#include "process.h" #include "../exception/gate.h" #include "../common/printk.h" #include "../common/kprint.h" #include "../syscall/syscall.h" #include "../syscall/syscall_num.h" #include #include extern void system_call(void); ul _stack_start; // initial proc的栈基地址(虚拟地址) struct mm_struct initial_mm = {0}; struct thread_struct initial_thread = { .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .fs = KERNEL_DS, .gs = KERNEL_DS, .cr2 = 0, .trap_num = 0, .err_code = 0}; // 初始化 初始进程的union ,并将其链接到.data.init_proc段内 union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)}; struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0}; // 为每个核心初始化初始进程的tss struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS}; /** * @brief 切换进程 * * @param prev 上一个进程的pcb * @param next 将要切换到的进程的pcb * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。 * 这里切换fs和gs寄存器 */ void __switch_to(struct process_control_block *prev, struct process_control_block *next) { initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp; kdebug("next_rsp = %#018lx ", next->thread->rsp); // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7); __asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs)); __asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs)); __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs)); __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs)); // wrmsr(0x175, next->thread->rbp); } /** * @brief 这是一个用户态的程序 * */ void user_level_function() { // kinfo("Program (user_level_function) is runing..."); // kinfo("Try to enter syscall id 15..."); // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0); // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0); // while(1); long ret = 0; // printk_color(RED,BLACK,"user_level_function task is running\n"); char string[] = "User level process.\n"; /* __asm__ __volatile__("leaq sysexit_return_address(%%rip), %%rdx \n\t" "movq %%rsp, %%rcx \n\t" "sysenter \n\t" "sysexit_return_address: \n\t" : "=a"(ret) : "0"(1), "D"(string) : "memory"); */ long err_code = 1; ul addr = (ul)string; __asm__ __volatile__( "movq %2, %%r8 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_PUT_STRING), "m"(addr) : "memory", "r8"); if (err_code == 0) { char str[] = "errno is 0"; addr = (ul)str; __asm__ __volatile__( "movq %2, %%r8 \n\t" "int $0x80 \n\t" : "=a"(err_code) : "a"(SYS_PUT_STRING), "m"(addr) : "memory", "r8"); } // enter_syscall_int(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0); // kinfo("Return from syscall id 15..."); while (1) pause(); } /** * @brief 使当前进程去执行新的代码 * * @param regs 当前进程的寄存器 * @return ul 错误码 */ ul do_execve(struct pt_regs *regs) { // 选择这两个寄存器是对应了sysexit指令的需要 regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。 regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址 regs->cs = USER_CS | 3; regs->ds = USER_DS | 3; regs->ss = USER_DS | 0x3; regs->rflags = 0x200246; regs->rax = 1; regs->es = 0; // kdebug("do_execve is running..."); // 映射起始页面 // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true); uint64_t addr = 0x800000UL; /* unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff)); unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0); set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT)); tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff)); virtual = kmalloc(PAGE_4K_SIZE, 0); set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR)); tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff)); struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED); set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE)); flush_tlb(); */ mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE); if (!(current_pcb->flags & PF_KTHREAD)) current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR; // 将程序代码拷贝到对应的内存中 memcpy((void *)0x800000, user_level_function, 1024); // kdebug("program copied!"); return 0; } /** * @brief 内核init进程 * * @param arg * @return ul 参数 */ ul initial_kernel_thread(ul arg) { // kinfo("initial proc running...\targ:%#018lx", arg); kdebug("6666"); struct pt_regs *regs; current_pcb->thread->rip = (ul)ret_from_system_call; current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs); // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0); // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE); regs = (struct pt_regs *)current_pcb->thread->rsp; // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp); current_pcb->flags = 0; // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似 __asm__ __volatile__("movq %1, %%rsp \n\t" "pushq %2 \n\t" "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp), "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip) : "memory"); return 1; } /** * @brief 进程退出时执行的函数 * * @param code 返回码 * @return ul */ ul process_thread_do_exit(ul code) { kinfo("thread_exiting..., code is %#018lx.", code); while (1) ; } /** * @brief 导出内核线程的执行引导程序 * 目的是还原执行现场(在kernel_thread中伪造的) * 执行到这里时,rsp位于栈顶,然后弹出寄存器值 * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs) */ /* void kernel_thread_func(void) { __asm__ volatile( //"kernel_thread_func: \n\t" " popq %r15 \n\t" " popq %r14 \n\t" " popq %r13 \n\t" " popq %r12 \n\t" " popq %r11 \n\t" " popq %r10 \n\t" " popq %r9 \n\t" " popq %r8 \n\t" " popq %rbx \n\t" " popq %rcx \n\t" " popq %rdx \n\t" " popq %rsi \n\t" " popq %rdi \n\t" " popq %rbp \n\t" " popq %rax \n\t" " movq %rax, %ds \n\t" " popq %rax \n\t" " movq %rax, %es \n\t" " popq %rax \n\t" " addq $0x38, %rsp \n\t" ///////////////////////////////// " movq %rdx, %rdi \n\t" " callq *%rbx \n\t" " movq %rax, %rdi \n\t" " callq process_thread_do_exit \n\t"); } */ extern void kernel_thread_func(void); /* __asm__( "kernel_thread_func: \n\t" " popq %r15 \n\t" " popq %r14 \n\t" " popq %r13 \n\t" " popq %r12 \n\t" " popq %r11 \n\t" " popq %r10 \n\t" " popq %r9 \n\t" " popq %r8 \n\t" " popq %rbx \n\t" " popq %rcx \n\t" " popq %rdx \n\t" " popq %rsi \n\t" " popq %rdi \n\t" " popq %rbp \n\t" " popq %rax \n\t" " movq %rax, %ds \n\t" " popq %rax \n\t" " movq %rax, %es \n\t" " popq %rax \n\t" " addq $0x38, %rsp \n\t" ///////////////////////////////// " movq %rdx, %rdi \n\t" " callq *%rbx \n\t" " movq %rax, %rdi \n\t" " callq process_thread_do_exit \n\t"); */ /** * @brief 初始化内核进程 * * @param fn 目标程序的地址 * @param arg 向目标程序传入的参数 * @param flags * @return int */ int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); // 在rbx寄存器中保存进程的入口地址 regs.rbx = (ul)fn; // 在rdx寄存器中保存传入的参数 regs.rdx = (ul)arg; regs.ds = KERNEL_DS; regs.es = KERNEL_DS; regs.cs = KERNEL_CS; regs.ss = KERNEL_DS; // 置位中断使能标志位 regs.rflags = (1 << 9); // rip寄存器指向内核线程的引导程序 regs.rip = (ul)kernel_thread_func; kdebug("kernel_thread_func=%#018lx", kernel_thread_func); kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func); kdebug("1111\tregs.rip = %#018lx", regs.rip); return do_fork(®s, flags, 0, 0); } /** * @brief 初始化进程模块 * ☆前置条件:已完成系统调用模块的初始化 */ void process_init() { kinfo("Initializing process..."); initial_mm.pgd = (pml4t_t *)global_CR3; initial_mm.code_addr_start = memory_management_struct.kernel_code_start; initial_mm.code_addr_end = memory_management_struct.kernel_code_end; initial_mm.data_addr_start = (ul)&_data; initial_mm.data_addr_end = memory_management_struct.kernel_data_end; initial_mm.rodata_addr_start = (ul)&_rodata; initial_mm.rodata_addr_end = (ul)&_erodata; initial_mm.brk_start = 0; initial_mm.brk_end = memory_management_struct.kernel_end; initial_mm.stack_start = _stack_start; /* // 向MSR寄存器组中的 IA32_SYSENTER_CS寄存器写入内核的代码段的地址 wrmsr(0x174, KERNEL_CS); // 向MSR寄存器组中的 IA32_SYSENTER_ESP寄存器写入内核进程的rbp(在syscall入口中会将rsp减去相应的数值) wrmsr(0x175, current_pcb->thread->rbp); // 向MSR寄存器组中的 IA32_SYSENTER_EIP寄存器写入系统调用入口的地址。 wrmsr(0x176, (ul)system_call); */ // 初始化进程和tss // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7); initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp; /* kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp); kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1); kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1); */ // 初始化进程的循环链表 list_init(&initial_proc_union.pcb.list); kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程 initial_proc_union.pcb.state = PROC_RUNNING; initial_proc_union.pcb.preempt_count = 0; // 获取新的进程的pcb // struct process_control_block *p = container_of(list_next(¤t_pcb->list), struct process_control_block, list); // kdebug("Ready to switch..."); // 切换到新的内核线程 // switch_proc(current_pcb, p); } /** * @brief fork当前进程 * * @param regs 新的寄存器值 * @param clone_flags 克隆标志 * @param stack_start 堆栈开始地址 * @param stack_size 堆栈大小 * @return unsigned long */ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size) { struct process_control_block *tsk = NULL; kdebug("222\tregs.rip = %#018lx", regs->rip); // 获取一个物理页并在这个物理页内初始化pcb struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL); tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys); memset(tsk, 0, sizeof(struct process_control_block)); // 将当前进程的pcb复制到新的pcb内 *tsk = *current_pcb; // kdebug("current_pcb->flags=%#010lx", current_pcb->flags); // 将进程加入循环链表 list_init(&tsk->list); // list_add(&initial_proc_union.pcb.list, &tsk->list); tsk->priority = 2; tsk->preempt_count = 0; ++(tsk->pid); tsk->cpu_id = proc_current_cpu_id; tsk->state = PROC_UNINTERRUPTIBLE; list_init(&tsk->list); list_add(&initial_proc_union.pcb.list, &tsk->list); // 将线程结构体放置在pcb的后面 struct thread_struct *thd = (struct thread_struct *)(tsk + 1); memset(thd, 0, sizeof(struct thread_struct)); tsk->thread = thd; kdebug("333\tregs.rip = %#018lx", regs->rip); // 将寄存器信息存储到进程的内核栈空间的顶部 memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs)); kdebug("regs.rip = %#018lx", regs->rip); // 设置进程的内核栈 thd->rbp = (ul)tsk + STACK_SIZE; thd->rip = regs->rip; thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs); thd->fs = KERNEL_DS; thd->gs = KERNEL_DS; // kdebug("do_fork() thd->rsp=%#018lx", thd->rsp); // 若进程不是内核层的进程,则跳转到ret from system call if (!(tsk->flags & PF_KTHREAD)) thd->rip = regs->rip = (ul)ret_from_system_call; else kdebug("is kernel proc."); tsk->state = PROC_RUNNING; sched_cfs_enqueue(tsk); return 0; }