#include "mm.h"
#include "slab.h"
#include "internal.h"
#include <common/compiler.h>
#include <debug/bug.h>

extern uint64_t mm_total_2M_pages;

/**
 * @brief 虚拟地址长度所需要的entry数量
 *
 */
typedef struct
{
    int64_t num_PML4E;
    int64_t num_PDPTE;
    int64_t num_PDE;
    int64_t num_PTE;
} mm_pgt_entry_num_t;

/**
 * @brief 计算虚拟地址长度对应的页表entry数量
 *
 * @param length 长度
 * @param ent 返回的entry数量结构体
 */
static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
{
    if (ent == NULL)
        return;
    ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
    ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
    ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
    ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
}

/**
 * @brief 将物理地址映射到页表的函数
 *
 * @param virt_addr_start 要映射到的虚拟地址的起始位置
 * @param phys_addr_start 物理地址的起始位置
 * @param length 要映射的区域的长度(字节)
 * @param flags 标志位
 * @param use4k 是否使用4k页
 */
int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k)
{
    uint64_t global_CR3 = (uint64_t)get_CR3();

    return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true, use4k);
}

int mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
{
    uint64_t global_CR3 = (uint64_t)get_CR3();
    return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true, false);
}

/**
 * @brief 将将物理地址填写到进程的页表的函数
 *
 * @param proc_page_table_addr 页表的基地址
 * @param is_phys 页表的基地址是否为物理地址
 * @param virt_addr_start 要映射到的虚拟地址的起始位置
 * @param phys_addr_start 物理地址的起始位置
 * @param length 要映射的区域的长度(字节)
 * @param user 用户态是否可访问
 * @param flush 是否刷新tlb
 * @param use4k 是否使用4k页
 */
int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush, bool use4k)
{

    // 计算线性地址对应的pml4页表项的地址
    mm_pgt_entry_num_t pgt_num;
    mm_calculate_entry_num(length, &pgt_num);

    // 已映射的内存大小
    uint64_t length_mapped = 0;

    // 对user标志位进行校正
    if ((flags & PAGE_U_S) != 0)
        user = true;
    else
        user = false;

    uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
    uint64_t *pml4_ptr;
    if (is_phys)
        pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
    else
        pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));

    // 循环填写顶层页表
    for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
    {
        // 剩余需要处理的pml4E -1
        --(pgt_num.num_PML4E);

        ul *pml4e_ptr = pml4_ptr + pml4e_id;

        // 创建新的二级页表
        if (*pml4e_ptr == 0)
        {
            ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
            memset(virt_addr, 0, PAGE_4K_SIZE);
            set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
        }

        uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
        uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));

        // 循环填写二级页表
        for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
        {
            --pgt_num.num_PDPTE;
            uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);

            // 创建新的三级页表
            if (*pdpte_ptr == 0)
            {
                ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
                memset(virt_addr, 0, PAGE_4K_SIZE);
                set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
            }

            uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
            uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));

            // 循环填写三级页表,初始化2M物理页
            for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
            {
                --pgt_num.num_PDE;
                // 计算当前2M物理页对应的pdt的页表项的物理地址
                ul *pde_ptr = pd_ptr + pde_id;
                // ====== 使用4k页 =======
                if (unlikely(use4k))
                {
                    // kdebug("use 4k");
                    if (*pde_ptr == 0)
                    {
                        // 创建四级页表
                        uint64_t *vaddr = kmalloc(PAGE_4K_SIZE, 0);
                        memset(vaddr, 0, PAGE_4K_SIZE);
                        set_pdt(pde_ptr, mk_pdt(virt_2_phys(vaddr), (user ? PAGE_USER_PDE : PAGE_KERNEL_PDE)));
                    }
                    else if (unlikely(*pde_ptr & (1 << 7)))
                    {
                        // 当前页表项已经被映射了2MB物理页
                        goto failed;
                    }

                    uint64_t pte_id = (((virt_addr_start + length_mapped) >> PAGE_4K_SHIFT) & 0x1ff);
                    uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0xfffUL));

                    // 循环填写4级页表,初始化4K页
                    for (; (pgt_num.num_PTE > 0) && pte_id < 512; ++pte_id)
                    {
                        --pgt_num.num_PTE;
                        uint64_t *pte_ptr = pt_ptr + pte_id;

                        if (unlikely(*pte_ptr != 0))
                            kwarn("pte already exists.");
                        else
                            set_pt(pte_ptr, mk_pt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_4K_PAGE : PAGE_KERNEL_4K_PAGE)));
                        length_mapped += PAGE_4K_SIZE;
                    }
                }
                // ======= 使用2M页 ========
                else
                {
                    if (unlikely((*pde_ptr != 0) && user == true))
                    {
                        // 如果是用户态可访问的页,则释放当前新获取的物理页
                        if (likely((((ul)phys_addr_start + length_mapped) >> PAGE_2M_SHIFT) < mm_total_2M_pages)) // 校验是否为内存中的物理页
                            free_pages(Phy_to_2M_Page((ul)phys_addr_start + length_mapped), 1);
                        length_mapped += PAGE_2M_SIZE;
                        continue;
                    }
                    // 页面写穿,禁止缓存
                    set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
                    length_mapped += PAGE_2M_SIZE;
                }
            }
        }
    }
    if (likely(flush))
        flush_tlb();
    return 0;
failed:;
    kerror("Map memory failed. use4k=%d, vaddr=%#018lx, paddr=%#018lx", use4k, virt_addr_start, phys_addr_start);
    return -EFAULT;
}

/**
 * @brief 从页表中清除虚拟地址的映射
 *
 * @param proc_page_table_addr 页表的地址
 * @param is_phys 页表地址是否为物理地址
 * @param virt_addr_start 要清除的虚拟地址的起始地址
 * @param length 要清除的区域的长度
 */
void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
{

    // 计算线性地址对应的pml4页表项的地址
    mm_pgt_entry_num_t pgt_num;
    mm_calculate_entry_num(length, &pgt_num);
    // 已取消映射的内存大小
    uint64_t length_unmapped = 0;

    uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
    uint64_t *pml4_ptr;
    if (is_phys)
        pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
    else
        pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));

    // 循环填写顶层页表
    for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
    {
        // 剩余需要处理的pml4E -1
        --(pgt_num.num_PML4E);

        ul *pml4e_ptr = NULL;
        pml4e_ptr = pml4_ptr + pml4e_id;

        // 二级页表不存在
        if (*pml4e_ptr == 0)
        {
            continue;
        }

        uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
        uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
        // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);

        // 循环处理二级页表
        for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
        {
            --pgt_num.num_PDPTE;
            uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
            // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);

            // 三级页表为空
            if (*pdpte_ptr == 0)
            {
                continue;
            }

            uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
            uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
            // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);

            // 循环处理三级页表
            for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
            {
                --pgt_num.num_PDE;
                // 计算当前2M物理页对应的pdt的页表项的物理地址
                ul *pde_ptr = pd_ptr + pde_id;

                // 存在4级页表
                if (((*pde_ptr) & (1 << 7)) == 0)
                {
                    // 存在4K页
                    uint64_t pte_id = (((virt_addr_start + length_unmapped) >> PAGE_4K_SHIFT) & 0x1ff);
                    uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0xfffUL));
                    // 循环处理4K页表
                    for (; pgt_num.num_PTE > 0 && pte_id < 512; ++pte_id)
                    {
                        uint64_t *pte_ptr = pt_ptr + pte_id;
                        --pgt_num.num_PTE;
                        *pte_ptr = 0;
                        length_unmapped += PAGE_4K_SIZE;
                    }

                    // 4级页表已经空了,释放页表
                    if (unlikely(mm_check_page_table(pt_ptr)) == 0)
                    {
                        *pde_ptr = 0;
                        kfree(pt_ptr);
                    }
                }
                else
                {
                    *pde_ptr = 0;
                    length_unmapped += PAGE_2M_SIZE;
                    pgt_num.num_PTE -= 512;
                }
            }

            // 3级页表已经空了,释放页表
            if (unlikely(mm_check_page_table(pd_ptr)) == 0)
            {
                *pdpte_ptr = 0;
                kfree(pd_ptr);
            }
        }
        // 2级页表已经空了,释放页表
        if (unlikely(mm_check_page_table(pdpt_ptr)) == 0)
        {
            *pml4e_ptr = 0;
            kfree(pdpt_ptr);
        }
    }
    flush_tlb();
}

/**
 * @brief 创建VMA
 *
 * @param mm 要绑定的内存空间分布结构体
 * @param vaddr 起始虚拟地址
 * @param length 长度(字节)
 * @param vm_flags vma的标志
 * @param vm_ops vma的操作接口
 * @param res_vma 返回的vma指针
 * @return int 错误码
 */
int mm_create_vma(struct mm_struct *mm, uint64_t vaddr, uint64_t length, vm_flags_t vm_flags, struct vm_operations_t *vm_ops, struct vm_area_struct **res_vma)
{
    int retval = 0;
    // 输入的地址如果不是4K对齐,则报错
    if (unlikely(vaddr & (PAGE_4K_SIZE - 1)))
        return -EINVAL;

    struct vm_area_struct *vma = vm_area_alloc(mm);
    if (unlikely(vma == NULL))
        return -ENOMEM;
    vma->vm_ops = vm_ops;
    vma->vm_flags = vm_flags;
    vma->vm_start = vaddr;
    vma->vm_end = vaddr + length;
    // 将VMA加入mm的链表
    retval = vma_insert(mm, vma);
    if (retval == -EEXIST || retval == __VMA_MERGED) // 之前已经存在了相同的vma,直接返回
    {
        *res_vma = vma_find(mm, vma->vm_start);
        kfree(vma);
        if (retval == -EEXIST)
            return -EEXIST;
        else
            return 0;
    }

    if (res_vma != NULL)
        *res_vma = vma;
    return 0;
}

/**
 * @brief 将指定的物理地址映射到指定的vma处
 *
 * @param vma 要进行映射的VMA结构体
 * @param paddr 起始物理地址
 * @param offset 要映射的起始位置在vma中的偏移量
 * @param length 要映射的长度
 * @return int 错误码
 */
int mm_map_vma(struct vm_area_struct *vma, uint64_t paddr, uint64_t offset, uint64_t length)
{
   int retval = 0;
    uint64_t mapped = 0;
    BUG_ON((offset & (PAGE_4K_SIZE - 1)) != 0);
    length = PAGE_4K_ALIGN(length); // 将length按照4K进行对齐
    // 获取物理地址对应的页面
    struct Page *pg;
    uint64_t page_flags = 0;
    if (vma->vm_flags & VM_IO) // 对于mmio的内存,创建新的page结构体
    {
        page_flags = PAGE_PWT | PAGE_PCD;
        if (unlikely(vma->anon_vma == NULL || vma->anon_vma->page == NULL))
            pg = __create_mmio_page_struct(paddr);
        else
            pg = vma->anon_vma->page;
    }
    else
        pg = Phy_to_2M_Page(paddr);

    if (unlikely(pg->anon_vma == NULL)) // 若页面不存在anon_vma,则为页面创建anon_vma
    {
        spin_lock(&pg->op_lock);
        if (unlikely(pg->anon_vma == NULL))
            __anon_vma_create_alloc(pg, false);
        spin_unlock(&pg->op_lock);
    }
    barrier();
    // 将anon vma与vma进行绑定
    __anon_vma_add(pg->anon_vma, vma);
    barrier();
    // 长度超过界限
    BUG_ON(vma->vm_start + offset + length > vma->vm_end);

    /*
        todo: 限制页面的读写权限
    */

    // ==== 将地址映射到页表 ====
    uint64_t len_4k, len_2m;
    // 将地址使用4k页填补,使得地址按照2M对齐
    len_4k = PAGE_2M_ALIGN(vma->vm_start + offset) - (vma->vm_start + offset);
    if (len_4k > 0)
        len_4k = (len_4k > length) ? length : len_4k;
    if (len_4k)
    {
        if (vma->vm_flags & VM_USER)
            page_flags |= PAGE_USER_4K_PAGE;
        else
            page_flags |= PAGE_KERNEL_4K_PAGE;

        // 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
        retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset, paddr, len_4k, page_flags, false, false, true);
        if (unlikely(retval != 0))
            goto failed;

        mapped += len_4k;
        length -= len_4k;
    }

    len_4k = length % PAGE_2M_SIZE;
    len_2m = length / PAGE_2M_SIZE;

    // 映射连续的2M页
    if (likely(len_2m > 0))
    {
        if (vma->vm_flags & VM_USER)
            page_flags |= PAGE_USER_PAGE;
        else
            page_flags |= PAGE_KERNEL_PAGE;
        // 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
        retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset + mapped, paddr + mapped, len_2m, page_flags, false, false, false);

        if (unlikely(retval != 0))
            goto failed;
        mapped += len_2m;
    }
    // 最后再使用4K页填补
    if (likely(len_4k > 0))
    {

        if (vma->vm_flags & VM_USER)
            page_flags |= PAGE_USER_4K_PAGE;
        else
            page_flags |= PAGE_KERNEL_4K_PAGE;

        // 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
        retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset + mapped, paddr + mapped, len_4k, page_flags, false, false, true);

        if (unlikely(retval != 0))
            goto failed;
        mapped += len_4k;
    }

    if (vma->vm_flags & VM_IO)
        vma->page_offset = 0;

    flush_tlb();
    return 0;
failed:;
    kdebug("map VMA failed.");
    return retval;
}

/**
 * @brief 在页表中映射物理地址到指定的虚拟地址(需要页表中已存在对应的vma)
 *
 * @param mm 内存管理结构体
 * @param vaddr 虚拟地址
 * @param length 长度(字节)
 * @param paddr 物理地址
 * @return int 返回码
 */
int mm_map(struct mm_struct *mm, uint64_t vaddr, uint64_t length, uint64_t paddr)
{
    int retval = 0;
    uint64_t offset = 0;
    for (uint64_t mapped = 0; mapped < length;)
    {

        struct vm_area_struct *vma = vma_find(mm, vaddr + mapped);
        if (unlikely(vma == NULL))
        {
            kerror("Map addr failed: vma not found. At address: %#018lx, pid=%ld", vaddr + mapped, current_pcb->pid);
            return -EINVAL;
        }

        // if (unlikely(vma->vm_start != (vaddr + mapped)))
        // {
        //     kerror("Map addr failed: addr_start is not equal to current: %#018lx.", vaddr + mapped);
        //     return -EINVAL;
        // }

        offset = vaddr + mapped - vma->vm_start;
        uint64_t m_len = vma->vm_end - vma->vm_start - offset;
        // kdebug("start=%#018lx, offset=%ld", vma->vm_start, offset);
        retval = mm_map_vma(vma, paddr + mapped, offset, m_len);
        if (unlikely(retval != 0))
            goto failed;

        mapped += m_len;
    }
    return 0;
failed:;
    kerror("Map addr failed.");
    return retval;
}

/**
 * @brief 在页表中取消指定的vma的映射
 *
 * @param mm 指定的mm
 * @param vma 待取消映射的vma
 * @param paddr 返回的被取消映射的起始物理地址
 * @return int 返回码
 */
int mm_unmap_vma(struct mm_struct *mm, struct vm_area_struct *vma, uint64_t *paddr)
{
    // 确保vma对应的mm与指定的mm相一致
    if (unlikely(vma->vm_mm != mm))
        return -EINVAL;
    struct anon_vma_t *anon = vma->anon_vma;
    if (paddr != NULL)
        *paddr = __mm_get_paddr(mm, vma->vm_start);
    if (anon == NULL)
        kwarn("anon is NULL");
    semaphore_down(&anon->sem);

    mm_unmap_proc_table((uint64_t)mm->pgd, true, vma->vm_start, vma->vm_end - vma->vm_start);
    __anon_vma_del(vma);
    /** todo: 这里应该会存在bug,应修复。
     * 若anon_vma的等待队列上有其他的进程,由于anon_vma被释放
     * 这些在等待队列上的进程将无法被唤醒。
     */
    list_init(&vma->anon_vma_list);

    semaphore_up(&anon->sem);

    return 0;
}

/**
 * @brief 解除一段虚拟地址的映射(这些地址必须在vma中存在)
 *
 * @param mm 内存空间结构体
 * @param vaddr 起始地址
 * @param length 结束地址
 * @param destroy 是否释放vma结构体
 * @return int 错误码
 */
int mm_unmap(struct mm_struct *mm, uint64_t vaddr, uint64_t length, bool destroy)
{
    int retval = 0;
    for (uint64_t unmapped = 0; unmapped < length;)
    {
        struct vm_area_struct *vma = vma_find(mm, vaddr + unmapped);
        if (unlikely(vma == NULL))
        {
            kerror("Unmap addr failed: vma not found. At address: %#018lx, pid=%ld", vaddr + unmapped, current_pcb->pid);
            return -EINVAL;
        }

        if (unlikely(vma->vm_start != (vaddr + unmapped)))
        {
            kerror("Unmap addr failed: addr_start is not equal to current: %#018lx.", vaddr + unmapped);
            return -EINVAL;
        }
        if (vma->anon_vma != NULL)
            mm_unmap_vma(mm, vma, NULL);

        unmapped += vma->vm_end - vma->vm_start;
        // 释放vma结构体
        if (destroy)
        {
            vm_area_del(vma);
            vm_area_free(vma);
        }
    }
    return 0;
failed:;
    kerror("Unmap addr failed.");
    return retval;
}