#include "process.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #pragma GCC push_options // #pragma GCC optimize("O0") spinlock_t process_global_pid_write_lock; // 增加pid的写锁 long process_global_pid = 1; // 系统中最大的pid extern void system_call(void); extern void kernel_thread_func(void); ul _stack_start; // initial proc的栈基地址(虚拟地址) extern struct mm_struct initial_mm; struct thread_struct initial_thread = { .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .fs = KERNEL_DS, .gs = KERNEL_DS, .cr2 = 0, .trap_num = 0, .err_code = 0}; // 初始化 初始进程的union ,并将其链接到.data.init_proc段内 union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)}; struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0}; // 为每个核心初始化初始进程的tss struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS}; /** * @brief 拷贝当前进程的标志位 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb); /** * @brief 拷贝当前进程的文件描述符等信息 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb); /** * @brief 回收进程的所有文件描述符 * * @param pcb 要被回收的进程的pcb * @return uint64_t */ uint64_t process_exit_files(struct process_control_block *pcb); /** * @brief 拷贝当前进程的内存空间分布结构体信息 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb); /** * @brief 释放进程的页表 * * @param pcb 要被释放页表的进程 * @return uint64_t */ uint64_t process_exit_mm(struct process_control_block *pcb); /** * @brief 拷贝当前进程的线程结构体 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs); void process_exit_thread(struct process_control_block *pcb); /** * @brief 切换进程 * * @param prev 上一个进程的pcb * @param next 将要切换到的进程的pcb * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。 * 这里切换fs和gs寄存器 */ #pragma GCC push_options #pragma GCC optimize("O0") void __switch_to(struct process_control_block *prev, struct process_control_block *next) { initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp; // kdebug("next_rsp = %#018lx ", next->thread->rsp); // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7); __asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs)); __asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs)); __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs)); __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs)); } #pragma GCC pop_options /** * @brief 打开要执行的程序文件 * * @param path * @return struct vfs_file_t* */ struct vfs_file_t *process_open_exec_file(char *path) { struct vfs_dir_entry_t *dentry = NULL; struct vfs_file_t *filp = NULL; dentry = vfs_path_walk(path, 0); if (dentry == NULL) return (void *)-ENOENT; if (dentry->dir_inode->attribute == VFS_ATTR_DIR) return (void *)-ENOTDIR; filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0); if (filp == NULL) return (void *)-ENOMEM; filp->position = 0; filp->mode = 0; filp->dEntry = dentry; filp->mode = ATTR_READ_ONLY; filp->file_ops = dentry->dir_inode->file_ops; return filp; } /** * @brief 加载elf格式的程序文件到内存中,并设置regs * * @param regs 寄存器 * @param path 文件路径 * @return int */ static int process_load_elf_file(struct pt_regs *regs, char *path) { int retval = 0; struct vfs_file_t *filp = process_open_exec_file(path); if ((long)filp <= 0 && (long)filp >= -255) { // kdebug("(long)filp=%ld", (long)filp); return (unsigned long)filp; } void *buf = kmalloc(PAGE_4K_SIZE, 0); memset(buf, 0, PAGE_4K_SIZE); uint64_t pos = 0; pos = filp->file_ops->lseek(filp, 0, SEEK_SET); retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos); retval = 0; if (!elf_check(buf)) { kerror("Not an ELF file: %s", path); retval = -ENOTSUP; goto load_elf_failed; } #if ARCH(X86_64) // 暂时只支持64位的文件 if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64) { kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]); retval = -EUNSUPPORTED; goto load_elf_failed; } Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf; // 暂时只支持AMD64架构 if (ehdr.e_machine != EM_AMD64) { kerror("e_machine=%d", ehdr.e_machine); retval = -EUNSUPPORTED; goto load_elf_failed; } #else #error Unsupported architecture! #endif if (ehdr.e_type != ET_EXEC) { kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type); retval = -EUNSUPPORTED; goto load_elf_failed; } // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry); regs->rip = ehdr.e_entry; current_pcb->mm->code_addr_start = ehdr.e_entry; // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum); // 将指针移动到program header处 pos = ehdr.e_phoff; // 读取所有的phdr pos = filp->file_ops->lseek(filp, pos, SEEK_SET); filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos); if ((unsigned long)filp <= 0) { kdebug("(unsigned long)filp=%d", (long)filp); retval = -ENOEXEC; goto load_elf_failed; } Elf64_Phdr *phdr = buf; // 将程序加载到内存中 for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr) { // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type); // 不是可加载的段 if (phdr->p_type != PT_LOAD) continue; int64_t remain_mem_size = phdr->p_memsz; int64_t remain_file_size = phdr->p_filesz; pos = phdr->p_offset; uint64_t virt_base = phdr->p_vaddr; while (remain_mem_size > 0) { // kdebug("loading..."); int64_t map_size = 0; if (remain_mem_size > PAGE_2M_SIZE / 2) { uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys; struct vm_area_struct *vma = NULL; int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma); // 防止内存泄露 if (ret == -EEXIST) free_pages(Phy_to_2M_Page(pa), 1); else mm_map_vma(vma, pa); memset((void *)virt_base, 0, PAGE_2M_SIZE); map_size = PAGE_2M_SIZE; } else { // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小) map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE); // 循环分配4K大小内存块 for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE) { uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0)); struct vm_area_struct *vma = NULL; int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma); if (val == -EEXIST) kfree(phys_2_virt(paddr)); else mm_map_vma(vma, paddr); memset((void *)(virt_base + off), 0, PAGE_4K_SIZE); } } pos = filp->file_ops->lseek(filp, pos, SEEK_SET); int64_t val = 0; if (remain_file_size != 0) { int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size; val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos); } if (val < 0) goto load_elf_failed; remain_mem_size -= map_size; remain_file_size -= val; virt_base += map_size; } } // 分配2MB的栈内存空间 regs->rsp = current_pcb->mm->stack_start; regs->rbp = current_pcb->mm->stack_start; { struct vm_area_struct *vma = NULL; uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys; int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma); if (val == -EEXIST) free_pages(Phy_to_2M_Page(pa), 1); else mm_map_vma(vma, pa); } // 清空栈空间 memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE); load_elf_failed:; if (buf != NULL) kfree(buf); return retval; } /** * @brief 使当前进程去执行新的代码 * * @param regs 当前进程的寄存器 * @param path 可执行程序的路径 * @param argv 参数列表 * @param envp 环境变量 * @return ul 错误码 */ #pragma GCC push_options #pragma GCC optimize("O0") ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[]) { // kdebug("do_execve is running..."); // 当前进程正在与父进程共享地址空间,需要创建 // 独立的地址空间才能使新程序正常运行 if (current_pcb->flags & PF_VFORK) { kdebug("proc:%d creating new mem space", current_pcb->pid); // 分配新的内存空间分布结构体 struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0); memset(new_mms, 0, sizeof(struct mm_struct)); current_pcb->mm = new_mms; // 分配顶层页表, 并设置顶层页表的物理地址 new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0)); // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零 memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2); // 拷贝内核空间的页表指针 memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2); } // 设置用户栈和用户堆的基地址 unsigned long stack_start_addr = 0x6ffff0a00000UL; const uint64_t brk_start_addr = 0x700000000000UL; process_switch_mm(current_pcb); // 为用户态程序设置地址边界 if (!(current_pcb->flags & PF_KTHREAD)) current_pcb->addr_limit = USER_MAX_LINEAR_ADDR; current_pcb->mm->code_addr_end = 0; current_pcb->mm->data_addr_start = 0; current_pcb->mm->data_addr_end = 0; current_pcb->mm->rodata_addr_start = 0; current_pcb->mm->rodata_addr_end = 0; current_pcb->mm->bss_start = 0; current_pcb->mm->bss_end = 0; current_pcb->mm->brk_start = brk_start_addr; current_pcb->mm->brk_end = brk_start_addr; current_pcb->mm->stack_start = stack_start_addr; // 关闭之前的文件描述符 process_exit_files(current_pcb); // 清除进程的vfork标志位 current_pcb->flags &= ~PF_VFORK; // 加载elf格式的可执行文件 int tmp = process_load_elf_file(regs, path); if (tmp < 0) goto exec_failed; // 拷贝参数列表 if (argv != NULL) { int argc = 0; // 目标程序的argv基地址指针,最大8个参数 char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3)); uint64_t str_addr = (uint64_t)dst_argv; for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc) { if (*argv[argc] == NULL) break; // 测量参数的长度(最大1023) int argv_len = strnlen_user(argv[argc], 1023) + 1; strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1); str_addr -= argv_len; dst_argv[argc] = (char *)str_addr; // 字符串加上结尾字符 ((char *)str_addr)[argv_len] = '\0'; } // 重新设定栈基址,并预留空间防止越界 stack_start_addr = str_addr - 8; current_pcb->mm->stack_start = stack_start_addr; regs->rsp = regs->rbp = stack_start_addr; // 传递参数 regs->rdi = argc; regs->rsi = (uint64_t)dst_argv; } // kdebug("execve ok"); regs->cs = USER_CS | 3; regs->ds = USER_DS | 3; regs->ss = USER_DS | 0x3; regs->rflags = 0x200246; regs->rax = 1; regs->es = 0; return 0; exec_failed:; process_do_exit(tmp); } #pragma GCC pop_options /** * @brief 内核init进程 * * @param arg * @return ul 参数 */ #pragma GCC push_options #pragma GCC optimize("O0") ul initial_kernel_thread(ul arg) { // kinfo("initial proc running...\targ:%#018lx", arg); ahci_init(); fat32_init(); // 使用单独的内核线程来初始化usb驱动程序 int usb_pid = kernel_thread(usb_init, 0, 0); kinfo("LZ4 lib Version=%s", LZ4_versionString()); // 对一些组件进行单元测试 uint64_t tpid[] = { ktest_start(ktest_test_bitree, 0), ktest_start(ktest_test_kfifo, 0), ktest_start(ktest_test_mutex, 0), usb_pid, }; kinfo("Waiting test thread exit..."); // 等待测试进程退出 for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i) waitpid(tpid[i], NULL, NULL); kinfo("All test done."); // 准备切换到用户态 struct pt_regs *regs; // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli cli(); current_pcb->thread->rip = (ul)ret_from_system_call; current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs); current_pcb->thread->fs = USER_DS | 0x3; barrier(); current_pcb->thread->gs = USER_DS | 0x3; // 主动放弃内核线程身份 current_pcb->flags &= (~PF_KTHREAD); kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags); regs = (struct pt_regs *)current_pcb->thread->rsp; // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp); current_pcb->flags = 0; // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似 // 加载用户态程序:shell.elf char init_path[] = "/shell.elf"; uint64_t addr = (uint64_t)&init_path; __asm__ __volatile__("movq %1, %%rsp \n\t" "pushq %2 \n\t" "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp), "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL) : "memory"); return 1; } #pragma GCC pop_options /** * @brief 当子进程退出后向父进程发送通知 * */ void process_exit_notify() { wait_queue_wakeup(¤t_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE); } /** * @brief 进程退出时执行的函数 * * @param code 返回码 * @return ul */ ul process_do_exit(ul code) { // kinfo("process exiting..., code is %ld.", (long)code); cli(); struct process_control_block *pcb = current_pcb; // 进程退出时释放资源 process_exit_files(pcb); process_exit_thread(pcb); // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后) pcb->state = PROC_ZOMBIE; pcb->exit_code = code; sti(); process_exit_notify(); sched(); while (1) pause(); } /** * @brief 初始化内核进程 * * @param fn 目标程序的地址 * @param arg 向目标程序传入的参数 * @param flags * @return int */ int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags) { struct pt_regs regs; barrier(); memset(®s, 0, sizeof(regs)); barrier(); // 在rbx寄存器中保存进程的入口地址 regs.rbx = (ul)fn; // 在rdx寄存器中保存传入的参数 regs.rdx = (ul)arg; barrier(); regs.ds = KERNEL_DS; barrier(); regs.es = KERNEL_DS; barrier(); regs.cs = KERNEL_CS; barrier(); regs.ss = KERNEL_DS; barrier(); // 置位中断使能标志位 regs.rflags = (1 << 9); barrier(); // rip寄存器指向内核线程的引导程序 regs.rip = (ul)kernel_thread_func; barrier(); // kdebug("kernel_thread_func=%#018lx", kernel_thread_func); // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func); // kdebug("1111\tregs.rip = %#018lx", regs.rip); return do_fork(®s, flags | CLONE_VM, 0, 0); } /** * @brief 初始化进程模块 * ☆前置条件:已完成系统调用模块的初始化 */ void process_init() { kinfo("Initializing process..."); initial_mm.pgd = (pml4t_t *)get_CR3(); initial_mm.code_addr_start = memory_management_struct.kernel_code_start; initial_mm.code_addr_end = memory_management_struct.kernel_code_end; initial_mm.data_addr_start = (ul)&_data; initial_mm.data_addr_end = memory_management_struct.kernel_data_end; initial_mm.rodata_addr_start = (ul)&_rodata; initial_mm.rodata_addr_end = (ul)&_erodata; initial_mm.bss_start = (uint64_t)&_bss; initial_mm.bss_end = (uint64_t)&_ebss; initial_mm.brk_start = memory_management_struct.start_brk; initial_mm.brk_end = current_pcb->addr_limit; initial_mm.stack_start = _stack_start; initial_mm.vmas = NULL; initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp; // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 ===================== // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间, // 因此需要先在IDLE进程的顶层页表内映射二级页表 uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL)); for (int i = 256; i < 512; ++i) { uint64_t *tmp = idle_pml4t_vaddr + i; barrier(); if (*tmp == 0) { void *pdpt = kmalloc(PAGE_4K_SIZE, 0); barrier(); memset(pdpt, 0, PAGE_4K_SIZE); barrier(); set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT)); } } barrier(); flush_tlb(); /* kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp); kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1); kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1); */ // 初始化pid的写锁 spin_init(&process_global_pid_write_lock); // 初始化进程的循环链表 list_init(&initial_proc_union.pcb.list); barrier(); kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程 barrier(); initial_proc_union.pcb.state = PROC_RUNNING; initial_proc_union.pcb.preempt_count = 0; initial_proc_union.pcb.cpu_id = 0; initial_proc_union.pcb.virtual_runtime = (1UL << 60); current_pcb->virtual_runtime = (1UL << 60); } /** * @brief fork当前进程 * * @param regs 新的寄存器值 * @param clone_flags 克隆标志 * @param stack_start 堆栈开始地址 * @param stack_size 堆栈大小 * @return unsigned long */ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size) { int retval = 0; struct process_control_block *tsk = NULL; // 为新的进程分配栈空间,并将pcb放置在底部 tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0); barrier(); if (tsk == NULL) { retval = -ENOMEM; return retval; } barrier(); memset(tsk, 0, sizeof(struct process_control_block)); io_mfence(); // 将当前进程的pcb复制到新的pcb内 memcpy(tsk, current_pcb, sizeof(struct process_control_block)); io_mfence(); // 初始化进程的循环链表结点 list_init(&tsk->list); io_mfence(); // 判断是否为内核态调用fork if (current_pcb->flags & PF_KTHREAD && stack_start != 0) tsk->flags |= PF_KFORK; tsk->priority = 2; tsk->preempt_count = 0; // 增加全局的pid并赋值给新进程的pid spin_lock(&process_global_pid_write_lock); tsk->pid = process_global_pid++; barrier(); // 加入到进程链表中 tsk->next_pcb = initial_proc_union.pcb.next_pcb; barrier(); initial_proc_union.pcb.next_pcb = tsk; barrier(); tsk->parent_pcb = current_pcb; barrier(); spin_unlock(&process_global_pid_write_lock); tsk->cpu_id = proc_current_cpu_id; tsk->state = PROC_UNINTERRUPTIBLE; tsk->parent_pcb = current_pcb; wait_queue_init(&tsk->wait_child_proc_exit, NULL); barrier(); list_init(&tsk->list); retval = -ENOMEM; // 拷贝标志位 if (process_copy_flags(clone_flags, tsk)) goto copy_flags_failed; // 拷贝内存空间分布结构体 if (process_copy_mm(clone_flags, tsk)) goto copy_mm_failed; // 拷贝文件 if (process_copy_files(clone_flags, tsk)) goto copy_files_failed; // 拷贝线程结构体 if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs)) goto copy_thread_failed; // 拷贝成功 retval = tsk->pid; tsk->flags &= ~PF_KFORK; // 唤醒进程 process_wakeup(tsk); return retval; copy_thread_failed:; // 回收线程 process_exit_thread(tsk); copy_files_failed:; // 回收文件 process_exit_files(tsk); copy_mm_failed:; // 回收内存空间分布结构体 process_exit_mm(tsk); copy_flags_failed:; kfree(tsk); return retval; return 0; } /** * @brief 根据pid获取进程的pcb * * @param pid * @return struct process_control_block* */ struct process_control_block *process_get_pcb(long pid) { struct process_control_block *pcb = initial_proc_union.pcb.next_pcb; // 使用蛮力法搜索指定pid的pcb // todo: 使用哈希表来管理pcb for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb) { if (pcb->pid == pid) return pcb; } return NULL; } /** * @brief 将进程加入到调度器的就绪队列中 * * @param pcb 进程的pcb */ void process_wakeup(struct process_control_block *pcb) { pcb->state = PROC_RUNNING; sched_enqueue(pcb); } /** * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度 * * @param pcb 进程的pcb */ void process_wakeup_immediately(struct process_control_block *pcb) { pcb->state = PROC_RUNNING; sched_enqueue(pcb); // 将当前进程标志为需要调度,缩短新进程被wakeup的时间 current_pcb->flags |= PF_NEED_SCHED; } /** * @brief 拷贝当前进程的标志位 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb) { if (clone_flags & CLONE_VM) pcb->flags |= PF_VFORK; return 0; } /** * @brief 拷贝当前进程的文件描述符等信息 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb) { int retval = 0; // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符 // 文件描述符已经在复制pcb时被拷贝 if (clone_flags & CLONE_FS) return retval; // 为新进程拷贝新的文件描述符 for (int i = 0; i < PROC_MAX_FD_NUM; ++i) { if (current_pcb->fds[i] == NULL) continue; pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0); memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t)); } return retval; } /** * @brief 回收进程的所有文件描述符 * * @param pcb 要被回收的进程的pcb * @return uint64_t */ uint64_t process_exit_files(struct process_control_block *pcb) { // 不与父进程共享文件描述符 if (!(pcb->flags & PF_VFORK)) { for (int i = 0; i < PROC_MAX_FD_NUM; ++i) { if (pcb->fds[i] == NULL) continue; kfree(pcb->fds[i]); } } // 清空当前进程的文件描述符列表 memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM); } /** * @brief 拷贝当前进程的内存空间分布结构体信息 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb) { int retval = 0; // 与父进程共享内存空间 if (clone_flags & CLONE_VM) { pcb->mm = current_pcb->mm; return retval; } // 分配新的内存空间分布结构体 struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0); memset(new_mms, 0, sizeof(struct mm_struct)); memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct)); new_mms->vmas = NULL; pcb->mm = new_mms; // 分配顶层页表, 并设置顶层页表的物理地址 new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0)); // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零 memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2); // 拷贝内核空间的页表指针 memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2); uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd); uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd); // 拷贝用户空间的vma struct vm_area_struct *vma = current_pcb->mm->vmas; while (vma != NULL) { if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY) { vma = vma->vm_next; continue; } int64_t vma_size = vma->vm_end - vma->vm_start; // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start); if (vma_size > PAGE_2M_SIZE / 2) { int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT; for (int i = 0; i < page_to_alloc; ++i) { uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys; struct vm_area_struct *new_vma = NULL; int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma); // 防止内存泄露 if (unlikely(ret == -EEXIST)) free_pages(Phy_to_2M_Page(pa), 1); else mm_map_vma(new_vma, pa); memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size); vma_size -= PAGE_2M_SIZE; } } else { uint64_t map_size = PAGE_4K_ALIGN(vma_size); uint64_t va = (uint64_t)kmalloc(map_size, 0); struct vm_area_struct *new_vma = NULL; int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma); // 防止内存泄露 if (unlikely(ret == -EEXIST)) kfree((void *)va); else mm_map_vma(new_vma, virt_2_phys(va)); memcpy((void *)va, (void *)vma->vm_start, vma_size); } vma = vma->vm_next; } return retval; } /** * @brief 释放进程的页表 * * @param pcb 要被释放页表的进程 * @return uint64_t */ uint64_t process_exit_mm(struct process_control_block *pcb) { if (pcb->flags & CLONE_VM) return 0; if (pcb->mm == NULL) { kdebug("pcb->mm==NULL"); return 0; } if (pcb->mm->pgd == NULL) { kdebug("pcb->mm->pgd==NULL"); return 0; } // // 获取顶层页表 pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd); // 循环释放VMA中的内存 struct vm_area_struct *vma = pcb->mm->vmas; while (vma != NULL) { struct vm_area_struct *cur_vma = vma; vma = cur_vma->vm_next; uint64_t pa; // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter); mm_unmap_vma(pcb->mm, cur_vma, &pa); uint64_t size = (cur_vma->vm_end - cur_vma->vm_start); // 释放内存 switch (size) { case PAGE_4K_SIZE: kfree(phys_2_virt(pa)); break; default: break; } vm_area_del(cur_vma); vm_area_free(cur_vma); } // 释放顶层页表 kfree(current_pgd); if (unlikely(pcb->mm->vmas != NULL)) { kwarn("pcb.mm.vmas!=NULL"); } // 释放内存空间分布结构体 kfree(pcb->mm); return 0; } /** * @brief 重写内核栈中的rbp地址 * * @param new_regs 子进程的reg * @param new_pcb 子进程的pcb * @return int */ static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb) { uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE; uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE; uint64_t *rbp = &new_regs->rbp; uint64_t *tmp = rbp; // 超出内核栈范围 if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE)) return 0; while (1) { // 计算delta uint64_t delta = old_top - *rbp; // 计算新的rbp值 uint64_t newVal = new_top - delta; // 新的值不合法 if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE))) break; // 将新的值写入对应位置 *rbp = newVal; // 跳转栈帧 rbp = (uint64_t *)*rbp; } // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值 new_regs->rsp = new_top - (old_top - new_regs->rsp); return 0; } /** * @brief 拷贝当前进程的线程结构体 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs) { // 将线程结构体放置在pcb后方 struct thread_struct *thd = (struct thread_struct *)(pcb + 1); memset(thd, 0, sizeof(struct thread_struct)); pcb->thread = thd; struct pt_regs *child_regs = NULL; // 拷贝栈空间 if (pcb->flags & PF_KFORK) // 内核态下的fork { // 内核态下则拷贝整个内核栈 uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs); child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size); memcpy(child_regs, (void *)current_regs, size); barrier(); // 然后重写新的栈中,每个栈帧的rbp值 process_rewrite_rbp(child_regs, pcb); } else { child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs)); memcpy(child_regs, current_regs, sizeof(struct pt_regs)); barrier(); child_regs->rsp = stack_start; } // 设置子进程的返回值为0 child_regs->rax = 0; if (pcb->flags & PF_KFORK) thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp) else thd->rbp = (uint64_t)pcb + STACK_SIZE; // 设置新的内核线程开始执行的时候的rsp thd->rsp = (uint64_t)child_regs; thd->fs = current_pcb->thread->fs; thd->gs = current_pcb->thread->gs; // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址 if (pcb->flags & PF_KFORK) thd->rip = (uint64_t)ret_from_system_call; else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK))) thd->rip = (uint64_t)kernel_thread_func; else thd->rip = (uint64_t)ret_from_system_call; return 0; } /** * @brief todo: 回收线程结构体 * * @param pcb */ void process_exit_thread(struct process_control_block *pcb) { } /** * @brief 申请可用的文件句柄 * * @return int */ int process_fd_alloc(struct vfs_file_t *file) { int fd_num = -1; struct vfs_file_t **f = current_pcb->fds; for (int i = 0; i < PROC_MAX_FD_NUM; ++i) { /* 找到指针数组中的空位 */ if (f[i] == NULL) { fd_num = i; f[i] = file; break; } } return fd_num; }