process.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. /**
  8. * @brief 切换进程
  9. *
  10. * @param prev 上一个进程的pcb
  11. * @param next 将要切换到的进程的pcb
  12. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  13. * 这里切换fs和gs寄存器
  14. */
  15. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  16. {
  17. initial_tss[0].rsp0 = next->thread->rbp;
  18. set_TSS64(initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  19. initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  20. __asm__ __volatile__("movq %%fs, %0 \n\t"
  21. : "=a"(prev->thread->fs));
  22. __asm__ __volatile__("movq %%gs, %0 \n\t"
  23. : "=a"(prev->thread->gs));
  24. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  25. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  26. }
  27. /**
  28. * @brief 这是一个用户态的程序
  29. *
  30. */
  31. void user_level_function()
  32. {
  33. kinfo("Program (user_level_function) is runing...");
  34. kinfo("Try to enter syscall id 15...");
  35. enter_syscall(15,0,0,0,0,0,0,0,0);
  36. enter_syscall(SYS_PRINTF, (ul)"test_sys_printf\n", 0,0,0,0,0,0,0);
  37. kinfo("Return from syscall id 15...");
  38. while(1);
  39. }
  40. /**
  41. * @brief 使当前进程去执行新的代码
  42. *
  43. * @param regs 当前进程的寄存器
  44. * @return ul 错误码
  45. */
  46. ul do_execve(struct pt_regs *regs)
  47. {
  48. // 选择这两个寄存器是对应了sysexit指令的需要
  49. regs->rdx = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  50. regs->rcx = 0xa00000; // rsp 应用层程序的栈顶地址
  51. regs->rax = 1;
  52. regs->ds = 0;
  53. regs->es = 0;
  54. kdebug("do_execve is running...");
  55. // 将程序代码拷贝到对应的内存中
  56. memcpy((void *)0x800000, user_level_function, 1024);
  57. return 0;
  58. }
  59. /**
  60. * @brief 内核init进程
  61. *
  62. * @param arg
  63. * @return ul 参数
  64. */
  65. ul initial_kernel_thread(ul arg)
  66. {
  67. kinfo("initial proc running...\targ:%#018lx", arg);
  68. struct pt_regs *regs;
  69. current_pcb->thread->rip = (ul)ret_from_system_call;
  70. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  71. regs = (struct pt_regs *)current_pcb->thread->rsp;
  72. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  73. __asm__ __volatile__("movq %1, %%rsp \n\t"
  74. "pushq %2 \n\t"
  75. "jmp do_execve \n\t" ::"D"(regs),
  76. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  77. : "memory");
  78. return 1;
  79. }
  80. /**
  81. * @brief 进程退出时执行的函数
  82. *
  83. * @param code 返回码
  84. * @return ul
  85. */
  86. ul do_exit(ul code)
  87. {
  88. kinfo("thread_exiting..., code is %#018lx.", code);
  89. while (1)
  90. ;
  91. }
  92. /**
  93. * @brief 导出内核线程的执行引导程序
  94. * 目的是还原执行现场(在kernel_thread中伪造的)
  95. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  96. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  97. */
  98. extern void kernel_thread_func(void);
  99. __asm__(
  100. "kernel_thread_func: \n\t"
  101. " popq %r15 \n\t"
  102. " popq %r14 \n\t"
  103. " popq %r13 \n\t"
  104. " popq %r12 \n\t"
  105. " popq %r11 \n\t"
  106. " popq %r10 \n\t"
  107. " popq %r9 \n\t"
  108. " popq %r8 \n\t"
  109. " popq %rbx \n\t"
  110. " popq %rcx \n\t"
  111. " popq %rdx \n\t"
  112. " popq %rsi \n\t"
  113. " popq %rdi \n\t"
  114. " popq %rbp \n\t"
  115. " popq %rax \n\t"
  116. " movq %rax, %ds \n\t"
  117. " popq %rax \n\t"
  118. " movq %rax, %es \n\t"
  119. " popq %rax \n\t"
  120. " addq $0x38, %rsp \n\t"
  121. /////////////////////////////////
  122. " movq %rdx, %rdi \n\t"
  123. " callq *%rbx \n\t"
  124. " movq %rax, %rdi \n\t"
  125. " callq do_exit \n\t");
  126. /**
  127. * @brief 初始化内核进程
  128. *
  129. * @param fn 目标程序的地址
  130. * @param arg 向目标程序传入的参数
  131. * @param flags
  132. * @return int
  133. */
  134. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  135. {
  136. struct pt_regs regs;
  137. memset(&regs, 0, sizeof(regs));
  138. // 在rbx寄存器中保存进程的入口地址
  139. regs.rbx = (ul)fn;
  140. // 在rdx寄存器中保存传入的参数
  141. regs.rdx = (ul)arg;
  142. regs.ds = KERNEL_DS;
  143. regs.es = KERNEL_DS;
  144. regs.cs = KERNEL_CS;
  145. regs.ss = KERNEL_DS;
  146. // 置位中断使能标志位
  147. regs.rflags = (1 << 9);
  148. // rip寄存器指向内核线程的引导程序
  149. regs.rip = (ul)kernel_thread_func;
  150. return do_fork(&regs, flags, 0, 0);
  151. }
  152. /**
  153. * @brief 初始化进程模块
  154. * ☆前置条件:已完成系统调用模块的初始化
  155. */
  156. void process_init()
  157. {
  158. initial_mm.pgd = (pml4t_t *)global_CR3;
  159. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  160. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  161. initial_mm.data_addr_start = (ul)&_data;
  162. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  163. initial_mm.rodata_addr_start = (ul)&_rodata;
  164. initial_mm.rodata_addr_end = (ul)&_erodata;
  165. initial_mm.brk_start = 0;
  166. initial_mm.brk_end = memory_management_struct.kernel_end;
  167. initial_mm.stack_start = _stack_start;
  168. // 初始化进程和tss
  169. set_TSS64(initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  170. initial_tss[0].rsp0 = initial_thread.rbp;
  171. // 初始化进程的循环链表
  172. list_init(&initial_proc_union.pcb.list);
  173. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  174. initial_proc_union.pcb.state = PROC_RUNNING;
  175. // 获取新的进程的pcb
  176. struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  177. // 切换到新的内核线程
  178. switch_proc(current_pcb, p);
  179. }
  180. /**
  181. * @brief fork当前进程
  182. *
  183. * @param regs 新的寄存器值
  184. * @param clone_flags 克隆标志
  185. * @param stack_start 堆栈开始地址
  186. * @param stack_size 堆栈大小
  187. * @return unsigned long
  188. */
  189. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  190. {
  191. struct process_control_block *tsk = NULL;
  192. // 获取一个物理页并在这个物理页内初始化pcb
  193. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_ACTIVE | PAGE_KERNEL);
  194. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  195. memset(tsk, 0, sizeof(*tsk));
  196. // 将当前进程的pcb复制到新的pcb内
  197. *tsk = *current_pcb;
  198. // 将进程加入循环链表
  199. list_init(&tsk->list);
  200. list_add(&initial_proc_union.pcb.list, &tsk->list);
  201. ++(tsk->pid);
  202. tsk->state = PROC_UNINTERRUPTIBLE;
  203. // 将线程结构体放置在pcb的后面
  204. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  205. tsk->thread = thd;
  206. // 将寄存器信息存储到进程的内核栈空间的顶部
  207. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  208. // 设置进程的内核栈
  209. thd->rbp = (ul)tsk + STACK_SIZE;
  210. thd->rip = regs->rip;
  211. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  212. thd->fs = KERNEL_DS;
  213. thd->gs = KERNEL_DS;
  214. // 若进程不是内核层的进程,则跳转到ret from system call
  215. if (!(tsk->flags & PF_KTHREAD))
  216. thd->rip = regs->rip = (ul)ret_from_system_call;
  217. tsk->state = PROC_RUNNING;
  218. return 0;
  219. }