#include "process.h" #include "../exception/gate.h" #include "../common/printk.h" #include "../common/kprint.h" #include "../syscall/syscall.h" #include "../syscall/syscall_num.h" #include #include #include #include extern void system_call(void); extern void kernel_thread_func(void); ul _stack_start; // initial proc的栈基地址(虚拟地址) struct mm_struct initial_mm = {0}; struct thread_struct initial_thread = { .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .fs = KERNEL_DS, .gs = KERNEL_DS, .cr2 = 0, .trap_num = 0, .err_code = 0}; // 初始化 初始进程的union ,并将其链接到.data.init_proc段内 union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)}; struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0}; // 为每个核心初始化初始进程的tss struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS}; /** * @brief 切换进程 * * @param prev 上一个进程的pcb * @param next 将要切换到的进程的pcb * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。 * 这里切换fs和gs寄存器 */ void __switch_to(struct process_control_block *prev, struct process_control_block *next) { initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp; // kdebug("next_rsp = %#018lx ", next->thread->rsp); // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7); __asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs)); __asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs)); __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs)); __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs)); // wrmsr(0x175, next->thread->rbp); } /** * @brief 这是一个用户态的程序 * */ void user_level_function() { // kinfo("Program (user_level_function) is runing..."); // kinfo("Try to enter syscall id 15..."); // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0); // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0); // while(1); long ret = 0; // printk_color(RED,BLACK,"user_level_function task is running\n"); /* // 测试sys put string char string[] = "User level process.\n"; long err_code = 1; ul addr = (ul)string; __asm__ __volatile__( "movq %2, %%r8 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_PUT_STRING), "m"(addr) : "memory", "r8"); */ while (1) { // 测试sys_open char string[] = "333.txt"; long err_code = 1; int zero = 0; uint64_t addr = (ul)string; __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); int fd_num = err_code; int count = 128; // while (count) //{ uchar buf[128] = {0}; // Test sys_read addr = (uint64_t)&buf; __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); count = err_code; // 将读取到的数据打印出来 addr = (ul)buf; __asm__ __volatile__( "movq %2, %%r8 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_PUT_STRING), "m"(addr) : "memory", "r8"); // SYS_WRITE char test1[] = "GGGGHHHHHHHHh112343"; addr = (uint64_t)&test1; count = 19; __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); addr = 1; count = SEEK_SET; fd_num = 0; // Test lseek __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); // SYS_WRITE char test2[] = "K123456789K"; addr = (uint64_t)&test2; count = 11; __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); // Test sys_close __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); addr = (ul)string; __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); fd_num = err_code; count = 128; // Test sys_read addr = (uint64_t)&buf; __asm__ __volatile__( "movq %2, %%r8 \n\t" "movq %3, %%r9 \n\t" "movq %4, %%r10 \n\t" "movq %5, %%r11 \n\t" "movq %6, %%r12 \n\t" "movq %7, %%r13 \n\t" "movq %8, %%r14 \n\t" "movq %9, %%r15 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero) : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx"); count = err_code; // 将读取到的数据打印出来 addr = (ul)buf; __asm__ __volatile__( "movq %2, %%r8 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_PUT_STRING), "m"(addr) : "memory", "r8"); // Test Sys //} while (1) pause(); } while (1) pause(); } /** * @brief 使当前进程去执行新的代码 * * @param regs 当前进程的寄存器 * @return ul 错误码 */ ul do_execve(struct pt_regs *regs) { // 选择这两个寄存器是对应了sysexit指令的需要 regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。 regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址 regs->cs = USER_CS | 3; regs->ds = USER_DS | 3; regs->ss = USER_DS | 0x3; regs->rflags = 0x200246; regs->rax = 1; regs->es = 0; // kdebug("do_execve is running..."); // 映射起始页面 // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true); uint64_t addr = 0x800000UL; /* unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff)); unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0); set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT)); tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff)); virtual = kmalloc(PAGE_4K_SIZE, 0); set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR)); tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff)); struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED); set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE)); flush_tlb(); */ mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE); if (!(current_pcb->flags & PF_KTHREAD)) current_pcb->addr_limit = USER_MAX_LINEAR_ADDR; // 将程序代码拷贝到对应的内存中 memcpy((void *)0x800000, user_level_function, 1024); // kdebug("program copied!"); return 0; } /** * @brief 内核init进程 * * @param arg * @return ul 参数 */ ul initial_kernel_thread(ul arg) { // kinfo("initial proc running...\targ:%#018lx", arg); fat32_init(); struct pt_regs *regs; current_pcb->thread->rip = (ul)ret_from_system_call; current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs); // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0); // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE); regs = (struct pt_regs *)current_pcb->thread->rsp; // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp); current_pcb->flags = 0; // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似 __asm__ __volatile__("movq %1, %%rsp \n\t" "pushq %2 \n\t" "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp), "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip) : "memory"); return 1; } /** * @brief 进程退出时执行的函数 * * @param code 返回码 * @return ul */ ul process_thread_do_exit(ul code) { kinfo("thread_exiting..., code is %#018lx.", code); while (1) ; } /** * @brief 初始化内核进程 * * @param fn 目标程序的地址 * @param arg 向目标程序传入的参数 * @param flags * @return int */ int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); // 在rbx寄存器中保存进程的入口地址 regs.rbx = (ul)fn; // 在rdx寄存器中保存传入的参数 regs.rdx = (ul)arg; regs.ds = KERNEL_DS; regs.es = KERNEL_DS; regs.cs = KERNEL_CS; regs.ss = KERNEL_DS; // 置位中断使能标志位 regs.rflags = (1 << 9); // rip寄存器指向内核线程的引导程序 regs.rip = (ul)kernel_thread_func; // kdebug("kernel_thread_func=%#018lx", kernel_thread_func); // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func); // kdebug("1111\tregs.rip = %#018lx", regs.rip); return do_fork(®s, flags, 0, 0); } /** * @brief 初始化进程模块 * ☆前置条件:已完成系统调用模块的初始化 */ void process_init() { kinfo("Initializing process..."); initial_mm.pgd = (pml4t_t *)global_CR3; initial_mm.code_addr_start = memory_management_struct.kernel_code_start; initial_mm.code_addr_end = memory_management_struct.kernel_code_end; initial_mm.data_addr_start = (ul)&_data; initial_mm.data_addr_end = memory_management_struct.kernel_data_end; initial_mm.rodata_addr_start = (ul)&_rodata; initial_mm.rodata_addr_end = (ul)&_erodata; initial_mm.brk_start = 0; initial_mm.brk_end = memory_management_struct.kernel_end; initial_mm.stack_start = _stack_start; // 初始化进程和tss // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7); initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp; /* kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp); kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1); kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1); */ // 初始化进程的循环链表 list_init(&initial_proc_union.pcb.list); kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程 initial_proc_union.pcb.state = PROC_RUNNING; initial_proc_union.pcb.preempt_count = 0; // 获取新的进程的pcb // struct process_control_block *p = container_of(list_next(¤t_pcb->list), struct process_control_block, list); // kdebug("Ready to switch..."); // 切换到新的内核线程 // switch_proc(current_pcb, p); } /** * @brief fork当前进程 * * @param regs 新的寄存器值 * @param clone_flags 克隆标志 * @param stack_start 堆栈开始地址 * @param stack_size 堆栈大小 * @return unsigned long */ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size) { struct process_control_block *tsk = NULL; // kdebug("222\tregs.rip = %#018lx", regs->rip); // 获取一个物理页并在这个物理页内初始化pcb struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL); tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys); memset(tsk, 0, sizeof(struct process_control_block)); // 将当前进程的pcb复制到新的pcb内 *tsk = *current_pcb; // kdebug("current_pcb->flags=%#010lx", current_pcb->flags); // 将进程加入循环链表 list_init(&tsk->list); // list_add(&initial_proc_union.pcb.list, &tsk->list); tsk->priority = 2; tsk->preempt_count = 0; ++(tsk->pid); tsk->cpu_id = proc_current_cpu_id; tsk->state = PROC_UNINTERRUPTIBLE; list_init(&tsk->list); list_add(&initial_proc_union.pcb.list, &tsk->list); // 将线程结构体放置在pcb的后面 struct thread_struct *thd = (struct thread_struct *)(tsk + 1); memset(thd, 0, sizeof(struct thread_struct)); tsk->thread = thd; // kdebug("333\tregs.rip = %#018lx", regs->rip); // 将寄存器信息存储到进程的内核栈空间的顶部 memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs)); // kdebug("regs.rip = %#018lx", regs->rip); // 设置进程的内核栈 thd->rbp = (ul)tsk + STACK_SIZE; thd->rip = regs->rip; thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs); thd->fs = KERNEL_DS; thd->gs = KERNEL_DS; // kdebug("do_fork() thd->rsp=%#018lx", thd->rsp); // 若进程不是内核层的进程,则跳转到ret from system call if (!(tsk->flags & PF_KTHREAD)) thd->rip = regs->rip = (ul)ret_from_system_call; else kdebug("is kernel proc."); tsk->state = PROC_RUNNING; sched_cfs_enqueue(tsk); return 0; }