#include "mm.h" #include "slab.h" #include "../common/printk.h" #include "../common/kprint.h" #include "../driver/multiboot2/multiboot2.h" ul Total_Memory = 0; ul total_2M_pages = 0; void mm_init() { kinfo("Initializing memory management unit..."); // 设置内核程序不同部分的起止地址 memory_management_struct.kernel_code_start = (ul)&_text; memory_management_struct.kernel_code_end = (ul)&_etext; memory_management_struct.kernel_data_end = (ul)&_edata; memory_management_struct.kernel_end = (ul)&_end; struct multiboot_mmap_entry_t *mb2_mem_info; int count; multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count); for (int i = 0; i < count; ++i) { //可用的内存 if (mb2_mem_info->type == 1) Total_Memory += mb2_mem_info->len; // 保存信息到mms memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr; memory_management_struct.e820[i].Length = mb2_mem_info->len; memory_management_struct.e820[i].type = mb2_mem_info->type; memory_management_struct.len_e820 = i; ++mb2_mem_info; // 脏数据 if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1) break; } printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory); // 计算有效内存页数 for (int i = 0; i < memory_management_struct.len_e820; ++i) { if (memory_management_struct.e820[i].type != 1) continue; // 将内存段的起始物理地址按照2M进行对齐 ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr); // 将内存段的终止物理地址的低2M区域清空,以实现对齐 ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK); // 内存段不可用 if (addr_end <= addr_start) continue; total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT); } kinfo("Total amounts of 2M pages : %ld.", total_2M_pages); // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等) ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length; // 初始化mms的bitmap // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据) memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数 memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成 // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。 memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len); // 初始化内存页结构 // 将页结构映射于bmp之后 memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT; memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1)); // 将pages_struct全部清空,以备后续初始化 memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory // 初始化内存区域 memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); // 由于暂时无法计算zone结构体的数量,因此先将其设为0 memory_management_struct.count_zones = 0; // zones-struct 成员变量暂时按照5个来计算 memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1)); memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len); // ==== 遍历e820数组,完成成员变量初始化工作 === for (int i = 0; i < memory_management_struct.len_e820; ++i) { if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存 continue; ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr); ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK; if (addr_end <= addr_start) continue; // zone init struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones; ++memory_management_struct.count_zones; z->zone_addr_start = addr_start; z->zone_addr_end = addr_end; z->zone_length = addr_end - addr_start; z->count_pages_using = 0; z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT; z->total_pages_link = 0; z->attr = 0; z->gmd_struct = &memory_management_struct; z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT; z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT)); // 初始化页 struct Page *p = z->pages_group; for (int j = 0; j < z->count_pages; ++j, ++p) { p->zone = z; p->addr_phys = addr_start + PAGE_2M_SIZE * j; p->attr = 0; p->ref_counts = 0; p->age = 0; // 将bmp中对应的位 复位 *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64)); } } // 初始化0~2MB的物理页 // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。 memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct; memory_management_struct.pages_struct->addr_phys = 0UL; set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL); memory_management_struct.pages_struct->ref_counts = 1; memory_management_struct.pages_struct->age = 0; // 将第0页的标志位给置上 //*(memory_management_struct.bmp) |= 1UL; // 计算zone结构体的总长度(按照64位对齐) memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1)); ZONE_DMA_INDEX = 0; ZONE_NORMAL_INDEX = 0; ZONE_UNMAPPED_INDEX = 0; for (int i = 0; i < memory_management_struct.count_zones; ++i) { struct Zone *z = memory_management_struct.zones_struct + i; // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n", // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages); // 1GB以上的内存空间不做映射 if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX)) ZONE_UNMAPPED_INDEX = i; } kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX); // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。 memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1)); // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n", // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct); // 初始化内存管理单元结构所占的物理页的结构体 ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页 kdebug("mms_max_page=%ld", mms_max_page); struct Page *tmp_page = NULL; ul page_num; // 第0个page已经在上方配置 for (ul j = 1; j <= mms_max_page; ++j) { tmp_page = memory_management_struct.pages_struct + j; page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT); page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT; *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64)); ++tmp_page->zone->count_pages_using; --tmp_page->zone->count_pages_free; } global_CR3 = get_CR3(); kdebug("global_CR3\t:%#018lx", global_CR3); kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff)); kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff)); kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free); kinfo("Memory management unit initialize complete!"); /* kinfo("Cleaning page table remapping at 0x0000"); for (int i = 0; i < 10; ++i) *(phys_2_virt(global_CR3) + i) = 0UL; kinfo("Successfully cleaned page table remapping!\n"); */ flush_tlb(); // 初始化slab内存池 slab_init(); init_frame_buffer(); page_table_init(); } /** * @brief 初始化内存页 * * @param page 内存页结构体 * @param flags 标志位 * 本函数只负责初始化内存页,允许对同一页面进行多次初始化 * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成 * @return unsigned long */ unsigned long page_init(struct Page *page, ul flags) { page->attr |= flags; // 若页面的引用计数为0或是共享页,增加引用计数 if ((!page->ref_counts) || (page->attr & PAGE_SHARED)) { ++page->ref_counts; ++page->zone->total_pages_link; } return 0; } /** * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page * * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt * @param num 需要申请的连续内存页的数量 num<64 * @param flags 将页面属性设置成flag * @return struct Page* */ struct Page *alloc_pages(unsigned int zone_select, int num, ul flags) { ul zone_start = 0, zone_end = 0; if (num >= 64 && num <= 0) { kerror("alloc_pages(): num is invalid."); return NULL; } ul attr = flags; switch (zone_select) { case ZONE_DMA: // DMA区域 zone_start = 0; zone_end = ZONE_DMA_INDEX; attr |= PAGE_PGT_MAPPED; break; case ZONE_NORMAL: zone_start = ZONE_DMA_INDEX; zone_end = ZONE_NORMAL_INDEX; attr |= PAGE_PGT_MAPPED; break; case ZONE_UNMAPPED_IN_PGT: zone_start = ZONE_NORMAL_INDEX; zone_end = ZONE_UNMAPPED_INDEX; attr = 0; break; default: kerror("In alloc_pages: param: zone_select incorrect."); // 返回空 return NULL; break; } for (int i = zone_start; i <= zone_end; ++i) { if ((memory_management_struct.zones_struct + i)->count_pages_free < num) continue; struct Zone *z = memory_management_struct.zones_struct + i; // 区域对应的起止页号 ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT); ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT); ul tmp = 64 - page_start % 64; for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64)) { // 按照bmp中的每一个元素进行查找 // 先将p定位到bmp的起始元素 ul *p = memory_management_struct.bmp + (j >> 6); ul shift = j % 64; ul tmp_num = ((1UL << num) - 1); for (ul k = shift; k < 64; ++k) { // 寻找连续num个空页 if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num)) { ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号 for (ul l = 0; l < num; ++l) { struct Page *x = memory_management_struct.pages_struct + start_page_num + l; // 分配页面,手动配置属性及计数器 // 置位bmp *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64); ++z->count_pages_using; --z->count_pages_free; x->attr = attr; } // 成功分配了页面,返回第一个页面的指针 // printk("start page num=%d\n",start_page_num); return (struct Page *)(memory_management_struct.pages_struct + start_page_num); } } } } return NULL; } /** * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性 * * @param p 物理页结构体 * @return unsigned long */ unsigned long page_clean(struct Page *p) { --p->ref_counts; --p->zone->total_pages_link; // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性 if (!p->ref_counts) { p->attr &= PAGE_PGT_MAPPED; } return 0; } /** * @brief Get the page's attr * * @param page 内存页结构体 * @return ul 属性 */ ul get_page_attr(struct Page *page) { if (page == NULL) { kBUG("get_page_attr(): page == NULL"); return EPAGE_NULL; } else return page->attr; } /** * @brief Set the page's attr * * @param page 内存页结构体 * @param flags 属性 * @return ul 错误码 */ ul set_page_attr(struct Page *page, ul flags) { if (page == NULL) { kBUG("get_page_attr(): page == NULL"); return EPAGE_NULL; } else { page->attr = flags; return 0; } } /** * @brief 释放连续number个内存页 * * @param page 第一个要被释放的页面的结构体 * @param number 要释放的内存页数量 number<64 */ void free_pages(struct Page *page, int number) { if (page == NULL) { kerror("free_pages() page is invalid."); return; } if (number >= 64 || number <= 0) { kerror("free_pages(): number %d is invalid.", number); return; } ul page_num; for (int i = 0; i < number; ++i, ++page) { page_num = page->addr_phys >> PAGE_2M_SHIFT; // 复位bmp *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64)); // 更新计数器 --page->zone->count_pages_using; ++page->zone->count_pages_free; page->attr = 0; } return; } /** * @brief 重新初始化页表的函数 * 将0~4GB的物理页映射到线性地址空间 */ void page_table_init() { kinfo("Initializing page table..."); global_CR3 = get_CR3(); // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址 ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL))); kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr); ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL)); kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr); ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL)); kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr); ul *tmp_addr; for (int i = 0; i < memory_management_struct.count_zones; ++i) { struct Zone *z = memory_management_struct.zones_struct + i; struct Page *p = z->pages_group; if (i == ZONE_UNMAPPED_INDEX) break; for (int j = 0; j < z->count_pages; ++j) { // 计算出PML4页表中的页表项的地址 tmp_addr = (ul *)((ul)pml4_addr + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_GDT_SHIFT) & 0x1ff) * 8); // 说明该页还没有分配pdpt页表,使用kmalloc分配一个 if (*tmp_addr = 0) { ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0); set_pml4t(tmp_addr, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT)); } // 计算出pdpt页表的页表项的地址 tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_1G_SHIFT) & 0x1ff) * 8); // 说明该页还没有分配pd页表,使用kmalloc分配一个 if (*tmp_addr = 0) { ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0); set_pdpt(tmp_addr, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR)); } // 计算出pd页表的页表项的地址 tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_2M_SHIFT) & 0x1ff) * 8); // 填入pd页表的页表项,映射2MB物理页 set_pdt(tmp_addr, mk_pdt(virt_2_phys(p->addr_phys), PAGE_KERNEL_PAGE)); // 测试 if (j % 50 == 0) kdebug("pd_addr=%#018lx, *pd_addr=%#018lx", tmp_addr, *tmp_addr); } } flush_tlb(); kinfo("Page table Initialized."); } /** * @brief VBE帧缓存区的地址重新映射 * 将帧缓存区映射到地址0xffff800003000000处 */ void init_frame_buffer() { kinfo("Re-mapping VBE frame buffer..."); global_CR3 = get_CR3(); ul fb_virt_addr = 0xffff800003000000; ul fb_phys_addr = get_VBE_FB_phys_addr(); // 计算帧缓冲区的线性地址对应的pml4页表项的地址 ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff)); if (*tmp == 0) { ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0); set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT)); } tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff)); if (*tmp == 0) { ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0); set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR)); } ul vbe_fb_length = get_VBE_FB_length(); ul *tmp1; // 初始化2M物理页 for (ul i = 0; i < vbe_fb_length; i += PAGE_2M_SIZE) { // 计算当前2M物理页对应的pdt的页表项的物理地址 tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff)); // 页面写穿,禁止缓存 set_pdt(tmp1, mk_pdt((ul)fb_phys_addr+i, PAGE_KERNEL_PAGE| PAGE_PWT| PAGE_PCD)); } set_pos_VBE_FB_addr(fb_virt_addr); flush_tlb(); kinfo("VBE frame buffer successfully Re-mapped!"); }