#include "fat32.h" #include #include #include #include #include #include #include struct vfs_super_block_operations_t fat32_sb_ops; struct vfs_dir_entry_operations_t fat32_dEntry_ops; struct vfs_file_operations_t fat32_file_ops; struct vfs_inode_operations_t fat32_inode_ops; /** * @brief 注册指定磁盘上的指定分区的fat32文件系统 * * @param ahci_ctrl_num ahci控制器编号 * @param ahci_port_num ahci控制器端口编号 * @param part_num 磁盘分区编号 * * @return struct vfs_super_block_t * 文件系统的超级块 */ struct vfs_superblock_t *fat32_register_partition(uint8_t ahci_ctrl_num, uint8_t ahci_port_num, uint8_t part_num) { struct MBR_disk_partition_table_t *DPT = MBR_read_partition_table(ahci_ctrl_num, ahci_port_num); // for(i = 0 ;i < 512 ; i++) // color_printk(PURPLE,WHITE,"%02x",buf[i]); printk_color(ORANGE, BLACK, "DPTE[0] start_LBA:%#018lx\ttype:%#018lx\n", DPT->DPTE[part_num].starting_LBA, DPT->DPTE[part_num].type); uint8_t buf[512] = {0}; // 读取文件系统的boot扇区 ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, DPT->DPTE[part_num].starting_LBA, 1, (uint64_t)&buf, ahci_ctrl_num, ahci_port_num); // 挂载文件系统到vfs return vfs_mount_fs("FAT32", (void *)(&DPT->DPTE[part_num]), VFS_DPT_MBR, buf, ahci_ctrl_num, ahci_port_num, part_num); } /** * @brief 读取指定簇的FAT表项 * * @param fsbi fat32超级块私有信息结构体 * @param cluster 指定簇 * @return uint32_t 下一个簇的簇号 */ uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster) { // 计算每个扇区内含有的FAT表项数 // FAT每项4bytes uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂 uint32_t buf[256]; memset(buf, 0, fsbi->bytes_per_sec); // 读取一个sector的数据, ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); // 返回下一个fat表项的值(也就是下一个cluster) return buf[cluster & (fat_ent_per_sec - 1)] & 0x0fffffff; } /** * @brief 写入指定簇的FAT表项 * * @param fsbi fat32超级块私有信息结构体 * @param cluster 指定簇 * @param value 要写入该fat表项的值 * @return uint32_t errcode */ uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value) { // 计算每个扇区内含有的FAT表项数 // FAT每项4bytes uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂 uint32_t buf[256]; memset(buf, 0, fsbi->bytes_per_sec); ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff); // 向FAT1和FAT2写入数据 ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); return 0; } /** * @brief 在父目录中寻找指定的目录项 * * @param parent_inode 父目录项的inode * @param dest_inode 搜索目标目录项的inode * @return struct vfs_dir_entry_t* 目标目录项 */ struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dentry) { int errcode = 0; struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info; uint8_t *buf = kmalloc(fsbi->bytes_per_clus, 0); memset(buf, 0, fsbi->bytes_per_clus); // 计算父目录项的起始簇号 uint32_t cluster = finode->first_clus; struct fat32_Directory_t *tmp_dEntry = NULL; while (true) { // 计算父目录项的起始LBA扇区号 uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // kdebug("fat32_part_info[part_id].bootsector.BPB_SecPerClus=%d",fat32_part_info[part_id].bootsector.BPB_SecPerClus); // kdebug("sector=%d",sector); // 读取父目录项的起始簇数据 ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); // ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fat32_part_info[part_id].bootsector.BPB_SecPerClus, (uint64_t)buf, fat32_part_info[part_id].ahci_ctrl_num, fat32_part_info[part_id].ahci_port_num); tmp_dEntry = (struct fat32_Directory_t *)buf; // 查找短目录项 for (int i = 0; i < fsbi->bytes_per_clus; i += 32, ++tmp_dEntry) { // 跳过长目录项 if (tmp_dEntry->DIR_Attr == ATTR_LONG_NAME) continue; // 跳过无效页表项、空闲页表项 if (tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00 || tmp_dEntry->DIR_Name[0] == 0x05) continue; // 找到长目录项,位于短目录项之前 struct fat32_LongDirectory_t *tmp_ldEntry = (struct fat32_LongDirectory_t *)tmp_dEntry - 1; int js = 0; // 遍历每个长目录项 while (tmp_ldEntry->LDIR_Attr == ATTR_LONG_NAME && tmp_ldEntry->LDIR_Ord != 0xe5) { // 比较name1 for (int x = 0; x < 5; ++x) { if (js > dest_dentry->name_length && tmp_ldEntry->LDIR_Name1[x] == 0xffff) continue; else if (js > dest_dentry->name_length || tmp_ldEntry->LDIR_Name1[x] != (uint16_t)(dest_dentry->name[js++])) // 文件名不匹配,检索下一个短目录项 goto continue_cmp_fail; } // 比较name2 for (int x = 0; x < 6; ++x) { if (js > dest_dentry->name_length && tmp_ldEntry->LDIR_Name2[x] == 0xffff) continue; else if (js > dest_dentry->name_length || tmp_ldEntry->LDIR_Name2[x] != (uint16_t)(dest_dentry->name[js++])) // 文件名不匹配,检索下一个短目录项 goto continue_cmp_fail; } // 比较name3 for (int x = 0; x < 2; ++x) { if (js > dest_dentry->name_length && tmp_ldEntry->LDIR_Name3[x] == 0xffff) continue; else if (js > dest_dentry->name_length || tmp_ldEntry->LDIR_Name3[x] != (uint16_t)(dest_dentry->name[js++])) // 文件名不匹配,检索下一个短目录项 goto continue_cmp_fail; } if (js >= dest_dentry->name_length) // 找到需要的目录项,返回 { goto find_lookup_success; } --tmp_ldEntry; // 检索下一个长目录项 } // 不存在长目录项,匹配短目录项的基础名 js = 0; for (int x = 0; x < 8; ++x) { switch (tmp_dEntry->DIR_Name[x]) { case ' ': if (!(tmp_dEntry->DIR_Attr & ATTR_DIRECTORY)) // 不是文件夹(是文件) { if (dest_dentry->name[js] == '.') continue; else if (tmp_dEntry->DIR_Name[x] == dest_dentry->name[js]) { ++js; break; } else goto continue_cmp_fail; } else // 是文件夹 { if (js < dest_dentry->name_length && tmp_dEntry->DIR_Name[x] == dest_dentry->name[js]) // 当前位正确匹配 { ++js; break; // 进行下一位的匹配 } else if (js == dest_dentry->name_length) continue; else goto continue_cmp_fail; } break; // 当前位是字母 case 'A' ... 'Z': case 'a' ... 'z': if (tmp_dEntry->DIR_NTRes & LOWERCASE_BASE) // 为兼容windows系统,检测DIR_NTRes字段 { if (js < dest_dentry->name_length && (tmp_dEntry->DIR_Name[x] + 32 == dest_dentry->name[js])) { ++js; break; } else goto continue_cmp_fail; } else { if (js < dest_dentry->name_length && tmp_dEntry->DIR_Name[x] == dest_dentry->name[js]) { ++js; break; } else goto continue_cmp_fail; } break; case '0' ... '9': if (js < dest_dentry->name_length && tmp_dEntry->DIR_Name[x] == dest_dentry->name[js]) { ++js; break; } else goto continue_cmp_fail; break; default: ++js; break; } } // 若短目录项为文件,则匹配扩展名 if (!(tmp_dEntry->DIR_Attr & ATTR_DIRECTORY)) { ++js; for (int x = 8; x < 11; ++x) { switch (tmp_dEntry->DIR_Name[x]) { // 当前位是字母 case 'A' ... 'Z': case 'a' ... 'z': if (tmp_dEntry->DIR_NTRes & LOWERCASE_EXT) // 为兼容windows系统,检测DIR_NTRes字段 { if ((tmp_dEntry->DIR_Name[x] + 32 == dest_dentry->name[js])) { ++js; break; } else goto continue_cmp_fail; } else { if (tmp_dEntry->DIR_Name[x] == dest_dentry->name[js]) { ++js; break; } else goto continue_cmp_fail; } break; case '0' ... '9': case ' ': if (tmp_dEntry->DIR_Name[x] == dest_dentry->name[js]) { ++js; break; } else goto continue_cmp_fail; break; default: goto continue_cmp_fail; break; } } } goto find_lookup_success; continue_cmp_fail:; } // 当前簇没有发现目标文件名,寻找下一个簇 cluster = fat32_read_FAT_entry(fsbi, cluster); if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到目标文件名 { kfree(buf); return NULL; } } find_lookup_success:; // 找到目标dentry struct vfs_index_node_t *p = (struct vfs_index_node_t *)kmalloc(sizeof(struct vfs_index_node_t), 0); memset(p, 0, sizeof(struct vfs_index_node_t)); p->file_size = tmp_dEntry->DIR_FileSize; // 计算文件占用的扇区数, 由于最小存储单位是簇,因此需要按照簇的大小来对齐扇区 p->blocks = (p->file_size + fsbi->bytes_per_clus - 1) / fsbi->bytes_per_sec; p->attribute = (tmp_dEntry->DIR_Attr & ATTR_DIRECTORY) ? VFS_ATTR_DIR : VFS_ATTR_FILE; p->sb = parent_inode->sb; p->file_ops = &fat32_file_ops; p->inode_ops = &fat32_inode_ops; // 为inode的与文件系统相关的信息结构体分配空间 p->private_inode_info = (void *)kmalloc(sizeof(fat32_inode_info_t), 0); memset(p->private_inode_info, 0, sizeof(fat32_inode_info_t)); finode = (fat32_inode_info_t *)p->private_inode_info; finode->first_clus = ((tmp_dEntry->DIR_FstClusHI << 16) | tmp_dEntry->DIR_FstClusLO) & 0x0fffffff; finode->dEntry_location_clus = cluster; finode->dEntry_location_clus_offset = tmp_dEntry - (struct fat32_Directory_t *)buf; //计算dentry的偏移量 kdebug("finode->dEntry_location_clus=%#018lx", finode->dEntry_location_clus); kdebug("finode->dEntry_location_clus_offset=%#018lx", finode->dEntry_location_clus_offset); finode->create_date = tmp_dEntry->DIR_CrtDate; finode->create_time = tmp_dEntry->DIR_CrtTime; finode->write_date = tmp_dEntry->DIR_WrtDate; finode->write_time = tmp_dEntry->DIR_WrtTime; dest_dentry->dir_inode = p; kfree(buf); return dest_dentry; } /** * @brief 创建fat32文件系统的超级块 * * @param DPTE 磁盘分区表entry * @param DPT_type 磁盘分区表类型 * @param buf fat32文件系统的引导扇区 * @return struct vfs_superblock_t* 创建好的超级块 */ struct vfs_superblock_t *fat32_read_superblock(void *DPTE, uint8_t DPT_type, void *buf, int8_t ahci_ctrl_num, int8_t ahci_port_num, int8_t part_num) { if (DPT_type != VFS_DPT_MBR) // 暂时只支持MBR分区表 { kerror("fat32_read_superblock(): Unsupported DPT!"); return NULL; } // 分配超级块的空间 struct vfs_superblock_t *sb_ptr = (struct vfs_superblock_t *)kmalloc(sizeof(struct vfs_superblock_t), 0); memset(sb_ptr, 0, sizeof(struct vfs_superblock_t)); sb_ptr->sb_ops = &fat32_sb_ops; sb_ptr->private_sb_info = kmalloc(sizeof(fat32_sb_info_t), 0); memset(sb_ptr->private_sb_info, 0, sizeof(fat32_sb_info_t)); struct fat32_BootSector_t *fbs = (struct fat32_BootSector_t *)buf; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(sb_ptr->private_sb_info); // MBR分区表entry struct MBR_disk_partition_table_entry_t *MBR_DPTE = (struct MBR_disk_partition_table_entry_t *)DPTE; fsbi->ahci_ctrl_num = ahci_ctrl_num; fsbi->ahci_port_num = ahci_port_num; fsbi->part_num = part_num; fsbi->starting_sector = MBR_DPTE->starting_LBA; fsbi->sector_count = MBR_DPTE->total_sectors; fsbi->sec_per_clus = fbs->BPB_SecPerClus; fsbi->bytes_per_clus = fbs->BPB_SecPerClus * fbs->BPB_BytesPerSec; fsbi->bytes_per_sec = fbs->BPB_BytesPerSec; fsbi->first_data_sector = MBR_DPTE->starting_LBA + fbs->BPB_RsvdSecCnt + fbs->BPB_FATSz32 * fbs->BPB_NumFATs; fsbi->FAT1_base_sector = MBR_DPTE->starting_LBA + fbs->BPB_RsvdSecCnt; fsbi->FAT2_base_sector = fsbi->FAT1_base_sector + fbs->BPB_FATSz32; fsbi->sec_per_FAT = fbs->BPB_FATSz32; fsbi->NumFATs = fbs->BPB_NumFATs; fsbi->fsinfo_sector_addr_infat = fbs->BPB_FSInfo; fsbi->bootsector_bak_sector_addr_infat = fbs->BPB_BkBootSec; printk_color(ORANGE, BLACK, "FAT32 Boot Sector\n\tBPB_FSInfo:%#018lx\n\tBPB_BkBootSec:%#018lx\n\tBPB_TotSec32:%#018lx\n", fbs->BPB_FSInfo, fbs->BPB_BkBootSec, fbs->BPB_TotSec32); // fsinfo扇区的信息 memset(&fsbi->fsinfo, 0, sizeof(struct fat32_FSInfo_t)); ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, MBR_DPTE->starting_LBA + fbs->BPB_FSInfo, 1, (uint64_t)&fsbi->fsinfo, ahci_ctrl_num, ahci_port_num); printk_color(BLUE, BLACK, "FAT32 FSInfo\n\tFSI_LeadSig:%#018lx\n\tFSI_StrucSig:%#018lx\n\tFSI_Free_Count:%#018lx\n", fsbi->fsinfo.FSI_LeadSig, fsbi->fsinfo.FSI_StrucSig, fsbi->fsinfo.FSI_Free_Count); // 初始化超级块的dir entry sb_ptr->root = (struct vfs_dir_entry_t *)kmalloc(sizeof(struct vfs_dir_entry_t), 0); memset(sb_ptr->root, 0, sizeof(struct vfs_dir_entry_t)); list_init(&sb_ptr->root->child_node_list); list_init(&sb_ptr->root->subdirs_list); sb_ptr->root->parent = sb_ptr->root; sb_ptr->root->dir_ops = &fat32_dEntry_ops; // 分配2个字节的name sb_ptr->root->name = (char *)(kmalloc(2, 0)); sb_ptr->root->name[0] = '/'; sb_ptr->root->name_length = 1; // 为root目录项分配index node sb_ptr->root->dir_inode = (struct vfs_index_node_t *)kmalloc(sizeof(struct vfs_index_node_t), 0); memset(sb_ptr->root->dir_inode, 0, sizeof(struct vfs_index_node_t)); sb_ptr->root->dir_inode->inode_ops = &fat32_inode_ops; sb_ptr->root->dir_inode->file_ops = &fat32_file_ops; sb_ptr->root->dir_inode->file_size = 0; // 计算文件占用的扇区数, 由于最小存储单位是簇,因此需要按照簇的大小来对齐扇区 sb_ptr->root->dir_inode->blocks = (sb_ptr->root->dir_inode->file_size + fsbi->bytes_per_clus - 1) / fsbi->bytes_per_sec; sb_ptr->root->dir_inode->attribute = VFS_ATTR_DIR; sb_ptr->root->dir_inode->sb = sb_ptr; // 反向绑定对应的超级块 // 初始化inode信息 sb_ptr->root->dir_inode->private_inode_info = kmalloc(sizeof(struct fat32_inode_info_t), 0); memset(sb_ptr->root->dir_inode->private_inode_info, 0, sizeof(struct fat32_inode_info_t)); struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)sb_ptr->root->dir_inode->private_inode_info; finode->first_clus = fbs->BPB_RootClus; finode->dEntry_location_clus = 0; finode->dEntry_location_clus_offset = 0; finode->create_time = 0; finode->create_date = 0; finode->write_date = 0; finode->write_time; return sb_ptr; } /** * @brief todo: 写入superblock * * @param sb */ void fat32_write_superblock(struct vfs_superblock_t *sb) { } /** * @brief 释放superblock的内存空间 * * @param sb 要被释放的superblock */ void fat32_put_superblock(struct vfs_superblock_t *sb) { kfree(sb->private_sb_info); kfree(sb->root->dir_inode->private_inode_info); kfree(sb->root->dir_inode); kfree(sb->root); kfree(sb); } /** * @brief 写入inode到硬盘上 * * @param inode */ void fat32_write_inode(struct vfs_index_node_t *inode) { fat32_inode_info_t *finode = inode->private_inode_info; if (finode->dEntry_location_clus == 0) { kerror("FAT32 error: Attempt to write the root inode"); return; } fat32_sb_info_t *fsbi = (fat32_sb_info_t *)inode->sb->private_sb_info; // 计算目标inode对应数据区的LBA地址 uint64_t fLBA = fsbi->first_data_sector + (finode->dEntry_location_clus - 2) * fsbi->sec_per_clus; struct fat32_Directory_t *buf = (struct fat32_Directory_t *)kmalloc(fsbi->bytes_per_clus, 0); memset(buf, 0, fsbi->bytes_per_clus); ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fLBA, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); // 计算目标dEntry所在的位置 struct fat32_Directory_t *fdEntry = buf + finode->dEntry_location_clus_offset; // 写入fat32文件系统的dir_entry fdEntry->DIR_FileSize = inode->file_size; fdEntry->DIR_FstClusLO = finode->first_clus & 0xffff; fdEntry->DIR_FstClusHI = (finode->first_clus >> 16) | (fdEntry->DIR_FstClusHI & 0xf000); // 将dir entry写回磁盘 ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fLBA, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); kfree(buf); } struct vfs_super_block_operations_t fat32_sb_ops = { .write_superblock = fat32_write_superblock, .put_superblock = fat32_put_superblock, .write_inode = fat32_write_inode, }; // todo: compare long fat32_compare(struct vfs_dir_entry_t *parent_dEntry, char *source_filename, char *dest_filename) { } // todo: hash long fat32_hash(struct vfs_dir_entry_t *dEntry, char *filename) { } // todo: release long fat32_release(struct vfs_dir_entry_t *dEntry) { } // todo: iput long fat32_iput(struct vfs_dir_entry_t *dEntry, struct vfs_index_node_t *inode) { } /** * @brief fat32文件系统对于dEntry的操作 * */ struct vfs_dir_entry_operations_t fat32_dEntry_ops = { .compare = fat32_compare, .hash = fat32_hash, .release = fat32_release, .iput = fat32_iput, }; // todo: open long fat32_open(struct vfs_index_node_t *inode, struct vfs_file_t *file_ptr) { return VFS_SUCCESS; } // todo: close long fat32_close(struct vfs_index_node_t *inode, struct vfs_file_t *file_ptr) { return VFS_SUCCESS; } /** * @brief 从fat32文件系统读取数据 * * @param file_ptr 文件描述符 * @param buf 输出缓冲区 * @param count 要读取的字节数 * @param position 文件指针位置 * @return long 执行成功:传输的字节数量 执行失败:错误码(小于0) */ long fat32_read(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *position) { struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)(file_ptr->dEntry->dir_inode->private_inode_info); fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(file_ptr->dEntry->dir_inode->sb->private_sb_info); // First cluster num of the file uint64_t cluster = finode->first_clus; // kdebug("fsbi->bytes_per_clus=%d fsbi->sec_per_clus=%d finode->first_clus=%d cluster=%d", fsbi->bytes_per_clus, fsbi->sec_per_clus, finode->first_clus, cluster); // kdebug("fsbi->bytes_per_clus=%d", fsbi->bytes_per_clus); // clus offset in file uint64_t clus_offset_in_file = (*position) / fsbi->bytes_per_clus; // bytes offset in clus uint64_t bytes_offset = (*position) % fsbi->bytes_per_clus; if (!cluster) return -EFAULT; // find the actual cluster on disk of the specified position for (int i = 0; i < clus_offset_in_file; ++i) cluster = fat32_read_FAT_entry(fsbi, cluster); // 如果需要读取的数据边界大于文件大小 if (*position + count > file_ptr->dEntry->dir_inode->file_size) count = file_ptr->dEntry->dir_inode->file_size - *position; // 剩余还需要传输的字节数量 int64_t bytes_remain = count; // alloc buffer memory space for ahci transfer void *tmp_buffer = kmalloc(fsbi->bytes_per_clus, 0); int64_t retval = 0; do { memset(tmp_buffer, 0, fsbi->bytes_per_clus); uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // 读取一个簇的数据 int errno = ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buffer, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); if (errno != AHCI_SUCCESS) { kerror("FAT32 FS(read) error!"); retval = -EIO; break; } int64_t step_trans_len = 0; // 当前循环传输的字节数 if (bytes_remain > (fsbi->bytes_per_clus - bytes_offset)) step_trans_len = (fsbi->bytes_per_clus - bytes_offset); else step_trans_len = bytes_remain; if (((uint64_t)buf) < USER_MAX_LINEAR_ADDR) copy_to_user(buf, tmp_buffer + bytes_offset, step_trans_len); else memcpy(buf, tmp_buffer + bytes_offset, step_trans_len); bytes_remain -= step_trans_len; buf += step_trans_len; bytes_offset -= bytes_offset; *position += step_trans_len; // 更新文件指针 cluster = fat32_read_FAT_entry(fsbi, cluster); } while (bytes_remain && (cluster < 0x0ffffff8) && cluster != 0); kfree(tmp_buffer); if (!bytes_remain) retval = count; return retval; } /** * @brief 在磁盘中寻找一个空闲的簇 * * @param fsbi fat32超级块信息结构体 * @return uint64_t 空闲簇号(找不到则返回0) */ uint64_t fat32_find_available_cluster(fat32_sb_info_t *fsbi) { uint64_t sec_per_fat = fsbi->sec_per_FAT; // 申请1扇区的缓冲区 uint32_t *buf = (uint32_t *)kmalloc(fsbi->bytes_per_sec, 0); int ent_per_sec = (fsbi->bytes_per_sec >> 2); for (int i = 0; i < sec_per_fat; ++i) { memset(buf, 0, fsbi->bytes_per_sec); ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); // 依次检查簇是否空闲 for (int j = 0; j < ent_per_sec; ++j) { // 找到空闲簇 if ((buf[j] & 0x0fffffff) == 0) return i * ent_per_sec + j; } } return 0; } /** * @brief 向fat32文件系统写入数据 * * @param file_ptr 文件描述符 * @param buf 输入写入的字节数 * @param position 文件指针位置 * @return long 执行成功:传输的字节数量 执行失败:错误码(小于0) */ long fat32_write(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *position) { struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)file_ptr->dEntry->dir_inode->private_inode_info; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(file_ptr->dEntry->dir_inode->sb->private_sb_info); // First cluster num of the file uint64_t cluster = finode->first_clus; int64_t flags = 0; // kdebug("fsbi->bytes_per_clus=%d fsbi->sec_per_clus=%d finode->first_clus=%d *position=%d", fsbi->bytes_per_clus, fsbi->sec_per_clus, finode->first_clus, *position); // kdebug("buf=%s", buf); // clus offset in file uint64_t clus_offset_in_file = (*position) / fsbi->bytes_per_clus; // bytes offset in clus uint64_t bytes_offset = (*position) % fsbi->bytes_per_clus; if (!cluster) // 起始簇号为0,说明是空文件 { // 找一个可用的簇 cluster = fat32_find_available_cluster(fsbi); flags = 1; } else { // 跳转到position所在的簇 for (uint64_t i = 0; i < clus_offset_in_file; ++i) cluster = fat32_read_FAT_entry(fsbi, cluster); } // kdebug("cluster(start)=%d", cluster); // 没有可用的磁盘空间 if (!cluster) return -ENOSPC; if (flags) // 空文件 { // kdebug("empty file"); finode->first_clus = cluster; // 写入目录项 file_ptr->dEntry->dir_inode->sb->sb_ops->write_inode(file_ptr->dEntry->dir_inode); fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8); // 写入fat表项 } int64_t bytes_remain = count; if (count < 0) // 要写入的字节数小于0 return -EINVAL; uint64_t sector; int64_t retval = 0; void *tmp_buffer = kmalloc(fsbi->bytes_per_clus, 0); do { memset(tmp_buffer, 0, fsbi->bytes_per_clus); sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // 计算对应的扇区 if (!flags) // 当前簇已分配 { // kdebug("read existed sec=%ld", sector); // 读取一个簇的数据 int errno = ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buffer, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); if (errno != AHCI_SUCCESS) { // kerror("FAT32 FS(write) read disk error!"); retval = -EIO; break; } } int64_t step_trans_len = 0; // 当前循环传输的字节数 if (bytes_remain > (fsbi->bytes_per_clus - bytes_offset)) step_trans_len = (fsbi->bytes_per_clus - bytes_offset); else step_trans_len = bytes_remain; // kdebug("step_trans_len=%d, bytes_offset=%d", step_trans_len, bytes_offset); if (((uint64_t)buf) < USER_MAX_LINEAR_ADDR) copy_from_user(tmp_buffer + bytes_offset, buf, step_trans_len); else memcpy(tmp_buffer + bytes_offset, buf, step_trans_len); // 写入数据到对应的簇 int errno = ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buffer, fsbi->ahci_ctrl_num, fsbi->ahci_port_num); if (errno != AHCI_SUCCESS) { kerror("FAT32 FS(write) write disk error!"); retval = -EIO; break; } bytes_remain -= step_trans_len; buf += step_trans_len; bytes_offset -= bytes_offset; *position += step_trans_len; // 更新文件指针 // kdebug("step_trans_len=%d", step_trans_len); int next_clus = 0; if (bytes_remain) next_clus = fat32_read_FAT_entry(fsbi, cluster); else break; if (next_clus >= 0x0ffffff8) // 已经到达了最后一个簇,需要分配新簇 { next_clus = fat32_find_available_cluster(fsbi); if (!next_clus) // 没有空闲簇 { kfree(tmp_buffer); return -ENOSPC; } // 将簇加入到文件末尾 fat32_write_FAT_entry(fsbi, cluster, next_clus); fat32_write_FAT_entry(fsbi, next_clus, 0x0ffffff8); cluster = next_clus; // 切换当前簇 flags = 1; // 标记当前簇是新分配的簇 } } while (bytes_remain); // 文件大小有增长 if (*position > (file_ptr->dEntry->dir_inode->file_size)) { file_ptr->dEntry->dir_inode->file_size = *position; file_ptr->dEntry->dir_inode->sb->sb_ops->write_inode(file_ptr->dEntry->dir_inode); kdebug("new file size=%ld", *position); } kfree(tmp_buffer); if (!bytes_remain) retval = count; // kdebug("retval=%lld", retval); return retval; } /** * @brief 调整文件的当前访问位置 * * @param file_ptr vfs文件指针 * @param offset 调整的偏移量 * @param whence 调整方法 * @return long 更新后的指针位置 */ long fat32_lseek(struct vfs_file_t *file_ptr, long offset, long whence) { struct vfs_index_node_t *inode = file_ptr->dEntry->dir_inode; long pos = 0; switch (whence) { case SEEK_SET: // 相对于文件头 pos = offset; break; case SEEK_CUR: // 相对于当前位置 pos = file_ptr->position + offset; break; case SEEK_END: // 相对于文件末尾 pos = file_ptr->dEntry->dir_inode->file_size + offset; break; default: return -EINVAL; break; } if(pos<0||pos>file_ptr->dEntry->dir_inode->file_size) return -EOVERFLOW; file_ptr->position = pos; kdebug("fat32 lseek -> position=%d", file_ptr->position); return pos; } // todo: ioctl long fat32_ioctl(struct vfs_index_node_t *inode, struct vfs_file_t *file_ptr, uint64_t cmd, uint64_t arg) { } /** * @brief fat32文件系统,关于文件的操作 * */ struct vfs_file_operations_t fat32_file_ops = { .open = fat32_open, .close = fat32_close, .read = fat32_read, .write = fat32_write, .lseek = fat32_lseek, .ioctl = fat32_ioctl, }; // todo: create long fat32_create(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dentry, int mode) { } // todo: mkdir int64_t fat32_mkdir(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode) { } // todo: rmdir int64_t fat32_rmdir(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry) { } // todo: rename int64_t fat32_rename(struct vfs_index_node_t *old_inode, struct vfs_dir_entry_t *old_dEntry, struct vfs_index_node_t *new_inode, struct vfs_dir_entry_t *new_dEntry) { } // todo: getAttr int64_t fat32_getAttr(struct vfs_dir_entry_t *dEntry, uint64_t *attr) { } // todo: setAttr int64_t fat32_setAttr(struct vfs_dir_entry_t *dEntry, uint64_t *attr) { } struct vfs_inode_operations_t fat32_inode_ops = { .create = fat32_create, .mkdir = fat32_mkdir, .rmdir = fat32_rmdir, .lookup = fat32_lookup, .rename = fat32_rename, .getAttr = fat32_getAttr, .setAttr = fat32_setAttr, }; struct vfs_filesystem_type_t fat32_fs_type = { .name = "FAT32", .fs_flags = 0, .read_superblock = fat32_read_superblock, .next = NULL, }; void fat32_init() { kinfo("Initializing FAT32..."); // 在VFS中注册fat32文件系统 vfs_register_filesystem(&fat32_fs_type); // 挂载根文件系统 vfs_root_sb = fat32_register_partition(0, 0, 0); kinfo("FAT32 initialized."); }