#include "mm.h" #include "../common/printk.h" #include "../common/kprint.h" #include "../driver/multiboot2/multiboot2.h" ul Total_Memory = 0; ul total_2M_pages = 0; void mm_init() { kinfo("Initializing memory management unit..."); // 设置内核程序不同部分的起止地址 memory_management_struct.kernel_code_start = (ul)&_text; memory_management_struct.kernel_code_end = (ul)&_etext; memory_management_struct.kernel_data_end = (ul)&_edata; memory_management_struct.kernel_end = (ul)&_end; struct multiboot_mmap_entry_t *mb2_mem_info; int count; multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count); for (int i = 0; i < count; ++i) { //可用的内存 if (mb2_mem_info->type == 1) Total_Memory += mb2_mem_info->len; // 保存信息到mms memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr; memory_management_struct.e820[i].Length = mb2_mem_info->len; memory_management_struct.e820[i].type = mb2_mem_info->type; memory_management_struct.len_e820 = i; ++mb2_mem_info; // 脏数据 if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1) break; } printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory); // 计算有效内存页数 for (int i = 0; i < memory_management_struct.len_e820; ++i) { if (memory_management_struct.e820[i].type != 1) continue; // 将内存段的起始物理地址按照2M进行对齐 ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr); // 将内存段的终止物理地址的低2M区域清空,以实现对齐 ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK); // 内存段不可用 if (addr_end <= addr_start) continue; total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT); } kinfo("Total amounts of 2M pages : %ld.", total_2M_pages); // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等) ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length; // 初始化mms的bitmap // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据) memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数 memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成 // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。 memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len); // 初始化内存页结构 // 将页结构映射于bmp之后 memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT; memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1)); // 将pages_struct全部清空,以备后续初始化 memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory // 初始化内存区域 memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); // 由于暂时无法计算zone结构体的数量,因此先将其设为0 memory_management_struct.count_zones = 0; // zones-struct 成员变量暂时按照5个来计算 memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1)); memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len); // ==== 遍历e820数组,完成成员变量初始化工作 === for (int i = 0; i < memory_management_struct.len_e820; ++i) { if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存 continue; ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr); ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK; if (addr_end <= addr_start) continue; // zone init struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones; ++memory_management_struct.count_zones; z->zone_addr_start = addr_start; z->zone_addr_end = addr_end; z->zone_length = addr_end - addr_start; z->count_pages_using = 0; z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT; z->total_pages_link = 0; z->attr = 0; z->gmd_struct = &memory_management_struct; z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT; z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT)); // 初始化页 struct Page *p = z->pages_group; for (int j = 0; j < z->count_pages; ++j, ++p) { p->zone = z; p->addr_phys = addr_start + PAGE_2M_SIZE * j; p->attr = 0; p->ref_counts = 0; p->age = 0; // 将bmp中对应的位 复位 *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64)); } } // 初始化0~2MB的物理页 // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。 memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct; memory_management_struct.pages_struct->addr_phys = 0UL; memory_management_struct.pages_struct->attr = 0; memory_management_struct.pages_struct->ref_counts = 0; memory_management_struct.pages_struct->age = 0; // 计算zone结构体的总长度(按照64位对齐) memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1)); /* printk_color(ORANGE, BLACK, "bmp:%#18lx, bmp_len:%#18lx, bits_size:%#18lx\n", memory_management_struct.bmp, memory_management_struct.bmp_len, memory_management_struct.bits_size); printk_color(ORANGE, BLACK, "pages_struct:%#18lx, count_pages:%#18lx, pages_struct_len:%#18lx\n", memory_management_struct.pages_struct, memory_management_struct.count_pages, memory_management_struct.pages_struct_len); printk_color(ORANGE, BLACK, "zones_struct:%#18lx, count_zones:%#18lx, zones_struct_len:%#18lx\n", memory_management_struct.zones_struct, memory_management_struct.count_zones, memory_management_struct.zones_struct_len); */ ZONE_DMA_INDEX = 0; // need rewrite in the future ZONE_NORMAL_INDEX = 0; // need rewrite in the future for (int i = 0; i < memory_management_struct.count_zones; ++i) // need rewrite in the future { struct Zone *z = memory_management_struct.zones_struct + i; // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n", // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages); // 1GB以上的内存空间不做映射 if (z->zone_addr_start == 0x100000000) ZONE_UNMAPED_INDEX = i; } // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。 memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1)); // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n", // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct); // 初始化内存管理单元结构所占的物理页的结构体 ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页 for (ul j = 0; j <= mms_max_page; ++j) { page_init(memory_management_struct.pages_struct + j, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT | PAGE_ACTIVE); } global_CR3 = get_CR3(); flush_tlb(); kinfo("Memory management unit initialize complete!"); } /** * @brief 初始化内存页 * * @param page 内存页结构体 * @param flags 标志位 * 对于新页面: 初始化struct page * 对于当前页面属性/flags中含有引用属性或共享属性时,则只增加struct page和struct zone的被引用计数。否则就只是添加页表属性,并置位bmp的相应位。 * @return unsigned long */ unsigned long page_init(struct Page *page, ul flags) { // 全新的页面 if (!page->attr) { // 将bmp对应的标志位置位 *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64; page->attr = flags; ++(page->ref_counts); ++(page->zone->count_pages_using); --(page->zone->count_pages_free); ++(page->zone->total_pages_link); } // 不是全新的页面,而是含有引用属性/共享属性 else if ((page->attr & PAGE_REFERENCED) || (page->attr & PAGE_K_SHARE_TO_U) || (flags & PAGE_REFERENCED) || (flags & PAGE_K_SHARE_TO_U)) { page->attr |= flags; ++(page->ref_counts); ++(page->zone->total_pages_link); } else { // 将bmp对应的标志位置位 //*(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << ((page->addr_phys >> PAGE_2M_SHIFT) % 64)); *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64; page->attr |= flags; } return 0; } /** * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page * * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt * @param num 需要申请的连续内存页的数量 num<=64 * @param flags 将页面属性设置成flag * @return struct Page* */ struct Page *alloc_pages(unsigned int zone_select, int num, ul flags) { ul zone_start = 0, zone_end = 0; switch (zone_select) { case ZONE_DMA: // DMA区域 zone_start = 0; zone_end = ZONE_DMA_INDEX; break; case ZONE_NORMAL: zone_start = ZONE_DMA_INDEX; zone_end = ZONE_NORMAL_INDEX; break; case ZONE_UNMAPPED_IN_PGT: zone_start = ZONE_NORMAL_INDEX; zone_end = ZONE_UNMAPED_INDEX; break; default: kwarn("In alloc_pages: param: zone_select incorrect."); // 返回空 return NULL; break; } for (int i = zone_start; i <= zone_end; ++i) { if ((memory_management_struct.zones_struct + i)->count_pages_free < num) continue; struct Zone *z = memory_management_struct.zones_struct + i; // 区域对应的起止页号以及区域拥有的页面数 ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT); ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT); ul page_num = (z->zone_length >> PAGE_2M_SHIFT); ul tmp = 64 - page_start % 64; for (ul j = page_start; j <= page_end; j += ((j % 64) ? tmp : 64)) { // 按照bmp中的每一个元素进行查找 // 先将p定位到bmp的起始元素 ul *p = memory_management_struct.bmp + (j >> 6); ul shift = j % 64; for (ul k = shift; k < 64 - shift; ++k) { // 寻找连续num个空页 if (!(((*p >> k) | (*(p + 1) << (64 - k))) & (num == 64 ? 0xffffffffffffffffUL : ((1UL << num) - 1)))) { ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号(书上的公式有问题,这个是改过之后的版本) for (ul l = 0; l < num; ++l) { struct Page *x = memory_management_struct.pages_struct + start_page_num + l; page_init(x, flags); } // 成功分配了页面,返回第一个页面的指针 // printk("start page num=%d\n",start_page_num); return (struct Page *)(memory_management_struct.pages_struct + start_page_num); } } } } return NULL; } unsigned long page_clean(struct Page *p) { if (!p->attr) p->attr = 0; else if ((p->attr & PAGE_REFERENCED) || (p->attr & PAGE_K_SHARE_TO_U)) { // 被引用的页或内核共享给用户态的页 --p->ref_counts; --p->zone->total_pages_link; // 当引用为0时 if (!p->ref_counts) { p->attr = 0; --p->zone->count_pages_using; ++p->zone->count_pages_free; } } else { // 将bmp复位 *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) &= ~(1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64)); p->attr = 0; p->ref_counts = 0; --p->zone->count_pages_using; ++p->zone->count_pages_free; --p->zone->total_pages_link; } } /** * @brief 释放连续number个内存页 * * @param page 第一个要被释放的页面的结构体 * @param number 要释放的内存页数量 number<64 */ void free_pages(struct Page *page, int number) { // @todo: 释放连续number个内存页 }