123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- use core::{
- ffi::c_void,
- ptr::{null_mut, read_volatile, write_volatile},
- };
- use alloc::boxed::Box;
- use crate::{
- arch::asm::current::current_pcb,
- filesystem::vfs::file::{File, FileDescriptorVec},
- include::bindings::bindings::{
- process_control_block, CLONE_FS, EBADF, EFAULT, ENFILE, EPERM, PROC_INTERRUPTIBLE,
- PROC_RUNNING, PROC_STOPPED, PROC_UNINTERRUPTIBLE,
- },
- sched::core::{cpu_executing, sched_enqueue},
- smp::core::{smp_get_processor_id, smp_send_reschedule},
- };
- use super::preempt::{preempt_disable, preempt_enable};
- /// 判断进程是否已经停止
- #[no_mangle]
- pub extern "C" fn process_is_stopped(pcb: *const process_control_block) -> bool {
- let state: u64 = unsafe { read_volatile(&(*pcb).state) } as u64;
- if (state & (PROC_STOPPED as u64)) != 0 {
- return true;
- } else {
- return false;
- }
- }
- /// @brief 尝试唤醒指定的进程。
- /// 本函数的行为:If (@_state & @pcb->state) @pcb->state = TASK_RUNNING.
- ///
- /// @param _pcb 要被唤醒的进程的pcb
- /// @param _state 如果pcb的state与_state匹配,则唤醒这个进程
- /// @param _wake_flags 保留,暂未使用,请置为0
- /// @return true: 成功唤醒
- /// false: 不符合唤醒条件,无法唤醒
- #[no_mangle]
- pub extern "C" fn process_try_to_wake_up(
- _pcb: *mut process_control_block,
- _state: u64,
- _wake_flags: i32,
- ) -> bool {
- preempt_disable();
- let mut retval = false;
- // 获取对pcb的可变引用
- let pcb = unsafe { _pcb.as_mut() }.unwrap();
- // 如果要唤醒的就是当前的进程
- if current_pcb() as *mut process_control_block as usize == _pcb as usize {
- unsafe {
- write_volatile(&mut pcb.state, PROC_RUNNING as u64);
- }
- preempt_enable();
- retval = true;
- return retval;
- }
- // todo: 将来调度器引入ttwu队列之后,需要修改这里的判断条件
- // todo: 为pcb引入pi_lock,然后在这里加锁
- if unsafe { read_volatile(&pcb.state) } & _state != 0 {
- // 可以wakeup
- unsafe {
- write_volatile(&mut pcb.state, PROC_RUNNING as u64);
- }
- sched_enqueue(pcb, true);
- retval = true;
- }
- // todo: 对pcb的pi_lock放锁
- preempt_enable();
- return retval;
- }
- /// @brief 当进程,满足 (@state & @pcb->state)时,唤醒进程,并设置: @pcb->state = TASK_RUNNING.
- ///
- /// @return true 唤醒成功
- /// @return false 唤醒失败
- #[no_mangle]
- pub extern "C" fn process_wake_up_state(pcb: *mut process_control_block, state: u64) -> bool {
- return process_try_to_wake_up(pcb, state, 0);
- }
- /// @brief 让一个正在cpu上运行的进程陷入内核
- pub fn process_kick(pcb: *mut process_control_block) {
- preempt_disable();
- let cpu = process_cpu(pcb);
- // 如果给定的进程正在别的核心上执行,则立即发送请求,让它陷入内核态,以及时响应信号。
- if cpu != smp_get_processor_id() && process_is_executing(pcb) {
- smp_send_reschedule(cpu);
- }
- preempt_enable();
- }
- /// @brief 获取给定的进程在哪个cpu核心上运行(使用volatile避免编译器优化)
- #[inline]
- pub fn process_cpu(pcb: *const process_control_block) -> u32 {
- unsafe { read_volatile(&(*pcb).cpu_id) }
- }
- /// @brief 判断给定的进程是否正在处理器上执行
- ///
- /// @param pcb 进程的pcb
- #[inline]
- pub fn process_is_executing(pcb: *const process_control_block) -> bool {
- return cpu_executing(process_cpu(pcb)) as *const process_control_block == pcb;
- }
- impl process_control_block {
- /// @brief 初始化进程PCB的文件描述符数组。
- /// 请注意,如果当前进程已经有文件描述符数组,那么本操作将被禁止
- pub fn init_files(&mut self) -> Result<(), i32> {
- if self.fds != null_mut() {
- // 这个操作不被允许,否则会产生内存泄露。
- // 原因是,C的pcb里面,文件描述符数组的生命周期是static的,如果继续执行,会产生内存泄露的问题。
- return Err(-(EPERM as i32));
- }
- let fd_vec: &mut FileDescriptorVec = Box::leak(FileDescriptorVec::new());
- self.fds = fd_vec as *mut FileDescriptorVec as usize as *mut c_void;
- return Ok(());
- }
- /// @brief 拷贝进程的文件描述符
- ///
- /// @param clone_flags 进程fork的克隆标志位
- /// @param from 源pcb。从它里面拷贝文件描述符
- ///
- /// @return Ok(()) 拷贝成功
- /// @return Err(i32) 拷贝失败,错误码
- pub fn copy_files(
- &mut self,
- clone_flags: u64,
- from: &'static process_control_block,
- ) -> Result<(), i32> {
- // 不拷贝父进程的文件描述符
- if clone_flags & CLONE_FS as u64 != 0 {
- // 由于拷贝pcb的时候,直接copy的指针,因此这里置为空
- self.fds = null_mut();
- self.init_files()?;
- return Ok(());
- }
- // 获取源pcb的文件描述符数组的引用
- let old_fds: &mut FileDescriptorVec = if let Some(o_fds) = FileDescriptorVec::from_pcb(from)
- {
- o_fds
- } else {
- return self.init_files();
- };
- // 拷贝文件描述符数组
- let new_fd_vec: &mut FileDescriptorVec = Box::leak(Box::new(old_fds.clone()));
- self.fds = new_fd_vec as *mut FileDescriptorVec as usize as *mut c_void;
- return Ok(());
- }
- /// @brief 释放文件描述符数组。本函数会drop掉整个文件描述符数组,并把pcb的fds字段设置为空指针。
- pub fn exit_files(&mut self) -> Result<(), i32> {
- if self.fds.is_null() {
- return Ok(());
- }
- let old_fds: Box<FileDescriptorVec> =
- unsafe { Box::from_raw(self.fds as *mut FileDescriptorVec) };
- drop(old_fds);
- self.fds = null_mut();
- return Ok(());
- }
- /// @brief 申请文件描述符,并把文件对象存入其中。
- ///
- /// @return Ok(i32) 申请到的文件描述符编号
- /// @return Err(i32) 申请失败,返回错误码,并且,file对象将被drop掉
- pub fn alloc_fd(&mut self, file: File) -> Result<i32, i32> {
- // 获取pcb的文件描述符数组的引用
- let fds: &mut FileDescriptorVec =
- if let Some(f) = FileDescriptorVec::from_pcb(current_pcb()) {
- f
- } else {
- // 如果进程还没有初始化文件描述符数组,那就初始化它
- self.init_files().ok();
- let r: Option<&mut FileDescriptorVec> = FileDescriptorVec::from_pcb(current_pcb());
- if r.is_none() {
- drop(file);
- // 初始化失败
- return Err(-(EFAULT as i32));
- }
- r.unwrap()
- };
- // 寻找空闲的文件描述符
- let mut cnt = 0;
- for x in fds.fds.iter_mut() {
- if x.is_none() {
- *x = Some(Box::new(file));
- return Ok(cnt);
- }
- cnt += 1;
- }
- return Err(-(ENFILE as i32));
- }
- /// @brief 根据文件描述符序号,获取文件结构体的可变引用
- ///
- /// @param fd 文件描述符序号
- ///
- /// @return Option(&mut File) 文件对象的可变引用
- pub fn get_file_mut_by_fd(&self, fd: i32) -> Option<&mut File> {
- if !FileDescriptorVec::validate_fd(fd) {
- return None;
- }
- let r: &mut FileDescriptorVec = FileDescriptorVec::from_pcb(current_pcb()).unwrap();
- return r.fds[fd as usize].as_deref_mut();
- }
- /// @brief 根据文件描述符序号,获取文件结构体的不可变引用
- ///
- /// @param fd 文件描述符序号
- ///
- /// @return Option(&File) 文件对象的不可变引用
- #[allow(dead_code)]
- pub fn get_file_ref_by_fd(&self, fd: i32) -> Option<&File> {
- if !FileDescriptorVec::validate_fd(fd) {
- return None;
- }
- let r: &mut FileDescriptorVec = FileDescriptorVec::from_pcb(current_pcb()).unwrap();
- return r.fds[fd as usize].as_deref();
- }
- /// @brief 释放文件描述符,同时关闭文件。
- ///
- /// @param fd 文件描述符序号
- pub fn drop_fd(&self, fd: i32) -> Result<(), i32> {
- // 判断文件描述符的数字是否超过限制
- if !FileDescriptorVec::validate_fd(fd) {
- return Err(-(EBADF as i32));
- }
- let r: &mut FileDescriptorVec = FileDescriptorVec::from_pcb(current_pcb()).unwrap();
- let f: Option<&File> = r.fds[fd as usize].as_deref();
- if f.is_none() {
- // 如果文件描述符不存在,报错
- return Err(-(EBADF as i32));
- }
- // 释放文件
- drop(f);
- // 把文件描述符数组对应位置设置为空
- r.fds[fd as usize] = None;
- return Ok(());
- }
- /// @brief 标记当前pcb已经由其他机制进行管理,调度器将不会将他加入队列(且进程可以被信号打断)
- /// 当我们要把一个进程,交给其他机制管理时,那么就应该调用本函数。
- ///
- /// 由于本函数可能造成进程不再被调度,因此标记为unsafe
- pub unsafe fn mark_sleep_interruptible(&mut self){
- self.state = PROC_INTERRUPTIBLE as u64;
- }
- /// @brief 标记当前pcb已经由其他机制进行管理,调度器将不会将他加入队列(且进程不可以被信号打断)
- /// 当我们要把一个进程,交给其他机制管理时,那么就应该调用本函数
- ///
- /// 由于本函数可能造成进程不再被调度,因此标记为unsafe
- pub unsafe fn mark_sleep_uninterruptible(&mut self){
- self.state = PROC_UNINTERRUPTIBLE as u64;
- }
- }
- // =========== 导出到C的函数,在将来,进程管理模块被完全重构之后,需要删掉他们 BEGIN ============
- /// @brief 初始化当前进程的文件描述符数组
- /// 请注意,如果当前进程已经有文件描述符数组,那么本操作将被禁止
- #[no_mangle]
- pub extern "C" fn process_init_files() -> i32 {
- let r = current_pcb().init_files();
- if r.is_ok() {
- return 0;
- } else {
- return r.unwrap_err();
- }
- }
- /// @brief 拷贝当前进程的文件描述符信息
- ///
- /// @param clone_flags 克隆标志位
- /// @param pcb 新的进程的pcb
- #[no_mangle]
- pub extern "C" fn process_copy_files(
- clone_flags: u64,
- from: &'static process_control_block,
- ) -> i32 {
- let r = current_pcb().copy_files(clone_flags, from);
- if r.is_ok() {
- return 0;
- } else {
- return r.unwrap_err();
- }
- }
- /// @brief 回收进程的文件描述符数组
- ///
- /// @param pcb 要被回收的进程的pcb
- ///
- /// @return i32
- #[no_mangle]
- pub extern "C" fn process_exit_files(pcb: &'static mut process_control_block) -> i32 {
- let r: Result<(), i32> = pcb.exit_files();
- if r.is_ok() {
- return 0;
- } else {
- return r.unwrap_err();
- }
- }
- // =========== 以上为导出到C的函数,在将来,进程管理模块被完全重构之后,需要删掉他们 END ============
|