mm.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. ul Total_Memory = 0;
  7. ul total_2M_pages = 0;
  8. void mm_init()
  9. {
  10. kinfo("Initializing memory management unit...");
  11. // 设置内核程序不同部分的起止地址
  12. memory_management_struct.kernel_code_start = (ul)&_text;
  13. memory_management_struct.kernel_code_end = (ul)&_etext;
  14. memory_management_struct.kernel_data_end = (ul)&_edata;
  15. memory_management_struct.kernel_end = (ul)&_end;
  16. struct multiboot_mmap_entry_t *mb2_mem_info;
  17. int count;
  18. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  19. for (int i = 0; i < count; ++i)
  20. {
  21. //可用的内存
  22. if (mb2_mem_info->type == 1)
  23. Total_Memory += mb2_mem_info->len;
  24. // 保存信息到mms
  25. memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr;
  26. memory_management_struct.e820[i].Length = mb2_mem_info->len;
  27. memory_management_struct.e820[i].type = mb2_mem_info->type;
  28. memory_management_struct.len_e820 = i;
  29. ++mb2_mem_info;
  30. // 脏数据
  31. if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1)
  32. break;
  33. }
  34. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  35. // 计算有效内存页数
  36. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  37. {
  38. if (memory_management_struct.e820[i].type != 1)
  39. continue;
  40. // 将内存段的起始物理地址按照2M进行对齐
  41. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  42. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  43. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  44. // 内存段不可用
  45. if (addr_end <= addr_start)
  46. continue;
  47. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  48. }
  49. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  50. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  51. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  52. // 初始化mms的bitmap
  53. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  54. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  55. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  56. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  57. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  58. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  59. // 初始化内存页结构
  60. // 将页结构映射于bmp之后
  61. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  62. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  63. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  64. // 将pages_struct全部清空,以备后续初始化
  65. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  66. // 初始化内存区域
  67. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  68. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  69. memory_management_struct.count_zones = 0;
  70. // zones-struct 成员变量暂时按照5个来计算
  71. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  72. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  73. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  74. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  75. {
  76. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  77. continue;
  78. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  79. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  80. if (addr_end <= addr_start)
  81. continue;
  82. // zone init
  83. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  84. ++memory_management_struct.count_zones;
  85. z->zone_addr_start = addr_start;
  86. z->zone_addr_end = addr_end;
  87. z->zone_length = addr_end - addr_start;
  88. z->count_pages_using = 0;
  89. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  90. z->total_pages_link = 0;
  91. z->attr = 0;
  92. z->gmd_struct = &memory_management_struct;
  93. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  94. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  95. // 初始化页
  96. struct Page *p = z->pages_group;
  97. for (int j = 0; j < z->count_pages; ++j, ++p)
  98. {
  99. p->zone = z;
  100. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  101. p->attr = 0;
  102. p->ref_counts = 0;
  103. p->age = 0;
  104. // 将bmp中对应的位 复位
  105. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  106. }
  107. }
  108. // 初始化0~2MB的物理页
  109. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  110. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  111. memory_management_struct.pages_struct->addr_phys = 0UL;
  112. memory_management_struct.pages_struct->attr = 0;
  113. memory_management_struct.pages_struct->ref_counts = 0;
  114. memory_management_struct.pages_struct->age = 0;
  115. // 计算zone结构体的总长度(按照64位对齐)
  116. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  117. /*
  118. printk_color(ORANGE, BLACK, "bmp:%#18lx, bmp_len:%#18lx, bits_size:%#18lx\n", memory_management_struct.bmp, memory_management_struct.bmp_len, memory_management_struct.bits_size);
  119. printk_color(ORANGE, BLACK, "pages_struct:%#18lx, count_pages:%#18lx, pages_struct_len:%#18lx\n", memory_management_struct.pages_struct, memory_management_struct.count_pages, memory_management_struct.pages_struct_len);
  120. printk_color(ORANGE, BLACK, "zones_struct:%#18lx, count_zones:%#18lx, zones_struct_len:%#18lx\n", memory_management_struct.zones_struct, memory_management_struct.count_zones, memory_management_struct.zones_struct_len);
  121. */
  122. ZONE_DMA_INDEX = 0; // need rewrite in the future
  123. ZONE_NORMAL_INDEX = 0; // need rewrite in the future
  124. for (int i = 0; i < memory_management_struct.count_zones; ++i) // need rewrite in the future
  125. {
  126. struct Zone *z = memory_management_struct.zones_struct + i;
  127. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  128. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  129. // 1GB以上的内存空间不做映射
  130. if (z->zone_addr_start == 0x100000000)
  131. ZONE_UNMAPED_INDEX = i;
  132. }
  133. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  134. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  135. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  136. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  137. // 初始化内存管理单元结构所占的物理页的结构体
  138. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  139. printk("mms_max_page=%ld\n", mms_max_page);
  140. for (ul j = 0; j <= mms_max_page; ++j)
  141. {
  142. page_init(memory_management_struct.pages_struct + j, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT | PAGE_ACTIVE);
  143. }
  144. global_CR3 = get_CR3();
  145. flush_tlb();
  146. kinfo("Memory management unit initialize complete!");
  147. // 初始化slab内存池
  148. slab_init();
  149. }
  150. /**
  151. * @brief 初始化内存页
  152. *
  153. * @param page 内存页结构体
  154. * @param flags 标志位
  155. * 对于新页面: 初始化struct page
  156. * 对于当前页面属性/flags中含有引用属性或共享属性时,则只增加struct page和struct zone的被引用计数。否则就只是添加页表属性,并置位bmp的相应位。
  157. * @return unsigned long
  158. */
  159. unsigned long page_init(struct Page *page, ul flags)
  160. {
  161. // 全新的页面
  162. if (!page->attr)
  163. {
  164. // 将bmp对应的标志位置位
  165. *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64;
  166. page->attr = flags;
  167. ++(page->ref_counts);
  168. ++(page->zone->count_pages_using);
  169. --(page->zone->count_pages_free);
  170. ++(page->zone->total_pages_link);
  171. }
  172. // 不是全新的页面,而是含有引用属性/共享属性
  173. else if ((page->attr & PAGE_REFERENCED) || (page->attr & PAGE_K_SHARE_TO_U) || (flags & PAGE_REFERENCED) || (flags & PAGE_K_SHARE_TO_U))
  174. {
  175. page->attr |= flags;
  176. ++(page->ref_counts);
  177. ++(page->zone->total_pages_link);
  178. }
  179. else
  180. {
  181. // 将bmp对应的标志位置位
  182. //*(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << ((page->addr_phys >> PAGE_2M_SHIFT) % 64));
  183. *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64;
  184. page->attr |= flags;
  185. }
  186. return 0;
  187. }
  188. /**
  189. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  190. *
  191. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  192. * @param num 需要申请的连续内存页的数量 num<=64
  193. * @param flags 将页面属性设置成flag
  194. * @return struct Page*
  195. */
  196. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  197. {
  198. ul zone_start = 0, zone_end = 0;
  199. switch (zone_select)
  200. {
  201. case ZONE_DMA:
  202. // DMA区域
  203. zone_start = 0;
  204. zone_end = ZONE_DMA_INDEX;
  205. break;
  206. case ZONE_NORMAL:
  207. zone_start = ZONE_DMA_INDEX;
  208. zone_end = ZONE_NORMAL_INDEX;
  209. break;
  210. case ZONE_UNMAPPED_IN_PGT:
  211. zone_start = ZONE_NORMAL_INDEX;
  212. zone_end = ZONE_UNMAPED_INDEX;
  213. break;
  214. default:
  215. kwarn("In alloc_pages: param: zone_select incorrect.");
  216. // 返回空
  217. return NULL;
  218. break;
  219. }
  220. for (int i = zone_start; i <= zone_end; ++i)
  221. {
  222. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  223. continue;
  224. struct Zone *z = memory_management_struct.zones_struct + i;
  225. // 区域对应的起止页号以及区域拥有的页面数
  226. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  227. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  228. ul page_num = (z->zone_length >> PAGE_2M_SHIFT);
  229. ul tmp = 64 - page_start % 64;
  230. for (ul j = page_start; j <= page_end; j += ((j % 64) ? tmp : 64))
  231. {
  232. // 按照bmp中的每一个元素进行查找
  233. // 先将p定位到bmp的起始元素
  234. ul *p = memory_management_struct.bmp + (j >> 6);
  235. ul shift = j % 64;
  236. for (ul k = shift; k < 64 - shift; ++k)
  237. {
  238. // 寻找连续num个空页
  239. if (!(((*p >> k) | (*(p + 1) << (64 - k))) & (num == 64 ? 0xffffffffffffffffUL : ((1UL << num) - 1))))
  240. {
  241. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号(书上的公式有问题,这个是改过之后的版本)
  242. for (ul l = 0; l < num; ++l)
  243. {
  244. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  245. page_init(x, flags);
  246. }
  247. // 成功分配了页面,返回第一个页面的指针
  248. // printk("start page num=%d\n",start_page_num);
  249. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  250. }
  251. }
  252. }
  253. }
  254. return NULL;
  255. }
  256. unsigned long page_clean(struct Page *p)
  257. {
  258. if (!p->attr)
  259. p->attr = 0;
  260. else if ((p->attr & PAGE_REFERENCED) || (p->attr & PAGE_K_SHARE_TO_U))
  261. {
  262. // 被引用的页或内核共享给用户态的页
  263. --p->ref_counts;
  264. --p->zone->total_pages_link;
  265. // 当引用为0时
  266. if (!p->ref_counts)
  267. {
  268. p->attr = 0;
  269. --p->zone->count_pages_using;
  270. ++p->zone->count_pages_free;
  271. }
  272. }
  273. else
  274. {
  275. // 将bmp复位
  276. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) &= ~(1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  277. p->attr = 0;
  278. p->ref_counts = 0;
  279. --p->zone->count_pages_using;
  280. ++p->zone->count_pages_free;
  281. --p->zone->total_pages_link;
  282. }
  283. }
  284. /**
  285. * @brief 释放连续number个内存页
  286. *
  287. * @param page 第一个要被释放的页面的结构体
  288. * @param number 要释放的内存页数量 number<64
  289. */
  290. void free_pages(struct Page *page, int number)
  291. {
  292. // @todo: 释放连续number个内存页
  293. }