waiting test thread exit..."); // // 等待测试进程退出 // for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i) // waitpid(tpid[i], NULL, NULL); // kinfo("All test done."); // 准备切换到用户态 struct pt_regs *regs; // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli cli(); current_pcb->thread->rip = (ul)ret_from_system_call; current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs); current_pcb->thread->fs = USER_DS | 0x3; barrier(); current_pcb->thread->gs = USER_DS | 0x3; // 主动放弃内核线程身份 current_pcb->flags &= (~PF_KTHREAD); kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags); regs = (struct pt_regs *)current_pcb->thread->rsp; // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp); current_pcb->flags = 0; // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 // 这里的设计思路和switch_proc类似 加载用户态程序:shell.elf __asm__ __volatile__("movq %1, %%rsp \n\t" "pushq %2 \n\t" "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp), "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/bin/shell.elf"), "c"(NULL), "d"(NULL) : "memory"); return 1; } #pragma GCC pop_options /** * @brief 当子进程退出后向父进程发送通知 * */ void process_exit_notify() { wait_queue_wakeup(¤t_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE); } /** * @brief 进程退出时执行的函数 * * @param code 返回码 * @return ul */ ul process_do_exit(ul code) { // kinfo("process exiting..., code is %ld.", (long)code); cli(); struct process_control_block *pcb = current_pcb; // 进程退出时释放资源 process_exit_files(pcb); process_exit_thread(pcb); // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后) pcb->state = PROC_ZOMBIE; pcb->exit_code = code; sti(); process_exit_notify(); sched(); while (1) pause(); } /** * @brief 初始化内核进程 * * @param fn 目标程序的地址 * @param arg 向目标程序传入的参数 * @param flags * @return int */ pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) { struct pt_regs regs; barrier(); memset(®s, 0, sizeof(regs)); barrier(); // 在rbx寄存器中保存进程的入口地址 regs.rbx = (ul)fn; // 在rdx寄存器中保存传入的参数 regs.rdx = (ul)arg; barrier(); regs.ds = KERNEL_DS; barrier(); regs.es = KERNEL_DS; barrier(); regs.cs = KERNEL_CS; barrier(); regs.ss = KERNEL_DS; barrier(); // 置位中断使能标志位 regs.rflags = (1 << 9); barrier(); // rip寄存器指向内核线程的引导程序 regs.rip = (ul)kernel_thread_func; barrier(); // kdebug("kernel_thread_func=%#018lx", kernel_thread_func); // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func); // kdebug("1111\tregs.rip = %#018lx", regs.rip); return do_fork(®s, flags | CLONE_VM, 0, 0); } /** * @brief 初始化进程模块 * ☆前置条件:已完成系统调用模块的初始化 */ void process_init() { kinfo("Initializing process..."); initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp; /* kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp); kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1); kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1); */ // 初始化pid的写锁 spin_init(&process_global_pid_write_lock); // 初始化进程的循环链表 list_init(&initial_proc_union.pcb.list); wait_queue_init(&initial_proc_union.pcb.wait_child_proc_exit, NULL); // 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错 current_pcb->virtual_runtime = 0; barrier(); kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程 barrier(); kthread_mechanism_init(); // 初始化kthread机制 initial_proc_union.pcb.state = PROC_RUNNING; initial_proc_union.pcb.preempt_count = 0; initial_proc_union.pcb.cpu_id = 0; initial_proc_union.pcb.virtual_runtime = (1UL << 60); // 将IDLE进程的虚拟运行时间设置为一个很大的数值 current_pcb->virtual_runtime = (1UL << 60); } /** * @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL * 当进程管理模块拥有pcblist_lock之后,调用本函数之前,应当对其加锁 * @param pid * @return struct process_control_block* */ struct process_control_block *process_find_pcb_by_pid(pid_t pid) { // todo: 当进程管理模块拥有pcblist_lock之后,对其加锁 struct process_control_block *pcb = initial_proc_union.pcb.next_pcb; // 使用蛮力法搜索指定pid的pcb // todo: 使用哈希表来管理pcb for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb) { if (pcb->pid == pid) return pcb; } return NULL; } /** * @brief 将进程加入到调度器的就绪队列中. * * @param pcb 进程的pcb * * @return true 成功加入调度队列 * @return false 进程已经在运行 */ int process_wakeup(struct process_control_block *pcb) { // kdebug("pcb pid = %#018lx", pcb->pid); BUG_ON(pcb == NULL); if (pcb == NULL) return -EINVAL; // 如果pcb正在调度队列中,则不重复加入调度队列 if (pcb->state & PROC_RUNNING) return 0; pcb->state |= PROC_RUNNING; sched_enqueue(pcb); return 1; } /** * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度 * * @param pcb 进程的pcb */ int process_wakeup_immediately(struct process_control_block *pcb) { if (pcb->state & PROC_RUNNING) return 0; int retval = process_wakeup(pcb); if (retval != 0) return retval; // 将当前进程标志为需要调度,缩短新进程被wakeup的时间 current_pcb->flags |= PF_NEED_SCHED; } /** * @brief 回收进程的所有文件描述符 * * @param pcb 要被回收的进程的pcb * @return uint64_t */ uint64_t process_exit_files(struct process_control_block *pcb) { // 不与父进程共享文件描述符 if (!(pcb->flags & PF_VFORK)) { for (int i = 0; i < PROC_MAX_FD_NUM; ++i) { if (pcb->fds[i] == NULL) continue; kfree(pcb->fds[i]); } } // 清空当前进程的文件描述符列表 memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM); } /** * @brief 释放进程的页表 * * @param pcb 要被释放页表的进程 * @return uint64_t */ uint64_t process_exit_mm(struct process_control_block *pcb) { if (pcb->flags & CLONE_VM) return 0; if (pcb->mm == NULL) { kdebug("pcb->mm==NULL"); return 0; } if (pcb->mm->pgd == NULL) { kdebug("pcb->mm->pgd==NULL"); return 0; } // // 获取顶层页表 pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd); // 循环释放VMA中的内存 struct vm_area_struct *vma = pcb->mm->vmas; while (vma != NULL) { struct vm_area_struct *cur_vma = vma; vma = cur_vma->vm_next; uint64_t pa; // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter); mm_unmap_vma(pcb->mm, cur_vma, &pa); uint64_t size = (cur_vma->vm_end - cur_vma->vm_start); // 释放内存 switch (size) { case PAGE_4K_SIZE: kfree(phys_2_virt(pa)); break; default: break; } vm_area_del(cur_vma); vm_area_free(cur_vma); } // 释放顶层页表 kfree(current_pgd); if (unlikely(pcb->mm->vmas != NULL)) { kwarn("pcb.mm.vmas!=NULL"); } // 释放内存空间分布结构体 kfree(pcb->mm); return 0; } /** * @brief todo: 回收线程结构体 * * @param pcb */ void process_exit_thread(struct process_control_block *pcb) { } /** * @brief 释放pcb * * @param pcb 要被释放的pcb * @return int */ int process_release_pcb(struct process_control_block *pcb) { // 释放子进程的页表 process_exit_mm(pcb); if ((pcb->flags & PF_KTHREAD)) // 释放内核线程的worker private结构体 free_kthread_struct(pcb); // 将pcb从pcb链表中移除 // todo: 对相关的pcb加锁 pcb->prev_pcb->next_pcb = pcb->next_pcb; pcb->next_pcb->prev_pcb = pcb->prev_pcb; process_exit_sighand(pcb); process_exit_signal(pcb); // 释放当前pcb kfree(pcb); return 0; } /** * @brief 申请可用的文件句柄 * * @return int */ int process_fd_alloc(struct vfs_file_t *file) { int fd_num = -1; struct vfs_file_t **f = current_pcb->fds; for (int i = 0; i < PROC_MAX_FD_NUM; ++i) { /* 找到指针数组中的空位 */ if (f[i] == NULL) { fd_num = i; f[i] = file; break; } } return fd_num; } /** * @brief 给pcb设置名字 * * @param pcb 需要设置名字的pcb * @param pcb_name 保存名字的char数组 */ static void __set_pcb_name(struct process_control_block *pcb, const char *pcb_name) { // todo:给pcb加锁 // spin_lock(&pcb->alloc_lock); strncpy(pcb->name, pcb_name, PCB_NAME_LEN); // spin_unlock(&pcb->alloc_lock); } /** * @brief 给pcb设置名字 * * @param pcb 需要设置名字的pcb * @param pcb_name 保存名字的char数组 */ void process_set_pcb_name(struct process_control_block *pcb, const char *pcb_name) { __set_pcb_name(pcb, pcb_name); }