#include "xhci.h" #include #include #include #include #include #include #include #include #include // 由于xhci寄存器读取需要对齐,因此禁用GCC优化选项 #pragma GCC push_options #pragma GCC optimize("O0") spinlock_t xhci_controller_init_lock = {0}; // xhci控制器初始化锁(在usb_init中被初始化) static int xhci_ctrl_count = 0; // xhci控制器计数 static struct xhci_host_controller_t xhci_hc[XHCI_MAX_HOST_CONTROLLERS] = {0}; void xhci_hc_irq_enable(uint64_t irq_num); void xhci_hc_irq_disable(uint64_t irq_num); uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg); void xhci_hc_irq_uninstall(uint64_t irq_num); static int xhci_hc_find_available_id(); static int xhci_hc_stop(int id); static int xhci_hc_reset(int id); static int xhci_hc_stop_legacy(int id); static int xhci_hc_start_sched(int id); static int xhci_hc_stop_sched(int id); static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag); static int xhci_hc_pair_ports(int id); static uint64_t xhci_create_ring(int trbs); static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr); void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs); static int xhci_hc_init_intr(int id); static int xhci_hc_start_ports(int id); hardware_intr_controller xhci_hc_intr_controller = { .enable = xhci_hc_irq_enable, .disable = xhci_hc_irq_disable, .install = xhci_hc_irq_install, .uninstall = xhci_hc_irq_uninstall, .ack = apic_local_apic_edge_ack, }; /* 注意!!! 尽管采用MMI/O的方式访问寄存器,但是对于指定大小的寄存器, 在发起读请求的时候,只能从寄存器的起始地址位置开始读取。 例子:不能在一个32bit的寄存器中的偏移量8的位置开始读取1个字节 这种情况下,我们必须从32bit的寄存器的0地址处开始读取32bit,然后通过移位的方式得到其中的字节。 */ #define xhci_read_cap_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase + offset)) #define xhci_get_ptr_cap_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase + offset)) #define xhci_write_cap_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase + offset) = (uint8_t)value) #define xhci_read_cap_reg32(id, offset) (*(uint32_t *)(xhci_hc[id].vbase + offset)) #define xhci_get_ptr_cap_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase + offset)) #define xhci_write_cap_reg32(id, offset, value) (*(uint32_t *)(xhci_hc[id].vbase + offset) = (uint32_t)value) #define xhci_read_cap_reg64(id, offset) (*(uint64_t *)(xhci_hc[id].vbase + offset)) #define xhci_get_ptr_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase + offset)) #define xhci_write_cap_reg64(id, offset, value) (*(uint64_t *)(xhci_hc[id].vbase + offset) = (uint64_t)value) #define xhci_read_op_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase_op + offset)) #define xhci_get_ptr_op_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase_op + offset)) #define xhci_write_op_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase_op + offset) = (uint8_t)value) #define xhci_read_op_reg32(id, offset) (*(uint32_t *)(xhci_hc[id].vbase_op + offset)) #define xhci_get_ptr_op_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase_op + offset)) #define xhci_write_op_reg32(id, offset, value) (*(uint32_t *)(xhci_hc[id].vbase_op + offset) = (uint32_t)value) #define xhci_read_op_reg64(id, offset) (*(uint64_t *)(xhci_hc[id].vbase_op + offset)) #define xhci_get_ptr_op_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase_op + offset)) #define xhci_write_op_reg64(id, offset, value) (*(uint64_t *)(xhci_hc[id].vbase_op + offset) = (uint64_t)value) /** * @brief 计算中断寄存器组虚拟地址 * @param id 主机控制器id * @param num xhci中断寄存器组号 */ #define xhci_calc_intr_vaddr(id, num) (xhci_hc[id].vbase + xhci_hc[id].rts_offset + XHCI_RT_IR0 + num * XHCI_IR_SIZE) /** * @brief 读取/写入中断寄存器 * @param id 主机控制器id * @param num xhci中断寄存器组号 * @param intr_offset 寄存器在当前寄存器组中的偏移量 */ #define xhci_read_intr_reg32(id, num, intr_offset) (*(uint32_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset)) #define xhci_write_intr_reg32(id, num, intr_offset, value) (*(uint32_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset) = value) #define xhci_read_intr_reg64(id, num, intr_offset) (*(uint64_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset)) #define xhci_write_intr_reg64(id, num, intr_offset, value) (*(uint64_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset) = value) #define xhci_is_aligned64(addr) ((addr & 0x3f) == 0) // 是否64bytes对齐 /** * @brief 判断端口信息 * @param cid 主机控制器id * @param pid 端口id */ #define XHCI_PORT_IS_USB2(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB2) #define XHCI_PORT_IS_USB3(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB3) #define XHCI_PORT_IS_USB2_HSO(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HSO) == XHCI_PROTOCOL_HSO) #define XHCI_PORT_HAS_PAIR(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HAS_PAIR) == XHCI_PROTOCOL_HAS_PAIR) #define XHCI_PORT_IS_ACTIVE(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_ACTIVE) == XHCI_PROTOCOL_ACTIVE) /** * @brief 设置link TRB的命令(dword3) * */ #define xhci_TRB_set_link_cmd(trb_vaddr) \ do \ { \ struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(trb_vaddr); \ ptr->TRB_type = TRB_TYPE_LINK; \ ptr->ioc = 0; \ ptr->chain = 0; \ ptr->ent = 0; \ ptr->cycle = 1; \ } while (0) // Common TRB types enum { TRB_TYPE_NORMAL = 1, TRB_TYPE_SETUP_STAGE, TRB_TYPE_DATA_STAGE, TRB_TYPE_STATUS_STAGE, TRB_TYPE_ISOCH, TRB_TYPE_LINK, TRB_TYPE_EVENT_DATA, TRB_TYPE_NO_OP, TRB_TYPE_ENABLE_SLOT, TRB_TYPE_DISABLE_SLOT = 10, TRB_TYPE_ADDRESS_DEVICE = 11, TRB_TYPE_CONFIG_EP, TRB_TYPE_EVALUATE_CONTEXT, TRB_TYPE_RESET_EP, TRB_TYPE_STOP_EP = 15, TRB_TYPE_SET_TR_DEQUEUE, TRB_TYPE_RESET_DEVICE, TRB_TYPE_FORCE_EVENT, TRB_TYPE_DEG_BANDWIDTH, TRB_TYPE_SET_LAT_TOLERANCE = 20, TRB_TYPE_GET_PORT_BAND = 21, TRB_TYPE_FORCE_HEADER, TRB_TYPE_NO_OP_CMD, // 24 - 31 = reserved TRB_TYPE_TRANS_EVENT = 32, TRB_TYPE_COMMAND_COMPLETION, TRB_TYPE_PORT_STATUS_CHANGE, TRB_TYPE_BANDWIDTH_REQUEST, TRB_TYPE_DOORBELL_EVENT, TRB_TYPE_HOST_CONTROLLER_EVENT = 37, TRB_TYPE_DEVICE_NOTIFICATION, TRB_TYPE_MFINDEX_WRAP, // 40 - 47 = reserved // 48 - 63 = Vendor Defined }; /** * @brief 在controller数组之中寻找可用插槽 * * 注意:该函数只能被获得init锁的进程所调用 * @return int 可用id(无空位时返回-1) */ static int xhci_hc_find_available_id() { if (unlikely(xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS)) return -1; for (int i = 0; i < XHCI_MAX_HOST_CONTROLLERS; ++i) { if (xhci_hc[i].pci_dev_hdr == NULL) return i; } return -1; } /** * @brief 停止xhci主机控制器 * * @param id 主机控制器id * @return int */ static int xhci_hc_stop(int id) { // 判断是否已经停止 if (unlikely((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 1)) return 0; xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00000000); char timeout = 17; while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0) { usleep(1000); if (--timeout == 0) return -ETIMEDOUT; } return 0; } /** * @brief reset xHCI主机控制器 * * @param id 主机控制器id * @return int */ static int xhci_hc_reset(int id) { int retval = 0; kdebug("usbsts=%#010lx", xhci_read_op_reg32(id, XHCI_OPS_USBSTS)); // 判断HCHalted是否置位 if ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0) { kdebug("stopping usb hc..."); // 未置位,需要先尝试停止usb主机控制器 retval = xhci_hc_stop(id); if (unlikely(retval)) return retval; } int timeout = 500; // wait 500ms // reset uint32_t cmd = xhci_read_op_reg32(id, XHCI_OPS_USBCMD); kdebug("cmd=%#010lx", cmd); cmd |= (1 << 1); xhci_write_op_reg32(id, XHCI_OPS_USBCMD, cmd); kdebug("after rst, sts=%#010lx", xhci_read_op_reg32(id, XHCI_OPS_USBSTS)); while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1)) { usleep(1000); if (--timeout == 0) return -ETIMEDOUT; } // kdebug("reset done!, timeout=%d", timeout); return retval; } /** * @brief 停止指定xhci控制器的legacy support * * @param id 控制器id * @return int */ static int xhci_hc_stop_legacy(int id) { uint64_t current_offset = xhci_hc[id].ext_caps_off; do { // 判断当前entry是否为legacy support entry if (xhci_read_cap_reg8(id, current_offset) == XHCI_XECP_ID_LEGACY) { // 接管控制权 xhci_write_cap_reg32(id, current_offset, xhci_read_cap_reg32(id, current_offset) | XHCI_XECP_LEGACY_OS_OWNED); // 等待响应完成 int timeout = XHCI_XECP_LEGACY_TIMEOUT; while ((xhci_read_cap_reg32(id, current_offset) & XHCI_XECP_LEGACY_OWNING_MASK) != XHCI_XECP_LEGACY_OS_OWNED) { usleep(1000); if (--timeout == 0) { kerror("The BIOS doesn't stop legacy support."); return -ETIMEDOUT; } } // 处理完成 return 0; } // 读取下一个entry的偏移增加量 int next_off = ((xhci_read_cap_reg32(id, current_offset) & 0xff00) >> 8) << 2; // 将指针跳转到下一个entry current_offset = next_off ? (current_offset + next_off) : 0; } while (current_offset); // 当前controller不存在legacy支持,也问题不大,不影响 return 0; } /** * @brief 启用指定xhci控制器的调度 * * @param id 控制器id * @return int */ static int xhci_hc_start_sched(int id) { xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 >> 2) | (1 << 3)); usleep(100 * 1000); } /** * @brief 停止指定xhci控制器的调度 * * @param id 控制器id * @return int */ static int xhci_hc_stop_sched(int id) { xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00); } /** * @brief * * @return uint32_t */ /** * @brief 在Ex capability list中寻找符合指定的协议号的寄存器offset、count、flag信息 * * @param id 主机控制器id * @param list_off 列表项位置距离控制器虚拟基地址的偏移量 * @param version 要寻找的端口版本号(2或3) * @param offset 返回的 Compatible Port Offset * @param count 返回的 Compatible Port Count * @param protocol_flag 返回的与协议相关的flag * @return uint32_t 下一个列表项的偏移量 */ static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag) { if (count) *count = 0; do { uint32_t dw0 = xhci_read_cap_reg32(id, list_off); uint32_t next_list_off = (dw0 >> 8) & 0xff; next_list_off = next_list_off ? (list_off + (next_list_off << 2)) : 0; if ((dw0 & 0xff) == XHCI_XECP_ID_PROTOCOL && ((dw0 & 0xff000000) >> 24) == version) { uint32_t dw2 = xhci_read_cap_reg32(id, list_off + 8); if (offset != NULL) *offset = (uint32_t)(dw2 & 0xff) - 1; // 使其转换为zero based if (count != NULL) *count = (uint32_t)((dw2 & 0xff00) >> 8); if (protocol_flag != NULL && version == 2) *protocol_flag = (uint16_t)((dw2 >> 16) & 0x0fff); return next_list_off; } list_off = next_list_off; } while (list_off); return 0; } /** * @brief 配对xhci主机控制器的usb2、usb3端口 * * @param id 主机控制器id * @return int 返回码 */ static int xhci_hc_pair_ports(int id) { struct xhci_caps_HCSPARAMS1_reg_t hcs1; memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t)); // 从hcs1获取端口数量 xhci_hc[id].port_num = hcs1.max_ports; // 找到所有的端口并标记其端口信息 xhci_hc[id].port_num_u2 = 0; xhci_hc[id].port_num_u3 = 0; uint32_t next_off = xhci_hc[id].ext_caps_off; uint32_t offset, cnt; uint16_t protocol_flags = 0; // 寻找所有的usb2端口 while (next_off) { next_off = xhci_hc_get_protocol_offset(id, next_off, 2, &offset, &cnt, &protocol_flags); if (cnt) { for (int i = 0; i < cnt; ++i) { xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u2++; xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB2; // usb2 high speed only if (protocol_flags & 2) xhci_hc[id].ports[offset + i].flags |= XHCI_PROTOCOL_HSO; } } } // 寻找所有的usb3端口 next_off = xhci_hc[id].ext_caps_off; while (next_off) { next_off = xhci_hc_get_protocol_offset(id, next_off, 3, &offset, &cnt, &protocol_flags); if (cnt) { for (int i = 0; i < cnt; ++i) { xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u3++; xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB3; } } } // 将对应的USB2端口和USB3端口进行配对 for (int i = 0; i < xhci_hc[id].port_num; ++i) { for (int j = 0; j < xhci_hc[id].port_num; ++j) { if (unlikely(i == j)) continue; if ((xhci_hc[id].ports[i].offset == xhci_hc[id].ports[j].offset) && ((xhci_hc[id].ports[i].flags & XHCI_PROTOCOL_INFO) != (xhci_hc[id].ports[j].flags & XHCI_PROTOCOL_INFO))) { xhci_hc[id].ports[i].paired_port_num = j; xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_HAS_PAIR; xhci_hc[id].ports[j].paired_port_num = i; xhci_hc[id].ports[j].flags |= XHCI_PROTOCOL_HAS_PAIR; } } } // 标记所有的usb3、单独的usb2端口为激活状态 for (int i = 0; i < xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB3(id, i) || (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i)))) xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_ACTIVE; } kinfo("Found %d ports on root hub, usb2 ports:%d, usb3 ports:%d", xhci_hc[id].port_num, xhci_hc[id].port_num_u2, xhci_hc[id].port_num_u3); /* // 打印配对结果 for (int i = 1; i <= xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB3(id, i)) { kdebug("USB3 port %d, offset=%d, pair with usb2 port %d, current port is %s", i, xhci_hc[id].ports[i].offset, xhci_hc[id].ports[i].paired_port_num, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive"); } else if (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))) // 单独的2.0接口 { kdebug("Stand alone USB2 port %d, offset=%d, current port is %s", i, xhci_hc[id].ports[i].offset, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive"); } else if (XHCI_PORT_IS_USB2(id, i)) { kdebug("USB2 port %d, offset=%d, current port is %s, has pair=%s", i, xhci_hc[id].ports[i].offset, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive", XHCI_PORT_HAS_PAIR(id, i) ? "true" : "false"); } } */ return 0; } /** * @brief 创建ring,并将最后一个trb指向头一个trb * * @param trbs 要创建的trb数量 * @return uint64_t trb数组的起始虚拟地址 */ static uint64_t xhci_create_ring(int trbs) { int total_size = trbs * sizeof(struct xhci_TRB_t); const uint64_t vaddr = (uint64_t)kmalloc(total_size, 0); memset((void *)vaddr, 0, total_size); // 设置最后一个trb为link trb xhci_TRB_set_link_cmd(vaddr + total_size - sizeof(struct xhci_TRB_t)); return vaddr; } /** * @brief 创建新的event ring table和对应的ring segment * * @param trbs 包含的trb的数量 * @param ret_ring_addr 返回的第一个event ring segment的基地址(虚拟) * @return uint64_t trb table的虚拟地址 */ static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr) { const uint64_t table_vaddr = (const uint64_t)kmalloc(64, 0); // table支持8个segment if (unlikely(table_vaddr == NULL)) return -ENOMEM; memset((void *)table_vaddr, 0, 64); // 暂时只创建1个segment const uint64_t seg_vaddr = (const uint64_t)kmalloc(trbs * sizeof(struct xhci_TRB_t), 0); if (unlikely(seg_vaddr == NULL)) return -ENOMEM; memset((void *)seg_vaddr, 0, trbs * sizeof(struct xhci_TRB_t)); // 将segment地址和大小写入table *(uint64_t *)(table_vaddr) = virt_2_phys(seg_vaddr); *(uint64_t *)(table_vaddr + 8) = trbs; *ret_ring_addr = seg_vaddr; return table_vaddr; } void xhci_hc_irq_enable(uint64_t irq_num) { int cid = xhci_find_hcid_by_irq_num(irq_num); if (WARN_ON(cid == -1)) return; kdebug("start msi"); pci_start_msi(xhci_hc[cid].pci_dev_hdr); kdebug("start sched"); xhci_hc_start_sched(cid); kdebug("start ports"); xhci_hc_start_ports(cid); kdebug("enabled"); } void xhci_hc_irq_disable(uint64_t irq_num) { int cid = xhci_find_hcid_by_irq_num(irq_num); if (WARN_ON(cid == -1)) return; xhci_hc_stop_sched(cid); pci_disable_msi(xhci_hc[cid].pci_dev_hdr); } uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg) { int cid = xhci_find_hcid_by_irq_num(irq_num); if (WARN_ON(cid == -1)) return -EINVAL; struct xhci_hc_irq_install_info_t *info = (struct xhci_hc_irq_install_info_t *)arg; struct msi_desc_t msi_desc; memset(&msi_desc, 0, sizeof(struct msi_desc_t)); msi_desc.pci_dev = (struct pci_device_structure_header_t *)xhci_hc[cid].pci_dev_hdr; msi_desc.assert = info->assert; msi_desc.edge_trigger = info->edge_trigger; msi_desc.processor = info->processor; msi_desc.pci.msi_attribute.is_64 = 1; // todo: QEMU是使用msix的,因此要先在pci中实现msix int retval = pci_enable_msi(&msi_desc); kdebug("pci retval = %d", retval); kdebug("xhci irq %d installed.", irq_num); return 0; } void xhci_hc_irq_uninstall(uint64_t irq_num) { // todo int cid = xhci_find_hcid_by_irq_num(irq_num); if (WARN_ON(cid == -1)) return; xhci_hc_stop(cid); } /** * @brief xhci主机控制器的中断处理函数 * * @param irq_num 中断向量号 * @param cid 控制器号 * @param regs 寄存器值 */ void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs) { // todo: handle irq kdebug("USB irq received."); } /** * @brief 重置端口 * * @param id 控制器id * @param port 端口id * @return int */ static int xhci_reset_port(const int id, const int port) { int retval = 0; // 相对于op寄存器基地址的偏移量 uint64_t port_status_offset = XHCI_OPS_PRS + port * 16; // kdebug("to reset %d, offset=%#018lx", port, port_status_offset); // 检查端口电源状态 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0) { kdebug("port is power off, starting..."); xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9)); usleep(2000); // 检测端口是否被启用, 若未启用,则报错 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0) { kdebug("cannot power on %d", port); return -EAGAIN; } } // kdebug("port:%d, power check ok", port); // 确保端口的status被清0 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS); // 重置当前端口 if (XHCI_PORT_IS_USB3(id, port)) xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 31)); else xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 4)); retval = -ETIMEDOUT; // 等待portsc的port reset change位被置位,说明reset完成 int timeout = 200; while (timeout) { uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC); if (XHCI_PORT_IS_USB3(id, port) && (val & (1 << 31)) == 0) break; else if (XHCI_PORT_IS_USB2(id, port) && (val & (1 << 4)) == 0) break; else if (val & (1 << 21)) break; --timeout; usleep(500); } // kdebug("timeout= %d", timeout); if (timeout > 0) { // 等待恢复 usleep(USB_TIME_RST_REC * 1000); uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC); // 如果reset之后,enable bit仍然是1,那么说明reset成功 if (val & (1 << 1)) { // 清除status change bit xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS); } retval = 0; } // 如果usb2端口成功reset,则处理该端口的active状态 if (retval == 0 && XHCI_PORT_IS_USB2(id, port)) { xhci_hc[id].ports[port].flags |= XHCI_PROTOCOL_ACTIVE; if (XHCI_PORT_HAS_PAIR(id, port)) // 如果有对应的usb3端口,则将usb3端口设置为未激活 xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags &= ~(XHCI_PROTOCOL_ACTIVE); } // 如果usb3端口reset失败,则启用与之配对的usb2端口 if (retval != 0 && XHCI_PORT_IS_USB3(id, port)) { xhci_hc[id].ports[port].flags &= ~XHCI_PROTOCOL_ACTIVE; xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags |= XHCI_PROTOCOL_ACTIVE; } return retval; } /** * @brief 启用xhci控制器的端口 * * @param id 控制器id * @return int */ static int xhci_hc_start_ports(int id) { int cnt = 0; // 注意,这两个循环应该不能合并到一起,因为可能存在usb2端口offset在前,usb3端口在后的情况,那样的话就会出错 // 循环启动所有的usb3端口 for (int i = 0; i < xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB3(id, i) && XHCI_PORT_IS_ACTIVE(id, i)) { // reset该端口 if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的 { // xhci_hc_get_descriptor(id, i); ++cnt; } } } kdebug("active usb3 ports:%d", cnt); // 循环启动所有的usb2端口 for (int i = 0; i < xhci_hc[id].port_num; ++i) { if (XHCI_PORT_IS_USB2(id, i) && XHCI_PORT_IS_ACTIVE(id, i)) { // reset该端口 if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的 { // xhci_hc_get_descriptor(id, i); ++cnt; } } } kinfo("xHCI controller %d: Started %d ports.", id, cnt); } /** * @brief 初始化xhci主机控制器的中断控制 * * @param id 主机控制器id * @return int 返回码 */ static int xhci_hc_init_intr(int id) { uint64_t retval = 0; struct xhci_caps_HCSPARAMS1_reg_t hcs1; struct xhci_caps_HCSPARAMS2_reg_t hcs2; memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t)); memcpy(&hcs2, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t)); uint32_t max_segs = (1 << (uint32_t)(hcs2.ERST_Max)); uint32_t max_interrupters = hcs1.max_intrs; // 创建 event ring retval = xhci_create_event_ring(4096, &xhci_hc[id].event_ring_vaddr); if (unlikely((int64_t)(retval) == -ENOMEM)) return -ENOMEM; xhci_hc[id].event_ring_table_vaddr = retval; retval = 0; xhci_hc[id].current_event_ring_cycle = 1; // 写入第0个中断寄存器组 xhci_write_intr_reg32(id, 0, XHCI_IR_MAN, 0x3); // 使能中断并清除pending位(这个pending位是写入1就清0的) xhci_write_intr_reg32(id, 0, XHCI_IR_MOD, 0); // 关闭中断管制 xhci_write_intr_reg32(id, 0, XHCI_IR_TABLE_SIZE, 1); // 当前只有1个segment xhci_write_intr_reg64(id, 0, XHCI_IR_DEQUEUE, virt_2_phys(xhci_hc[id].event_ring_vaddr) | (1 << 3)); // 写入dequeue寄存器,并清除busy位(写1就会清除) xhci_write_intr_reg64(id, 0, XHCI_IR_TABLE_ADDR, virt_2_phys(xhci_hc[id].event_ring_table_vaddr)); // 写入table地址 // 清除状态位 xhci_write_op_reg32(id, XHCI_OPS_USBSTS, (1 << 10) | (1 << 4) | (1 << 3) | (1 << 2)); // 开启usb中断 // 注册中断处理程序 struct xhci_hc_irq_install_info_t install_info; install_info.assert = 1; install_info.edge_trigger = 1; install_info.processor = 0; // 投递到bsp char *buf = (char *)kmalloc(16, 0); memset(buf, 0, 16); sprintk(buf, "xHCI HC%d", id); irq_register(xhci_controller_irq_num[id], &install_info, &xhci_hc_irq_handler, id, &xhci_hc_intr_controller, buf); kfree(buf); kdebug("xhci host controller %d: interrupt registered. irq num=%d", id, xhci_controller_irq_num[id]); return 0; } /** * @brief 初始化xhci控制器 * * @param header 指定控制器的pci device头部 */ void xhci_init(struct pci_device_structure_general_device_t *dev_hdr) { if (xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS) { kerror("Initialize xhci controller failed: exceed the limit of max controllers."); return; } spin_lock(&xhci_controller_init_lock); kinfo("Initializing xhci host controller: bus=%#02x, device=%#02x, func=%#02x, VendorID=%#04x, irq_line=%d, irq_pin=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, dev_hdr->header.Vendor_ID, dev_hdr->Interrupt_Line, dev_hdr->Interrupt_PIN); int cid = xhci_hc_find_available_id(); if (cid < 0) { kerror("Initialize xhci controller failed: exceed the limit of max controllers."); goto failed_exceed_max; } memset(&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t)); xhci_hc[cid].controller_id = cid; xhci_hc[cid].pci_dev_hdr = dev_hdr; pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4, 0x0006); // mem I/O access enable and bus master enable // 为当前控制器映射寄存器地址空间 xhci_hc[cid].vbase = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + XHCI_MAPPING_OFFSET + 65536 * xhci_hc[cid].controller_id; // kdebug("dev_hdr->BAR0 & (~0xf)=%#018lx", dev_hdr->BAR0 & (~0xf)); mm_map_phys_addr(xhci_hc[cid].vbase, dev_hdr->BAR0 & (~0xf), 65536, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, true); // 读取xhci控制寄存器 uint16_t iversion = *(uint16_t *)(xhci_hc[cid].vbase + XHCI_CAPS_HCIVERSION); struct xhci_caps_HCCPARAMS1_reg_t hcc1; struct xhci_caps_HCCPARAMS2_reg_t hcc2; struct xhci_caps_HCSPARAMS1_reg_t hcs1; struct xhci_caps_HCSPARAMS2_reg_t hcs2; memcpy(&hcc1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS1), sizeof(struct xhci_caps_HCCPARAMS1_reg_t)); memcpy(&hcc2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS2), sizeof(struct xhci_caps_HCCPARAMS2_reg_t)); memcpy(&hcs1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t)); memcpy(&hcs2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t)); // kdebug("hcc1.xECP=%#010lx", hcc1.xECP); // 计算operational registers的地址 xhci_hc[cid].vbase_op = xhci_hc[cid].vbase + xhci_read_cap_reg8(cid, XHCI_CAPS_CAPLENGTH); xhci_hc[cid].db_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_DBOFF) & (~0x3); // bits [1:0] reserved xhci_hc[cid].rts_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_RTSOFF) & (~0x1f); // bits [4:0] reserved. xhci_hc[cid].ext_caps_off = 1UL * (hcc1.xECP) * 4; xhci_hc[cid].context_size = (hcc1.csz) ? 64 : 32; if (iversion < 0x95) { kwarn("Unsupported/Unknowned xHCI controller version: %#06x. This may cause unexpected behavior.", iversion); } // if it is a Panther Point device, make sure sockets are xHCI controlled. if (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) & 0xffff) == 0x8086) && ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 2) & 0xffff) == 0x1E31) && ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 8) & 0xff) == 4)) { kdebug("Is a Panther Point device"); pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd8, 0xffffffff); pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd0, 0xffffffff); } // 关闭legacy支持 FAIL_ON_TO(xhci_hc_stop_legacy(cid), failed); // 重置xhci控制器 FAIL_ON_TO(xhci_hc_reset(cid), failed); // 端口配对 FAIL_ON_TO(xhci_hc_pair_ports(cid), failed); // ========== 设置USB host controller ========= // 获取页面大小 kdebug("ops pgsize=%#010lx", xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE)); xhci_hc[cid].page_size = (xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE) & 0xffff) << 12; kdebug("page size=%d", xhci_hc[cid].page_size); // 获取设备上下文空间 xhci_hc[cid].dcbaap_vaddr = (uint64_t)kmalloc(2048, 0); // 分配2KB的设备上下文地址数组空间 memset((void *)xhci_hc[cid].dcbaap_vaddr, 0, 2048); kdebug("dcbaap_vaddr=%#018lx", xhci_hc[cid].dcbaap_vaddr); if (unlikely(!xhci_is_aligned64(xhci_hc[cid].dcbaap_vaddr))) // 地址不是按照64byte对齐 { kerror("dcbaap isn't 64 byte aligned."); goto failed_free_dyn; } // 写入dcbaap xhci_write_op_reg64(cid, XHCI_OPS_DCBAAP, virt_2_phys(xhci_hc[cid].dcbaap_vaddr)); // 创建command ring xhci_hc[cid].cmd_ring_vaddr = xhci_create_ring(XHCI_CMND_RING_TRBS); if (unlikely(!xhci_is_aligned64(xhci_hc[cid].cmd_ring_vaddr))) // 地址不是按照64byte对齐 { kerror("cmd ring isn't 64 byte aligned."); goto failed_free_dyn; } // 设置初始cycle bit为1 xhci_hc[cid].cmd_trb_cycle = XHCI_TRB_CYCLE_ON; // 写入command ring控制寄存器 xhci_write_op_reg64(cid, XHCI_OPS_CRCR, virt_2_phys(xhci_hc[cid].cmd_ring_vaddr) | xhci_hc[cid].cmd_trb_cycle); // 写入配置寄存器 uint32_t max_slots = hcs1.max_slots; kdebug("max slots = %d", max_slots); xhci_write_op_reg32(cid, XHCI_OPS_CONFIG, max_slots); // 写入设备通知控制寄存器 xhci_write_op_reg32(cid, XHCI_OPS_DNCTRL, (1 << 1)); // 目前只有N1被支持 FAIL_ON_TO(xhci_hc_init_intr(cid), failed_free_dyn); ++xhci_ctrl_count; spin_unlock(&xhci_controller_init_lock); return; failed_free_dyn:; // 释放动态申请的内存 if (xhci_hc[cid].dcbaap_vaddr) kfree((void *)xhci_hc[cid].dcbaap_vaddr); if (xhci_hc[cid].cmd_ring_vaddr) kfree((void *)xhci_hc[cid].cmd_ring_vaddr); if (xhci_hc[cid].event_ring_table_vaddr) kfree((void *)xhci_hc[cid].event_ring_table_vaddr); if (xhci_hc[cid].event_ring_vaddr) kfree((void *)xhci_hc[cid].event_ring_vaddr); failed:; // 取消地址映射 mm_unmap(xhci_hc[cid].vbase, 65536); // 清空数组 memset((void *)&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t)); failed_exceed_max:; kerror("Failed to initialize controller: bus=%d, dev=%d, func=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func); spin_unlock(&xhci_controller_init_lock); } #pragma GCC optimize("O0")