#include "xhci.h" #include #include #include #include #include #include #include #include #include // 由于xhci寄存器读取需要对齐,因此禁用GCC优化选项 #pragma GCC optimize("O0") spinlock_t xhci_controller_init_lock = {0}; // xhci控制器初始化锁(在usb_init中被初始化) static int xhci_ctrl_count = 0; // xhci控制器计数 static struct xhci_host_controller_t xhci_hc[XHCI_MAX_HOST_CONTROLLERS] = {0}; void xhci_hc_irq_enable(uint64_t irq_num); void xhci_hc_irq_disable(uint64_t irq_num); uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg); void xhci_hc_irq_uninstall(uint64_t irq_num); static int xhci_hc_find_available_id(); static int xhci_hc_stop(int id); static int xhci_hc_reset(int id); static int xhci_hc_stop_legacy(int id); static int xhci_hc_start_sched(int id); static int xhci_hc_stop_sched(int id); static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag); static int xhci_hc_pair_ports(int id); static uint64_t xhci_create_ring(int trbs); static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr); void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs); static int xhci_hc_init_intr(int id); static int xhci_hc_start_ports(int id); static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring); static uint64_t xhci_initialize_slot(const int id, const int slot_id, const int port, const int speed, const int max_packet); static void xhci_initialize_ep(const int id, const uint64_t slot_vaddr, const int slot_id, const int ep_num, const int max_packet, const int type, const int direction, const int speed, const int ep_interval); static int xhci_set_address(const int id, const uint64_t slot_vaddr, const int slot_id, const bool block); static int xhci_control_in(const int id, void *target, const int in_size, const int slot_id, const int max_packet); static int xhci_setup_stage(struct xhci_ep_ring_info_t *ep, const struct usb_request_packet_t *packet, const uint8_t direction); static int xhci_data_stage(struct xhci_ep_ring_info_t *ep, uint64_t buf_vaddr, uint8_t trb_type, const uint32_t size, uint8_t direction, const int max_packet, const uint64_t status_vaddr); static int xhci_status_stage(const int id, uint8_t direction, uint64_t status_buf_vaddr); static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr); hardware_intr_controller xhci_hc_intr_controller = { .enable = xhci_hc_irq_enable, .disable = xhci_hc_irq_disable, .install = xhci_hc_irq_install, .uninstall = xhci_hc_irq_uninstall, .ack = apic_local_apic_edge_ack, }; /* 注意!!! 尽管采用MMI/O的方式访问寄存器,但是对于指定大小的寄存器, 在发起读请求的时候,只能从寄存器的起始地址位置开始读取。 例子:不能在一个32bit的寄存器中的偏移量8的位置开始读取1个字节 这种情况下,我们必须从32bit的寄存器的0地址处开始读取32bit,然后通过移位的方式得到其中的字节。 */ #define xhci_read_cap_reg32(id, offset) (__read4b(xhci_hc[id].vbase + (offset))) #define xhci_get_ptr_cap_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase + (offset))) #define xhci_write_cap_reg32(id, offset, value) (__write4b(xhci_hc[id].vbase + (offset), (value))) #define xhci_read_cap_reg64(id, offset) (__read8b(xhci_hc[id].vbase + (offset))) #define xhci_get_ptr_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase + (offset))) #define xhci_write_cap_reg64(id, offset, value) (__write8b(xhci_hc[id].vbase + (offset), (value))) #define xhci_read_op_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase_op + (offset))) #define xhci_get_ptr_op_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase_op + (offset))) #define xhci_write_op_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase_op + (offset)) = (uint8_t)(value)) #define xhci_read_op_reg32(id, offset) (__read4b(xhci_hc[id].vbase_op + (offset))) #define xhci_get_ptr_op_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase_op + (offset))) #define xhci_write_op_reg32(id, offset, value) (__write4b(xhci_hc[id].vbase_op + (offset), (value))) #define xhci_read_op_reg64(id, offset) (__read8b(xhci_hc[id].vbase_op + (offset))) #define xhci_get_ptr_op_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase_op + (offset))) #define xhci_write_op_reg64(id, offset, value) (__write8b(xhci_hc[id].vbase_op + (offset), (value))) /** * @brief 计算中断寄存器组虚拟地址 * @param id 主机控制器id * @param num xhci中断寄存器组号 */ #define xhci_calc_intr_vaddr(id, num) (xhci_hc[id].vbase + xhci_hc[id].rts_offset + XHCI_RT_IR0 + (num)*XHCI_IR_SIZE) /** * @brief 读取/写入中断寄存器 * @param id 主机控制器id * @param num xhci中断寄存器组号 * @param intr_offset 寄存器在当前寄存器组中的偏移量 */ #define xhci_read_intr_reg32(id, num, intr_offset) (__read4b(xhci_calc_intr_vaddr(id, num) + (intr_offset))) #define xhci_write_intr_reg32(id, num, intr_offset, value) (__write4b(xhci_calc_intr_vaddr(id, num) + (intr_offset), (value))) #define xhci_read_intr_reg64(id, num, intr_offset) (__read8b(xhci_calc_intr_vaddr(id, num) + (intr_offset))) #define xhci_write_intr_reg64(id, num, intr_offset, value) (__write8b(xhci_calc_intr_vaddr(id, num) + (intr_offset), (value))) #define xhci_is_aligned64(addr) (((addr)&0x3f) == 0) // 是否64bytes对齐 /** * @brief 判断端口信息 * @param cid 主机控制器id * @param pid 端口id */ #define XHCI_PORT_IS_USB2(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB2) #define XHCI_PORT_IS_USB3(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB3) #define XHCI_PORT_IS_USB2_HSO(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HSO) == XHCI_PROTOCOL_HSO) #define XHCI_PORT_HAS_PAIR(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HAS_PAIR) == XHCI_PROTOCOL_HAS_PAIR) #define XHCI_PORT_IS_ACTIVE(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_ACTIVE) == XHCI_PROTOCOL_ACTIVE) /** * @brief 设置link TRB的命令(dword3) * */ #define xhci_TRB_set_link_cmd(trb_vaddr) \ do \ { \ struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(trb_vaddr); \ ptr->TRB_type = TRB_TYPE_LINK; \ ptr->ioc = 0; \ ptr->chain = 0; \ ptr->ent = 0; \ ptr->cycle = 1; \ } while (0) // 设置endpoint结构体的dequeue_cycle_state bit #define xhci_ep_set_dequeue_cycle_state(ep_ctx_ptr, state) ((ep_ctx_ptr)->tr_dequeue_ptr |= ((state)&1)) // 获取endpoint结构体的dequeue_cycle_state bit #define xhci_ep_get_dequeue_cycle_state(ep_ctx_ptr) (((ep_ctx_ptr)->tr_dequeue_ptr) & 1) /** * @brief 在controller数组之中寻找可用插槽 * * 注意:该函数只能被获得init锁的进程所调用 * @return int 可用id(无空位时返回-1) */ static int xhci_hc_find_available_id() { if (unlikely(xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS)) return -1; for (int i = 0; i < XHCI_MAX_HOST_CONTROLLERS; ++i) { if (xhci_hc[i].pci_dev_hdr == NULL) return i; } return -1; } /** * @brief 从指定地址读取trb * * @param trb 要存储到的trb的地址 * @param address 待读取trb的地址 */ static __always_inline void xhci_get_trb(struct xhci_TRB_t *trb, const uint64_t address) { trb->param = __read8b(address); trb->status = __read4b(address + 8); trb->command = __read4b(address + 12); } /** * @brief 将给定的trb写入指定的地址 * * @param trb 源trb * @param address 拷贝的目标地址 */ static __always_inline void xhci_set_trb(struct xhci_TRB_t *trb, const uint64_t address) { __write8b(address, trb->param); __write4b(address + 8, trb->status); __write4b(address + 12, trb->command); } /** * @brief 将ep结构体写入到设备上下文中的对应块内 * * @param id 主机控制器id * @param slot_vaddr 设备上下文虚拟地址 * @param ep_num ep结构体要写入到哪个块中(在设备上下文中的块号) * @param ep 源数据 */ static __always_inline void __write_ep(int id, uint64_t slot_vaddr, int ep_num, struct xhci_ep_context_t *ep) { memcpy((void *)(slot_vaddr + ep_num * xhci_hc[id].context_size), ep, sizeof(struct xhci_ep_context_t)); } /** * @brief 从设备上下文中的对应块内读取数据到ep结构体 * * @param id 主机控制器id * @param slot_vaddr 设备上下文虚拟地址 * @param ep_num 要从哪个块中读取(在设备上下文中的块号) * @param ep 目标地址 */ static __always_inline void __read_from_ep(int id, uint64_t slot_vaddr, int ep_num, struct xhci_ep_context_t *ep) { memcpy(ep, (void *)(slot_vaddr + ep_num * xhci_hc[id].context_size), sizeof(struct xhci_ep_context_t)); } /** * @brief 将slot上下文数组结构体写入插槽的上下文空间 * * @param vaddr 目标地址 * @param slot_ctx slot上下文数组 */ static __always_inline void __write_slot(const uint64_t vaddr, struct xhci_slot_context_t *slot_ctx) { memcpy((void *)vaddr, slot_ctx, sizeof(struct xhci_slot_context_t)); } /** * @brief 从指定地址读取slot context * * @param slot_ctx 目标地址 * @param slot_vaddr 源地址 * @return __always_inline */ static __always_inline void __read_from_slot(struct xhci_slot_context_t *slot_ctx, uint64_t slot_vaddr) { memcpy(slot_ctx, (void *)slot_vaddr, sizeof(struct xhci_slot_context_t)); } /** * @brief 写入doorbell寄存器 * * @param id 主机控制器id * @param slot_id usb控制器插槽id(0用作命令门铃,其他的用于具体的设备的门铃) * @param value endpoint */ static __always_inline void __xhci_write_doorbell(const int id, const uint16_t slot_id, const uint32_t value) { // 确保写入门铃寄存器之前,所有的写操作均已完成 io_mfence(); xhci_write_cap_reg32(id, xhci_hc[id].db_offset + slot_id * sizeof(uint32_t), value); io_mfence(); } /** * @brief 将trb写入指定的ring中,并更新下一个要写入的地址的值 * * @param ep_info 端点信息结构体 * @param trb 待写入的trb */ static __always_inline void __xhci_write_trb(struct xhci_ep_ring_info_t *ep_info, struct xhci_TRB_t *trb) { memcpy((void *)ep_info->current_ep_ring_vaddr, trb, sizeof(struct xhci_TRB_t)); ep_info->current_ep_ring_vaddr += sizeof(struct xhci_TRB_t); struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(ep_info->current_ep_ring_vaddr); // ring到头了,转换cycle,然后回到第一个trb if (unlikely(ptr->TRB_type == TRB_TYPE_LINK)) { ptr->cycle = ep_info->current_ep_ring_cycle; ep_info->current_ep_ring_vaddr = ep_info->ep_ring_vbase; ep_info->current_ep_ring_cycle ^= 1; } } /** * @brief 停止xhci主机控制器 * * @param id 主机控制器id * @return int */ static int xhci_hc_stop(int id) { // 判断是否已经停止 if (unlikely((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 1)) return 0; io_mfence(); xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00000000); io_mfence(); char timeout = 17; while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0) { io_mfence(); usleep(1000); if (--timeout == 0) return -ETIMEDOUT; } return 0; } /** * @brief reset xHCI主机控制器 * * @param id 主机控制器id * @return int */ static int xhci_hc_reset(int id) { int retval = 0; io_mfence(); // 判断HCHalted是否置位 if ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0) { io_mfence(); kdebug("stopping usb hc..."); // 未置位,需要先尝试停止usb主机控制器 retval = xhci_hc_stop(id); if (unlikely(retval)) return retval; } int timeout = 500; // wait 500ms // reset uint32_t cmd = xhci_read_op_reg32(id, XHCI_OPS_USBCMD); io_mfence(); cmd |= (1 << 1); xhci_write_op_reg32(id, XHCI_OPS_USBCMD, cmd); io_mfence(); io_mfence(); while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1)) { io_mfence(); usleep(1000); if (--timeout == 0) return -ETIMEDOUT; } return retval; } /** * @brief 停止指定xhci控制器的legacy support * * @param id 控制器id * @return int */ static int xhci_hc_stop_legacy(int id) { uint64_t current_offset = xhci_hc[id].ext_caps_off; do { // 判断当前entry是否为legacy support entry if ((xhci_read_cap_reg32(id, current_offset) & 0xff) == XHCI_XECP_ID_LEGACY) { io_mfence(); // 接管控制权 xhci_write_cap_reg32(id, current_offset, xhci_read_cap_reg32(id, current_offset) | XHCI_XECP_LEGACY_OS_OWNED); io_mfence(); // 等待响应完成 int timeout = XHCI_XECP_LEGACY_TIMEOUT; while ((xhci_read_cap_reg32(id, current_offset) & XHCI_XECP_LEGACY_OWNING_MASK) != XHCI_XECP_LEGACY_OS_OWNED) { io_mfence(); usleep(1000); if (--timeout == 0) { kerror("The BIOS doesn't stop legacy support."); return -ETIMEDOUT; } } // 处理完成 return 0; } io_mfence(); // 读取下一个entry的偏移增加量 int next_off = ((xhci_read_cap_reg32(id, current_offset) & 0xff00) >> 8) << 2; io_mfence(); // 将指针跳转到下一个entry current_offset = next_off ? (current_offset + next_off) : 0; } while (current_offset); // 当前controller不存在legacy支持,也问题不大,不影响 return 0; } /** * @brief 启用指定xhci控制器的调度 * * @param id 控制器id * @return int */ static int xhci_hc_start_sched(int id) { io_mfence(); xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 << 2) | (1 << 3)); io_mfence(); usleep(100 * 1000); } /** * @brief 停止指定xhci控制器的调度 * * @param id 控制器id * @return int */ static int xhci_hc_stop_sched(int id) { io_mfence(); xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00); io_mfence(); } /** * @brief 在Ex capability list中寻找符合指定的协议号的寄存器offset、count、flag信息 * * @param id 主机控制器id * @param list_off 列表项位置距离控制器虚拟基地址的偏移量 * @param version 要寻找的端口版本号(2或3) * @param offset 返回的 Compatible Port Offset * @param count 返回的 Compatible Port Count * @param protocol_flag 返回的与协议相关的flag * @return uint32_t 下一个列表项的偏移量 */ static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag) { if (count) *count = 0; do { uint32_t dw0 = xhci_read_cap_reg32(id, list_off); io_mfence(); uint32_t next_list_off = (dw0 >> 8) & 0xff; next_list_off = next_list_off ? (list_off + (next_list_off << 2)) : 0; if ((dw0 & 0xff) == XHCI_XECP_ID_PROTOCOL && ((dw0 & 0xff000000) >> 24) == version) { uint32_t dw2 = xhci_read_cap_reg32(id, list_off + 8); io_mfence(); if (offset != NULL) *offset = (uint32_t)(dw2 & 0xff) - 1; // 使其转换为zero based if (count != NULL) *count = (uint32_t)((dw2 & 0xff00) >> 8); if (protocol_flag != NULL && version == 2) *protocol_flag = (uint16_t)((dw2 >> 16) & 0x0fff); return next_list_off; } list_off = next_list_off; } while (list_off); return 0; } /** * @brief 配对xhci主机控制器的usb2、usb3端口 * * @param id 主机控制器id * @return int 返回码 */ static int xhci_hc_pair_ports(int id) { struct xhci_caps_HCSPARAMS1_reg_t hcs1; io_mfence(); memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t)); io_mfence(); // 从hcs1获取端口数量 xhci_hc[id].port_num = hcs1.max_ports; // 找到所有的端口并标记其端口信息 xhci_hc[id].port_num_u2 = 0; xhci_hc[id].port_num_u3 = 0; uint32_t next_off = xhci_hc[id].ext_caps_off; uint32_t offset, cnt; uint16_t protocol_flags = 0; // 寻找所有的usb2端口 while (next_off) { io_mfence(); next_off = xhci_hc_get_protocol_offset(id, next_off, 2, &offset, &cnt, &protocol_flags); io_mfence(); if (cnt) { for (int i = 0; i < cnt; ++i) { io_mfence(); xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u2++; xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB2; io_mfence(); // usb2 high speed only if (protocol_flags & 2) xhci_hc[id].ports[offset + i].flags |= XHCI_PROTOCOL_HSO; } } } // 寻找所有的usb3端口 next_off = xhci_hc[id].ext_caps_off; while (next_off) { io_mfence(); next_off = xhci_hc_get_protocol_offset(id, next_off, 3, &offset, &cnt, &protocol_flags); io_mfence(); if (cnt) { for (int i = 0; i < cnt; ++i) { io_mfence(); xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u3++; xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB3; } } } // 将对应的USB2端口和USB3端口进行配对 for (int i = 0; i < xhci_hc[id].port_num; ++i) { for (int j = 0; j < xhci_hc[id].port_num; ++j) { if (unlikely(i == j)) continue; io_mfence(); if ((xhci_hc[id].ports[i].offset == xhci_hc[id].ports[j].offset) && ((xhci_hc[id].ports[i].flags & XHCI_PROTOCOL_INFO) != (xhci_hc[id].ports[j].flags & XHCI_PROTOCOL_INFO))) { xhci_hc[id].ports[i].paired_port_num = j; xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_HAS_PAIR; io_mfence(); xhci_hc[id].ports[j].paired_port_num = i; xhci_hc[id].ports[j].flags |= XHCI_PROTOCOL_HAS_PAIR; } } } // 标记所有的usb3、单独的usb2端口为激活状态 for (int i = 0; i < xhci_hc[id].port_num; ++i) { io_mfence(); if (XHCI_PORT_IS_USB3(id, i) || (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i)))) xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_ACTIVE; } kinfo("Found %d ports on root hub, usb2 ports:%d, usb3 ports:%d", xhci_hc[id].port_num, xhci_hc[id].port_num_u2, xhci_hc[id].port_num_u3); /* // 打印配对结果 for (int i = 1; i <= xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB3(id, i)) { kdebug("USB3 port %d, offset=%d, pair with usb2 port %d, current port is %s", i, xhci_hc[id].ports[i].offset, xhci_hc[id].ports[i].paired_port_num, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive"); } else if (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))) // 单独的2.0接口 { kdebug("Stand alone USB2 port %d, offset=%d, current port is %s", i, xhci_hc[id].ports[i].offset, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive"); } else if (XHCI_PORT_IS_USB2(id, i)) { kdebug("USB2 port %d, offset=%d, current port is %s, has pair=%s", i, xhci_hc[id].ports[i].offset, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive", XHCI_PORT_HAS_PAIR(id, i) ? "true" : "false"); } } */ return 0; } /** * @brief 创建ring,并将最后一个trb指向头一个trb * * @param trbs 要创建的trb数量 * @return uint64_t trb数组的起始虚拟地址 */ static uint64_t xhci_create_ring(int trbs) { int total_size = trbs * sizeof(struct xhci_TRB_t); const uint64_t vaddr = (uint64_t)kmalloc(total_size, 0); io_mfence(); memset((void *)vaddr, 0, total_size); io_mfence(); // 设置最后一个trb为link trb xhci_TRB_set_link_cmd(vaddr + total_size - sizeof(struct xhci_TRB_t)); io_mfence(); return vaddr; } /** * @brief 创建新的event ring table和对应的ring segment * * @param trbs 包含的trb的数量 * @param ret_ring_addr 返回的第一个event ring segment的基地址(虚拟) * @return uint64_t trb table的虚拟地址 */ static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr) { const uint64_t table_vaddr = (const uint64_t)kmalloc(64, 0); // table支持8个segment io_mfence(); if (unlikely(table_vaddr == NULL)) return -ENOMEM; memset((void *)table_vaddr, 0, 64); // 暂时只创建1个segment const uint64_t seg_vaddr = (const uint64_t)kmalloc(trbs * sizeof(struct xhci_TRB_t), 0); io_mfence(); if (unlikely(seg_vaddr == NULL)) return -ENOMEM; memset((void *)seg_vaddr, 0, trbs * sizeof(struct xhci_TRB_t)); io_mfence(); // 将segment地址和大小写入table *(uint64_t *)(table_vaddr) = virt_2_phys(seg_vaddr); *(uint64_t *)(table_vaddr + 8) = trbs; *ret_ring_addr = seg_vaddr; return table_vaddr; } void xhci_hc_irq_enable(uint64_t irq_num) { int cid = xhci_find_hcid_by_irq_num(irq_num); io_mfence(); if (WARN_ON(cid == -1)) return; io_mfence(); pci_start_msi(xhci_hc[cid].pci_dev_hdr); io_mfence(); xhci_hc_start_sched(cid); io_mfence(); xhci_hc_start_ports(cid); } void xhci_hc_irq_disable(uint64_t irq_num) { int cid = xhci_find_hcid_by_irq_num(irq_num); io_mfence(); if (WARN_ON(cid == -1)) return; xhci_hc_stop_sched(cid); io_mfence(); pci_disable_msi(xhci_hc[cid].pci_dev_hdr); io_mfence(); } /** * @brief xhci中断的安装函数 * * @param irq_num 要安装的中断向量号 * @param arg 参数 * @return uint64_t 错误码 */ uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg) { int cid = xhci_find_hcid_by_irq_num(irq_num); io_mfence(); if (WARN_ON(cid == -1)) return -EINVAL; struct xhci_hc_irq_install_info_t *info = (struct xhci_hc_irq_install_info_t *)arg; struct msi_desc_t msi_desc; memset(&msi_desc, 0, sizeof(struct msi_desc_t)); io_mfence(); msi_desc.irq_num = irq_num; msi_desc.msi_index = 0; msi_desc.pci_dev = (struct pci_device_structure_header_t *)xhci_hc[cid].pci_dev_hdr; msi_desc.assert = info->assert; msi_desc.edge_trigger = info->edge_trigger; msi_desc.processor = info->processor; msi_desc.pci.msi_attribute.is_64 = 1; msi_desc.pci.msi_attribute.is_msix = 1; io_mfence(); int retval = pci_enable_msi(&msi_desc); return 0; } void xhci_hc_irq_uninstall(uint64_t irq_num) { // todo int cid = xhci_find_hcid_by_irq_num(irq_num); io_mfence(); if (WARN_ON(cid == -1)) return; xhci_hc_stop(cid); io_mfence(); } /** * @brief xhci主机控制器的中断处理函数 * * @param irq_num 中断向量号 * @param cid 控制器号 * @param regs 寄存器值 */ void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs) { // kdebug("USB irq received."); /* 写入usb status寄存器,以表明当前收到了中断,清除usb status寄存器中的EINT位 需要先清除这个位,再清除interrupter中的pending bit) */ xhci_write_op_reg32(cid, XHCI_OPS_USBSTS, xhci_read_op_reg32(cid, XHCI_OPS_USBSTS)); // 读取第0个usb interrupter的intr management寄存器 const uint32_t iman0 = xhci_read_intr_reg32(cid, 0, XHCI_IR_MAN); uint64_t dequeue_reg = xhci_read_intr_reg64(cid, 0, XHCI_IR_DEQUEUE); if (((iman0 & 3) == 3) || (dequeue_reg & 8)) // 中断被启用,且pending不为0 { // 写入1以清除该interrupter的pending bit xhci_write_intr_reg32(cid, 0, XHCI_IR_MAN, iman0 | 3); io_mfence(); struct xhci_TRB_t event_trb, origin_trb; // event ring trb以及其对应的command trb uint64_t origin_vaddr; // 暂存当前trb的起始地址 uint64_t last_event_ring_vaddr = xhci_hc[cid].current_event_ring_vaddr; xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr); while ((event_trb.command & 1) == xhci_hc[cid].current_event_ring_cycle) // 循环处理处于当前周期的所有event ring { struct xhci_TRB_cmd_complete_t *event_trb_ptr = (struct xhci_TRB_cmd_complete_t *)&event_trb; if ((event_trb.command & (1 << 2)) == 0) // 当前event trb不是由于short packet产生的 { // kdebug("event_trb_ptr->code=%d", event_trb_ptr->code); // kdebug("event_trb_ptr->TRB_type=%d", event_trb_ptr->TRB_type); switch (event_trb_ptr->code) // 判断它的完成码 { case TRB_COMP_TRB_SUCCESS: // trb执行成功,则将结果返回到对应的command ring的trb里面 switch (event_trb_ptr->TRB_type) // 根据event trb类型的不同,采取不同的措施 { case TRB_TYPE_COMMAND_COMPLETION: // 命令已经完成 origin_vaddr = (uint64_t)phys_2_virt(event_trb.param); // 获取对应的command trb xhci_get_trb(&origin_trb, origin_vaddr); switch (((struct xhci_TRB_normal_t *)&origin_trb)->TRB_type) { case TRB_TYPE_ENABLE_SLOT: // 源命令为enable slot // 将slot id返回到命令TRB的command字段中 origin_trb.command &= 0x00ffffff; origin_trb.command |= (event_trb.command & 0xff000000); origin_trb.status = event_trb.status; break; default: origin_trb.status = event_trb.status; break; } // 标记该命令已经执行完成 origin_trb.status |= XHCI_IRQ_DONE; // 将command trb写入到表中 xhci_set_trb(&origin_trb, origin_vaddr); // kdebug("set origin:%#018lx", origin_vaddr); break; } break; default: break; } } else // 当前TRB是由short packet产生的 { switch (event_trb_ptr->TRB_type) { case TRB_TYPE_TRANS_EVENT: // 当前 event trb是 transfer event TRB // If SPD was encountered in this TD, comp_code will be SPD, else it should be SUCCESS (specs 4.10.1.1) __write4b((uint64_t)phys_2_virt(event_trb.param), (event_trb.status | XHCI_IRQ_DONE)); // return code + bytes *not* transferred break; default: break; } } // 获取下一个event ring TRB last_event_ring_vaddr = xhci_hc[cid].current_event_ring_vaddr; xhci_hc[cid].current_event_ring_vaddr += sizeof(struct xhci_TRB_t); xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr); if (((struct xhci_TRB_normal_t *)&event_trb)->TRB_type == TRB_TYPE_LINK) { xhci_hc[cid].current_event_ring_vaddr = xhci_hc[cid].event_ring_vaddr; xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr); } } // 当前event ring cycle的TRB处理结束 // 更新dequeue指针, 并清除event handler busy标志位 xhci_write_intr_reg64(cid, 0, XHCI_IR_DEQUEUE, virt_2_phys(last_event_ring_vaddr) | (1 << 3)); io_mfence(); } } /** * @brief 重置端口 * * @param id 控制器id * @param port 端口id * @return int */ static int xhci_reset_port(const int id, const int port) { int retval = 0; // 相对于op寄存器基地址的偏移量 uint64_t port_status_offset = XHCI_OPS_PRS + port * 16; io_mfence(); // 检查端口电源状态 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0) { kdebug("port is power off, starting..."); io_mfence(); xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9)); io_mfence(); usleep(2000); // 检测端口是否被启用, 若未启用,则报错 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0) { kdebug("cannot power on %d", port); return -EAGAIN; } } // kdebug("port:%d, power check ok", port); io_mfence(); // 确保端口的status被清0 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS); // kdebug("to reset timeout;"); io_mfence(); // 重置当前端口 if (XHCI_PORT_IS_USB3(id, port)) xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 31)); else xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 4)); retval = -ETIMEDOUT; // kdebug("to wait reset timeout;"); // 等待portsc的port reset change位被置位,说明reset完成 int timeout = 100; while (timeout) { io_mfence(); uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC); io_mfence(); if (val & (1 << 21)) break; // QEMU对usb的模拟有bug,因此需要检测这里 #ifdef __QEMU_EMULATION__ if (XHCI_PORT_IS_USB3(id, port) && (val & (1 << 31)) == 0) break; else if (XHCI_PORT_IS_USB2(id, port) && (val & (1 << 4)) == 0) break; #endif --timeout; usleep(500); } // kdebug("timeout= %d", timeout); if (timeout > 0) { // 等待恢复 usleep(USB_TIME_RST_REC * 100); uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC); io_mfence(); // kdebug("to check if reset ok, val=%#010lx", val); // 如果reset之后,enable bit仍然是1,那么说明reset成功 if (val & (1 << 1)) { // kdebug("reset ok"); retval = 0; io_mfence(); // 清除status change bit xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS); io_mfence(); } else retval = -1; } // kdebug("reset ok!"); // 如果usb2端口成功reset,则处理该端口的active状态 if (retval == 0 && XHCI_PORT_IS_USB2(id, port)) { xhci_hc[id].ports[port].flags |= XHCI_PROTOCOL_ACTIVE; if (XHCI_PORT_HAS_PAIR(id, port)) // 如果有对应的usb3端口,则将usb3端口设置为未激活 xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags &= ~(XHCI_PROTOCOL_ACTIVE); } // 如果usb3端口reset失败,则启用与之配对的usb2端口 if (retval != 0 && XHCI_PORT_IS_USB3(id, port)) { xhci_hc[id].ports[port].flags &= ~XHCI_PROTOCOL_ACTIVE; xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags |= XHCI_PROTOCOL_ACTIVE; } return retval; } /** * @brief 初始化设备slot的上下文,并将其写入dcbaap中的上下文index数组 * - at this time, we don't know if the device is a hub or not, so we don't * set the slot->hub, ->mtt, ->ttt, ->etc, items. * * @param id 控制器id * @param slot_id enable_slot命令分配的插槽id * @param port 端口号 * @param speed 端口速度 * @param max_packet 最大数据包大小 * @return uint64_t 初始化好的设备上下文空间的虚拟地址 */ static uint64_t xhci_initialize_slot(const int id, const int slot_id, const int port, const int speed, const int max_packet) { // 暂时只初始化slot和control EP0 // 申请上下文数据结构所占用的内存空间 uint64_t device_context_vaddr = (uint64_t)kzalloc(xhci_hc[id].context_size * 2, 0); // kdebug("slot id=%d, device_context_vaddr=%#018lx, port=%d", slot_id, device_context_vaddr, port); // 写到数组中 __write8b(xhci_hc[id].dcbaap_vaddr + (slot_id * sizeof(uint64_t)), virt_2_phys(device_context_vaddr)); struct xhci_slot_context_t slot_ctx = {0}; slot_ctx.entries = 1; slot_ctx.speed = speed; slot_ctx.route_string = 0; slot_ctx.rh_port_num = port + 1; // 由于xhci控制器是1-base的,因此把驱动程序中存储的端口号加1,才是真实的端口号 slot_ctx.max_exit_latency = 0; // 稍后会计算这个值 slot_ctx.int_target = 0; // 当前全部使用第0个interrupter slot_ctx.slot_state = XHCI_SLOT_STATE_DISABLED_OR_ENABLED; slot_ctx.device_address = 0; // 将slot信息写入上下文空间 __write_slot(device_context_vaddr, &slot_ctx); xhci_initialize_ep(id, device_context_vaddr, slot_id, XHCI_EP_CONTROL, max_packet, USB_EP_CONTROL, 0, speed, 0); return device_context_vaddr; } /** * @brief 初始化endpoint * * @param id 控制器id * @param slot_vaddr slot上下文的虚拟地址 * @param slot_id 插槽id * @param ep_num 端点上下文在slot上下文区域内的编号 * @param max_packet 最大数据包大小 * @param type 端点类型 * @param direction 传输方向 * @param speed 传输速度 * @param ep_interval 端点的连续请求间隔 */ static void xhci_initialize_ep(const int id, const uint64_t slot_vaddr, const int slot_id, const int ep_num, const int max_packet, const int type, const int direction, const int speed, const int ep_interval) { // 由于目前只实现获取设备的描述符,因此暂时只支持control ep if (type != USB_EP_CONTROL) return; struct xhci_ep_context_t ep_ctx = {0}; memset(&ep_ctx, 0, sizeof(struct xhci_ep_context_t)); xhci_hc[id].control_ep_info.ep_ring_vbase = xhci_create_ring(XHCI_TRBS_PER_RING); // 申请ep的 transfer ring ep_ctx.tr_dequeue_ptr = virt_2_phys(xhci_hc[id].control_ep_info.ep_ring_vbase); xhci_ep_set_dequeue_cycle_state(&ep_ctx, XHCI_TRB_CYCLE_ON); xhci_hc[id].control_ep_info.current_ep_ring_vaddr = xhci_hc[id].control_ep_info.ep_ring_vbase; xhci_hc[id].control_ep_info.current_ep_ring_cycle = xhci_ep_get_dequeue_cycle_state(&ep_ctx); // kdebug("ep_ctx.tr_dequeue_ptr = %#018lx", ep_ctx.tr_dequeue_ptr); // kdebug("xhci_hc[id].control_ep_info.current_ep_ring_cycle = %d", xhci_hc[id].control_ep_info.current_ep_ring_cycle); // 设置初始值 ep_ctx.max_packet_size = max_packet; ep_ctx.linear_stream_array = 0; ep_ctx.max_primary_streams = 0; ep_ctx.mult = 0; ep_ctx.ep_state = XHCI_EP_STATE_DISABLED; ep_ctx.hid = 0; ep_ctx.ep_type = 4; ep_ctx.average_trb_len = 8; // 所有的control ep的该值均为8 ep_ctx.err_cnt = 3; ep_ctx.max_burst_size = 0; ep_ctx.interval = ep_interval; // 将ep的信息写入到slot上下文中对应的ep的块中 __write_ep(id, slot_vaddr, ep_num, &ep_ctx); } /** * @brief 向usb控制器发送 address_device命令 * * @param id 主机控制器id * @param slot_vaddr 插槽上下文的虚拟基地址 * @param slot_id 插槽id * @param block 是否阻断 set address 信息向usb设备的传输 * @return int 错误码 */ static int xhci_set_address(const int id, const uint64_t slot_vaddr, const int slot_id, const bool block) { int retval = 0; struct xhci_slot_context_t slot; struct xhci_ep_context_t ep; // 创建输入上下文缓冲区 uint64_t input_ctx_buffer = (uint64_t)kzalloc(xhci_hc[id].context_size * 32, 0); // 置位input control context和slot context的add bit __write4b(input_ctx_buffer + 4, 0x3); // 拷贝slot上下文和control ep上下文到输入上下文中 // __write_ep(id, input_ctx_buffer, 2, &ep_ctx); __read_from_slot(&slot, slot_vaddr); __read_from_ep(id, slot_vaddr, 1, &ep); ep.err_cnt = 3; kdebug("slot.slot_state=%d, speed=%d, root hub port num=%d", slot.slot_state, slot.speed, slot.rh_port_num); kdebug("ep.type=%d, max_packet=%d, dequeue_ptr=%#018lx", ep.ep_type, ep.max_packet_size, ep.tr_dequeue_ptr); __write_slot(input_ctx_buffer + xhci_hc[id].context_size, &slot); __write_ep(id, input_ctx_buffer, 2, &ep); struct xhci_TRB_normal_t trb = {0}; trb.buf_paddr = virt_2_phys(input_ctx_buffer); trb.bei = (block ? 1 : 0); trb.TRB_type = TRB_TYPE_ADDRESS_DEVICE; trb.intr_target = 0; trb.cycle = xhci_hc[id].cmd_trb_cycle; trb.Reserved |= ((slot_id << 8) & 0xffff); retval = xhci_send_command(id, (struct xhci_TRB_t *)&trb, true); if (unlikely(retval != 0)) { kerror("slotid:%d, address device failed", slot_id); goto failed; } struct xhci_TRB_cmd_complete_t *trb_done = (struct xhci_TRB_cmd_complete_t *)&trb; if (trb_done->code == TRB_COMP_TRB_SUCCESS) // 成功执行 { // 如果要从控制器获取刚刚设置的设备地址的话,可以在这里读取slot context ksuccess("slot %d successfully addressed.", slot_id); retval = 0; } else retval = -EAGAIN; done:; failed:; kfree((void *)input_ctx_buffer); return retval; } /** * @brief 在指定的端点的ring中,写入一个setup stage TRB * * @param ep 端点信息结构体 * @param packet usb请求包 * @param direction 传输的方向 * @return int 产生的TRB数量 */ static int xhci_setup_stage(struct xhci_ep_ring_info_t *ep, const struct usb_request_packet_t *packet, const uint8_t direction) { // kdebug("ep->current_ep_ring_cycle=%d", ep->current_ep_ring_cycle); struct xhci_TRB_setup_stage_t trb = {0}; trb.bmRequestType = packet->request_type; trb.bRequest = packet->request; trb.wValue = packet->value; trb.wIndex = packet->index; trb.wLength = packet->length; trb.transfer_legth = 8; trb.intr_target = 0; // 使用第0个interrupter trb.cycle = ep->current_ep_ring_cycle; trb.ioc = 0; trb.idt = 1; trb.TRB_type = TRB_TYPE_SETUP_STAGE; trb.trt = direction; // 将setup stage trb拷贝到ep的transfer ring中 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb); return 1; } /** * @brief 向指定的端点中写入data stage trb * * @param ep 端点信息结构体 * @param buf_vaddr 数据缓冲区虚拟地址 * @param trb_type trb类型 * @param size 要传输的数据大小 * @param direction 传输方向 * @param max_packet 最大请求包大小 * @param status_vaddr event data TRB的缓冲区(4字节,且地址按照16字节对齐) * @return int 产生的TRB数量 */ static int xhci_data_stage(struct xhci_ep_ring_info_t *ep, uint64_t buf_vaddr, uint8_t trb_type, const uint32_t size, uint8_t direction, const int max_packet, const uint64_t status_vaddr) { if (size == 0) return 0; int64_t remain_bytes = size; uint32_t remain_packets = (size + max_packet - 1) / max_packet; struct xhci_TRB_data_stage_t trb = {0}; int count_packets = 0; // 分多个trb来执行 while (remain_bytes > 0) { --remain_packets; trb.buf_paddr = virt_2_phys(buf_vaddr); trb.intr_target = 0; trb.TD_size = remain_packets; trb.transfer_length = (remain_bytes < max_packet ? size : max_packet); trb.dir = direction; trb.TRB_type = trb_type; trb.chain = 1; trb.ent = (remain_packets == 0); trb.cycle = ep->current_ep_ring_cycle; trb.ioc = 0; // 将data stage trb拷贝到ep的transfer ring中 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb); buf_vaddr += max_packet; remain_bytes -= max_packet; ++count_packets; // 对于data stage trb而言,除了第一个trb以外,剩下的trb都是NORMAL的,并且dir是无用的 trb_type = TRB_TYPE_NORMAL; direction = 0; } // 写入data event trb, 待完成后,完成信息将会存到status_vaddr指向的地址中 memset(&trb, 0, sizeof(struct xhci_TRB_data_stage_t *)); trb.buf_paddr = virt_2_phys(status_vaddr); trb.intr_target = 0; trb.cycle = ep->current_ep_ring_cycle; trb.ioc = 1; trb.TRB_type = TRB_TYPE_EVENT_DATA; __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb); return count_packets + 1; } /** * @brief 填写xhci status stage TRB到control ep的transfer ring * * @param id 主机控制器id * @param direction 方向:(h2d:0, d2h:1) * @param status_buf_vaddr * @return int 创建的TRB数量 */ static int xhci_status_stage(const int id, uint8_t direction, uint64_t status_buf_vaddr) { // kdebug("write status stage trb"); { struct xhci_TRB_status_stage_t trb = {0}; // 写入status stage trb trb.intr_target = 0; trb.cycle = xhci_hc[id].control_ep_info.current_ep_ring_cycle; trb.ent = 0; trb.ioc = 1; trb.TRB_type = TRB_TYPE_STATUS_STAGE; trb.dir = direction; __xhci_write_trb(&xhci_hc[id].control_ep_info, (struct xhci_TRB_t *)&trb); } { // 写入event data TRB struct xhci_TRB_data_stage_t trb = {0}; trb.buf_paddr = virt_2_phys(status_buf_vaddr); trb.intr_target = 0; trb.TRB_type = TRB_TYPE_EVENT_DATA; trb.ioc = 1; trb.cycle = xhci_hc[id].control_ep_info.current_ep_ring_cycle; __xhci_write_trb(&xhci_hc[id].control_ep_info, (struct xhci_TRB_t *)&trb); } return 2; } /** * @brief 等待状态数据被拷贝到status缓冲区中 * * @param id 主机控制器id * @param status_vaddr status 缓冲区 * @return int 错误码 */ static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr) { int timer = 500; while (timer) { if (__read4b(status_vaddr) & XHCI_IRQ_DONE) { uint32_t status = __read4b(status_vaddr); // 判断完成码 switch (xhci_get_comp_code(status)) { case TRB_COMP_TRB_SUCCESS: case TRB_COMP_SHORT_PACKET: return 0; break; case TRB_COMP_STALL_ERROR: case TRB_COMP_DATA_BUFFER_ERROR: case TRB_COMP_BABBLE_DETECTION: return -EINVAL; default: kerror("xhci wait interrupt: status=%#010x, complete_code=%d", status, xhci_get_comp_code(status)); return -EIO; } } --timer; usleep(1000); } kerror(" USB xHCI Interrupt wait timed out."); return -ETIMEDOUT; } /** * @brief 从指定插槽的control endpoint读取信息 * * @param id 主机控制器id * @param target 读取到的信息存放到的位置 * @param in_size 要读取的数据的大小 * @param slot_id 插槽id * @param max_packet 最大数据包大小 * @return int 读取到的数据的大小 */ static int xhci_control_in(const int id, void *target, const int in_size, const int slot_id, const int max_packet) { uint64_t status_buf_vaddr = (uint64_t)kzalloc(16, 0); // 本来是要申请4bytes的buffer的,但是因为xhci控制器需要16bytes对齐,因此申请16bytes uint64_t data_buf_vaddr = (uint64_t)kzalloc(256, 0); int retval = 0; struct usb_request_packet_t packet = {0}; packet.request_type = USB_REQ_TYPE_GET_REQUEST; packet.request = USB_REQ_GET_DESCRIPTOR; packet.value = (USB_DT_DEVICE << 8); packet.length = in_size; // 往control ep写入一个setup stage trb xhci_setup_stage(&xhci_hc[id].control_ep_info, &packet, XHCI_DIR_IN); xhci_data_stage(&xhci_hc[id].control_ep_info, data_buf_vaddr, TRB_TYPE_DATA_STAGE, in_size, XHCI_DIR_IN_BIT, max_packet, status_buf_vaddr); /* QEMU doesn't quite handle SETUP/DATA/STATUS transactions correctly. It will wait for the STATUS TRB before it completes the transfer. Technically, you need to check for a good transfer before you send the STATUS TRB. However, since QEMU doesn't update the status until after the STATUS TRB, waiting here will not complete a successful transfer. Bochs and real hardware handles this correctly, however QEMU does not. If you are using QEMU, do not ring the doorbell here. Ring the doorbell *after* you place the STATUS TRB on the ring. (See bug report: https://bugs.launchpad.net/qemu/+bug/1859378 ) */ #ifndef __QEMU_EMULATION__ // 如果不是qemu虚拟机,则可以直接发起传输 // kdebug(" not qemu"); __xhci_write_doorbell(id, slot_id, XHCI_EP_CONTROL); retval = xhci_wait_for_interrupt(id, status_buf_vaddr); if (unlikely(retval != 0)) goto failed; #endif memset((void *)status_buf_vaddr, 0, 16); xhci_status_stage(id, XHCI_DIR_OUT_BIT, status_buf_vaddr); __xhci_write_doorbell(id, slot_id, XHCI_EP_CONTROL); retval = xhci_wait_for_interrupt(id, status_buf_vaddr); if (unlikely(retval != 0)) goto failed; // 将读取到的数据拷贝到目标区域 memcpy(target, (void *)data_buf_vaddr, in_size); retval = in_size; goto done; failed:; kdebug("wait 4 interrupt failed"); retval = 0; done:; // 释放内存 kfree((void *)status_buf_vaddr); kfree((void *)data_buf_vaddr); return retval; } /** * @brief 获取端口的描述信息 * * @param id 主机控制器id * @param port_id 端口id * @return int 错误码 */ static int xhci_get_descriptor(const int id, const int port_id) { int retval = 0; int count = 0; struct usb_device_desc dev_desc = {0}; uint32_t dword; // 计算port register set相对于operational registers基地址的偏移量 uint32_t port_register_offset = XHCI_OPS_PRS + 16 * port_id; // 读取指定端口的port sc寄存器 dword = xhci_read_op_reg32(id, port_register_offset + XHCI_PORT_PORTSC); // 读取端口速度。 full=1, low=2, high=3, super=4 uint32_t speed = ((dword >> 10) & 0xf); /* * Some devices will only send the first 8 bytes of the device descriptor * while in the default state. We must request the first 8 bytes, then reset * the port, set address, then request all 18 bytes. */ struct xhci_TRB_normal_t trb = {0}; trb.TRB_type = TRB_TYPE_ENABLE_SLOT; // kdebug("to enable slot"); if (xhci_send_command(id, (struct xhci_TRB_t *)&trb, true) != 0) { kerror("portid:%d: send enable slot failed", port_id); return -ETIMEDOUT; } // kdebug("send enable slot ok"); uint32_t slot_id = ((struct xhci_TRB_cmd_complete_t *)&trb)->slot_id; int16_t max_packet; if (slot_id != 0) // slot id不为0时,是合法的slot id { // 为不同速度的设备确定最大的数据包大小 switch (speed) { case XHCI_PORT_SPEED_LOW: max_packet = 8; break; case XHCI_PORT_SPEED_FULL: case XHCI_PORT_SPEED_HI: max_packet = 64; break; case XHCI_PORT_SPEED_SUPER: max_packet = 512; break; } } // kdebug("speed=%d", speed); // 初始化接口的上下文 uint64_t slot_vaddr = xhci_initialize_slot(id, slot_id, port_id, speed, max_packet); // kdebug("set addr again"); // 再次发送 set_address命令 // kdebug("to set addr again"); retval = xhci_set_address(id, slot_vaddr, slot_id, false); if (retval != 0) return retval; // kdebug("ctrl in again"); count = xhci_control_in(id, &dev_desc, 18, slot_id, max_packet); if (unlikely(count == 0)) return -EAGAIN; /* TODO: if the dev_desc.max_packet was different than what we have as max_packet, you would need to change it here and in the slot context by doing a evaluate_slot_context call. */ // print the descriptor printk(" Found USB Device:\n" " port: %i\n" " len: %i\n" " type: %i\n" " version: %01X.%02X\n" " class: %i\n" " subclass: %i\n" " protocol: %i\n" " max packet size: %i\n" " vendor id: 0x%04X\n" " product id: 0x%04X\n" " release ver: %i%i.%i%i\n" " manufacture index: %i (index to a string)\n" " product index: %i\n" " serial index: %i\n" " number of configs: %i\n", port_id, dev_desc.len, dev_desc.type, dev_desc.usb_version >> 8, dev_desc.usb_version & 0xFF, dev_desc._class, dev_desc.subclass, dev_desc.protocol, dev_desc.max_packet_size, dev_desc.vendor_id, dev_desc.product_id, (dev_desc.device_rel & 0xF000) >> 12, (dev_desc.device_rel & 0x0F00) >> 8, (dev_desc.device_rel & 0x00F0) >> 4, (dev_desc.device_rel & 0x000F) >> 0, dev_desc.manufacturer_index, dev_desc.procuct_index, dev_desc.serial_index, dev_desc.config); return 0; } /** * @brief 启用xhci控制器的端口 * * @param id 控制器id * @return int */ static int xhci_hc_start_ports(int id) { int cnt = 0; // 注意,这两个循环应该不能合并到一起,因为可能存在usb2端口offset在前,usb3端口在后的情况,那样的话就会出错 // 循环启动所有的usb3端口 for (int i = 0; i < xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB3(id, i) && XHCI_PORT_IS_ACTIVE(id, i)) { io_mfence(); // kdebug("to reset port %d, rflags=%#018lx", id, get_rflags()); int rst_ret = xhci_reset_port(id, i); // kdebug("reset done!, val=%d", rst_ret); // reset该端口 if (likely(rst_ret == 0)) // 如果端口reset成功,就获取它的描述符 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的 { // kdebug("reset port %d ok", id); if (xhci_get_descriptor(id, i) == 0) ++cnt; kdebug("usb3 port %d get desc ok", i); } } } kdebug("Active usb3 ports:%d", cnt); // 循环启动所有的usb2端口 for (int i = 0; i < xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB2(id, i) && XHCI_PORT_IS_ACTIVE(id, i)) { // kdebug("initializing usb2: %d", i); // reset该端口 // kdebug("to reset port %d, rflags=%#018lx", i, get_rflags()); if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的 { // kdebug("reset port %d ok", id); if (xhci_get_descriptor(id, i) == 0) ++cnt; kdebug("USB2 port %d get desc ok", i); } } } kinfo("xHCI controller %d: Started %d ports.", id, cnt); return 0; } /** * @brief 初始化xhci主机控制器的中断控制 * * @param id 主机控制器id * @return int 返回码 */ static int xhci_hc_init_intr(int id) { uint64_t retval = 0; struct xhci_caps_HCSPARAMS1_reg_t hcs1; struct xhci_caps_HCSPARAMS2_reg_t hcs2; io_mfence(); memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t)); io_mfence(); memcpy(&hcs2, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t)); io_mfence(); uint32_t max_segs = (1 << (uint32_t)(hcs2.ERST_Max)); uint32_t max_interrupters = hcs1.max_intrs; // 创建 event ring retval = xhci_create_event_ring(4096, &xhci_hc[id].event_ring_vaddr); io_mfence(); if (unlikely((int64_t)(retval) == -ENOMEM)) return -ENOMEM; xhci_hc[id].event_ring_table_vaddr = retval; xhci_hc[id].current_event_ring_vaddr = xhci_hc[id].event_ring_vaddr; // 设置驱动程序要读取的下一个event ring trb的地址 retval = 0; xhci_hc[id].current_event_ring_cycle = 1; // 写入第0个中断寄存器组 io_mfence(); xhci_write_intr_reg32(id, 0, XHCI_IR_MAN, 0x3); // 使能中断并清除pending位(这个pending位是写入1就清0的) io_mfence(); xhci_write_intr_reg32(id, 0, XHCI_IR_MOD, 0); // 关闭中断管制 io_mfence(); xhci_write_intr_reg32(id, 0, XHCI_IR_TABLE_SIZE, 1); // 当前只有1个segment io_mfence(); xhci_write_intr_reg64(id, 0, XHCI_IR_DEQUEUE, virt_2_phys(xhci_hc[id].current_event_ring_vaddr) | (1 << 3)); // 写入dequeue寄存器,并清除busy位(写1就会清除) io_mfence(); xhci_write_intr_reg64(id, 0, XHCI_IR_TABLE_ADDR, virt_2_phys(xhci_hc[id].event_ring_table_vaddr)); // 写入table地址 io_mfence(); // 清除状态位 xhci_write_op_reg32(id, XHCI_OPS_USBSTS, (1 << 10) | (1 << 4) | (1 << 3) | (1 << 2)); io_mfence(); // 开启usb中断 // 注册中断处理程序 struct xhci_hc_irq_install_info_t install_info; install_info.assert = 1; install_info.edge_trigger = 1; install_info.processor = 0; // 投递到bsp char *buf = (char *)kmalloc(16, 0); memset(buf, 0, 16); sprintk(buf, "xHCI HC%d", id); io_mfence(); irq_register(xhci_controller_irq_num[id], &install_info, &xhci_hc_irq_handler, id, &xhci_hc_intr_controller, buf); io_mfence(); kfree(buf); kdebug("xhci host controller %d: interrupt registered. irq num=%d", id, xhci_controller_irq_num[id]); return 0; } /** * @brief 往xhci控制器发送trb, 并将返回的数据存入原始的trb中 * * @param id xhci控制器号 * @param trb 传输请求块 * @param do_ring 是否通知doorbell register * @return int 错误码 */ static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring) { uint64_t origin_trb_vaddr = xhci_hc[id].cmd_trb_vaddr; // 必须先写入参数和状态数据,最后写入command __write8b(xhci_hc[id].cmd_trb_vaddr, trb->param); // 参数 __write4b(xhci_hc[id].cmd_trb_vaddr + 8, trb->status); // 状态 __write4b(xhci_hc[id].cmd_trb_vaddr + 12, trb->command | xhci_hc[id].cmd_trb_cycle); // 命令 xhci_hc[id].cmd_trb_vaddr += sizeof(struct xhci_TRB_t); // 跳转到下一个trb { // 如果下一个trb是link trb,则将下一个要操作的地址是设置为第一个trb struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)xhci_hc[id].cmd_trb_vaddr; if (ptr->TRB_type == TRB_TYPE_LINK) { ptr->cycle = xhci_hc[id].cmd_trb_cycle; xhci_hc[id].cmd_trb_vaddr = xhci_hc[id].cmd_ring_vaddr; xhci_hc[id].cmd_trb_cycle ^= 1; } } if (do_ring) // 按响命令门铃 { __xhci_write_doorbell(id, 0, 0); // 等待中断产生 int timer = 400; const uint32_t iman0 = xhci_read_intr_reg32(id, 0, XHCI_IR_MAN); // Now wait for the interrupt to happen // We use bit 31 of the command dword since it is reserved while (timer && ((__read4b(origin_trb_vaddr + 8) & XHCI_IRQ_DONE) == 0)) { usleep(1000); --timer; } uint32_t x = xhci_read_cap_reg32(id, xhci_hc[id].rts_offset + 0x20); if (timer == 0) return -ETIMEDOUT; else { xhci_get_trb(trb, origin_trb_vaddr); trb->status &= (~XHCI_IRQ_DONE); } } return 0; } /** * @brief 初始化xhci控制器 * * @param header 指定控制器的pci device头部 */ void xhci_init(struct pci_device_structure_general_device_t *dev_hdr) { if (xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS) { kerror("Initialize xhci controller failed: exceed the limit of max controllers."); return; } spin_lock(&xhci_controller_init_lock); kinfo("Initializing xhci host controller: bus=%#02x, device=%#02x, func=%#02x, VendorID=%#04x, irq_line=%d, irq_pin=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, dev_hdr->header.Vendor_ID, dev_hdr->Interrupt_Line, dev_hdr->Interrupt_PIN); io_mfence(); int cid = xhci_hc_find_available_id(); if (cid < 0) { kerror("Initialize xhci controller failed: exceed the limit of max controllers."); goto failed_exceed_max; } memset(&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t)); xhci_hc[cid].controller_id = cid; xhci_hc[cid].pci_dev_hdr = dev_hdr; io_mfence(); { uint32_t tmp = pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4); tmp |= 0x6; // mem I/O access enable and bus master enable pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4, tmp); } io_mfence(); // 为当前控制器映射寄存器地址空间 xhci_hc[cid].vbase = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + XHCI_MAPPING_OFFSET + 65536 * xhci_hc[cid].controller_id; // kdebug("dev_hdr->BAR0 & (~0xf)=%#018lx", dev_hdr->BAR0 & (~0xf)); mm_map_phys_addr(xhci_hc[cid].vbase, dev_hdr->BAR0 & (~0xf), 65536, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, true); io_mfence(); // 计算operational registers的地址 xhci_hc[cid].vbase_op = xhci_hc[cid].vbase + (xhci_read_cap_reg32(cid, XHCI_CAPS_CAPLENGTH) & 0xff); io_mfence(); // 重置xhci控制器 FAIL_ON_TO(xhci_hc_reset(cid), failed); io_mfence(); // 读取xhci控制寄存器 uint16_t iversion = *(uint16_t *)(xhci_hc[cid].vbase + XHCI_CAPS_HCIVERSION); struct xhci_caps_HCCPARAMS1_reg_t hcc1; struct xhci_caps_HCCPARAMS2_reg_t hcc2; struct xhci_caps_HCSPARAMS1_reg_t hcs1; struct xhci_caps_HCSPARAMS2_reg_t hcs2; memcpy(&hcc1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS1), sizeof(struct xhci_caps_HCCPARAMS1_reg_t)); memcpy(&hcc2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS2), sizeof(struct xhci_caps_HCCPARAMS2_reg_t)); memcpy(&hcs1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t)); memcpy(&hcs2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t)); xhci_hc[cid].db_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_DBOFF) & (~0x3); // bits [1:0] reserved io_mfence(); xhci_hc[cid].rts_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_RTSOFF) & (~0x1f); // bits [4:0] reserved. io_mfence(); xhci_hc[cid].ext_caps_off = 1UL * (hcc1.xECP) * 4; xhci_hc[cid].context_size = (hcc1.csz) ? 64 : 32; if (iversion < 0x95) kwarn("Unsupported/Unknowned xHCI controller version: %#06x. This may cause unexpected behavior.", iversion); { // Write to the FLADJ register incase the BIOS didn't uint32_t tmp = pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x60); tmp |= (0x20 << 8); pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x60, tmp); } // if it is a Panther Point device, make sure sockets are xHCI controlled. if (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) & 0xffff) == 0x8086) && (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) >> 16) & 0xffff) == 0x1E31) && ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 8) & 0xff) == 4)) { kdebug("Is a Panther Point device"); pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd8, 0xffffffff); pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd0, 0xffffffff); } io_mfence(); // 关闭legacy支持 FAIL_ON_TO(xhci_hc_stop_legacy(cid), failed); io_mfence(); // 端口配对 FAIL_ON_TO(xhci_hc_pair_ports(cid), failed); io_mfence(); // ========== 设置USB host controller ========= // 获取页面大小 xhci_hc[cid].page_size = (xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE) & 0xffff) << 12; io_mfence(); // 获取设备上下文空间 xhci_hc[cid].dcbaap_vaddr = (uint64_t)kzalloc(2048, 0); // 分配2KB的设备上下文地址数组空间 io_mfence(); // kdebug("dcbaap_vaddr=%#018lx", xhci_hc[cid].dcbaap_vaddr); if (unlikely(!xhci_is_aligned64(xhci_hc[cid].dcbaap_vaddr))) // 地址不是按照64byte对齐 { kerror("dcbaap isn't 64 byte aligned."); goto failed_free_dyn; } // 写入dcbaap xhci_write_op_reg64(cid, XHCI_OPS_DCBAAP, virt_2_phys(xhci_hc[cid].dcbaap_vaddr)); io_mfence(); // 创建scratchpad buffer array uint32_t max_scratchpad_buf = (((uint32_t)hcs2.max_scratchpad_buf_HI5) << 5) | hcs2.max_scratchpad_buf_LO5; kdebug("max scratchpad buffer=%d", max_scratchpad_buf); if (max_scratchpad_buf > 0) { xhci_hc[cid].scratchpad_buf_array_vaddr = (uint64_t)kzalloc(sizeof(uint64_t) * max_scratchpad_buf, 0); __write8b(xhci_hc[cid].dcbaap_vaddr, virt_2_phys(xhci_hc[cid].scratchpad_buf_array_vaddr)); // 创建scratchpad buffers for (int i = 0; i < max_scratchpad_buf; ++i) { uint64_t buf_vaddr = kzalloc(xhci_hc[cid].page_size, 0); __write8b(xhci_hc[cid].scratchpad_buf_array_vaddr, virt_2_phys(buf_vaddr)); } } // 创建command ring xhci_hc[cid].cmd_ring_vaddr = xhci_create_ring(XHCI_CMND_RING_TRBS); xhci_hc[cid].cmd_trb_vaddr = xhci_hc[cid].cmd_ring_vaddr; if (unlikely(!xhci_is_aligned64(xhci_hc[cid].cmd_ring_vaddr))) // 地址不是按照64byte对齐 { kerror("cmd ring isn't 64 byte aligned."); goto failed_free_dyn; } // 设置初始cycle bit为1 xhci_hc[cid].cmd_trb_cycle = XHCI_TRB_CYCLE_ON; io_mfence(); // 写入command ring控制寄存器 xhci_write_op_reg64(cid, XHCI_OPS_CRCR, virt_2_phys(xhci_hc[cid].cmd_ring_vaddr) | xhci_hc[cid].cmd_trb_cycle); // 写入配置寄存器 uint32_t max_slots = hcs1.max_slots; // kdebug("max slots = %d", max_slots); io_mfence(); xhci_write_op_reg32(cid, XHCI_OPS_CONFIG, max_slots); io_mfence(); // 写入设备通知控制寄存器 xhci_write_op_reg32(cid, XHCI_OPS_DNCTRL, (1 << 1)); // 目前只有N1被支持 io_mfence(); FAIL_ON_TO(xhci_hc_init_intr(cid), failed_free_dyn); io_mfence(); ++xhci_ctrl_count; io_mfence(); spin_unlock(&xhci_controller_init_lock); io_mfence(); return; failed_free_dyn:; // 释放动态申请的内存 if (xhci_hc[cid].dcbaap_vaddr) kfree((void *)xhci_hc[cid].dcbaap_vaddr); if (xhci_hc[cid].cmd_ring_vaddr) kfree((void *)xhci_hc[cid].cmd_ring_vaddr); if (xhci_hc[cid].event_ring_table_vaddr) kfree((void *)xhci_hc[cid].event_ring_table_vaddr); if (xhci_hc[cid].event_ring_vaddr) kfree((void *)xhci_hc[cid].event_ring_vaddr); failed:; io_mfence(); // 取消地址映射 mm_unmap_addr(xhci_hc[cid].vbase, 65536); io_mfence(); // 清空数组 memset((void *)&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t)); failed_exceed_max:; kerror("Failed to initialize controller: bus=%d, dev=%d, func=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func); spin_unlock(&xhci_controller_init_lock); }