process.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. #include <common/libELF/elf.h>
  13. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  14. long process_global_pid = 1; // 系统中最大的pid
  15. uint64_t pid_one_map_offset = 0x0000020000000000;
  16. int pid_one_map_count = 0;
  17. extern void system_call(void);
  18. extern void kernel_thread_func(void);
  19. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  20. struct mm_struct initial_mm = {0};
  21. struct thread_struct initial_thread =
  22. {
  23. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  24. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  25. .fs = KERNEL_DS,
  26. .gs = KERNEL_DS,
  27. .cr2 = 0,
  28. .trap_num = 0,
  29. .err_code = 0};
  30. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  31. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  32. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  33. // 为每个核心初始化初始进程的tss
  34. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  35. /**
  36. * @brief 拷贝当前进程的标志位
  37. *
  38. * @param clone_flags 克隆标志位
  39. * @param pcb 新的进程的pcb
  40. * @return uint64_t
  41. */
  42. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  43. /**
  44. * @brief 拷贝当前进程的文件描述符等信息
  45. *
  46. * @param clone_flags 克隆标志位
  47. * @param pcb 新的进程的pcb
  48. * @return uint64_t
  49. */
  50. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  51. /**
  52. * @brief 回收进程的所有文件描述符
  53. *
  54. * @param pcb 要被回收的进程的pcb
  55. * @return uint64_t
  56. */
  57. uint64_t process_exit_files(struct process_control_block *pcb);
  58. /**
  59. * @brief 拷贝当前进程的内存空间分布结构体信息
  60. *
  61. * @param clone_flags 克隆标志位
  62. * @param pcb 新的进程的pcb
  63. * @return uint64_t
  64. */
  65. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  66. /**
  67. * @brief 释放进程的页表
  68. *
  69. * @param pcb 要被释放页表的进程
  70. * @return uint64_t
  71. */
  72. uint64_t process_exit_mm(struct process_control_block *pcb);
  73. /**
  74. * @brief 拷贝当前进程的线程结构体
  75. *
  76. * @param clone_flags 克隆标志位
  77. * @param pcb 新的进程的pcb
  78. * @return uint64_t
  79. */
  80. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  81. void process_exit_thread(struct process_control_block *pcb);
  82. /**
  83. * @brief 切换进程
  84. *
  85. * @param prev 上一个进程的pcb
  86. * @param next 将要切换到的进程的pcb
  87. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  88. * 这里切换fs和gs寄存器
  89. */
  90. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  91. {
  92. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  93. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  94. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  95. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  96. if (next->pid == 2)
  97. {
  98. struct pt_regs *child_regs = (struct pt_regs *)next->thread->rsp;
  99. kdebug("next->thd->rip=%#018lx", next->thread->rip);
  100. kdebug("next proc's ret addr = %#018lx\t next child_regs->rsp = %#018lx, next new_rip=%#018lx)", child_regs->rip, child_regs->rsp, child_regs->rip);
  101. }
  102. __asm__ __volatile__("movq %%fs, %0 \n\t"
  103. : "=a"(prev->thread->fs));
  104. __asm__ __volatile__("movq %%gs, %0 \n\t"
  105. : "=a"(prev->thread->gs));
  106. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  107. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  108. // wrmsr(0x175, next->thread->rbp);
  109. }
  110. /**
  111. * @brief 打开要执行的程序文件
  112. *
  113. * @param path
  114. * @return struct vfs_file_t*
  115. */
  116. struct vfs_file_t *process_open_exec_file(char *path)
  117. {
  118. struct vfs_dir_entry_t *dentry = NULL;
  119. struct vfs_file_t *filp = NULL;
  120. dentry = vfs_path_walk(path, 0);
  121. if (dentry == NULL)
  122. return (void *)-ENOENT;
  123. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  124. return (void *)-ENOTDIR;
  125. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  126. if (filp == NULL)
  127. return (void *)-ENOMEM;
  128. filp->position = 0;
  129. filp->mode = 0;
  130. filp->dEntry = dentry;
  131. filp->mode = ATTR_READ_ONLY;
  132. filp->file_ops = dentry->dir_inode->file_ops;
  133. return filp;
  134. }
  135. /**
  136. * @brief 加载elf格式的程序文件到内存中,并设置regs
  137. *
  138. * @param regs 寄存器
  139. * @param path 文件路径
  140. * @return int
  141. */
  142. static int process_load_elf_file(struct pt_regs *regs, char *path)
  143. {
  144. int retval = 0;
  145. struct vfs_file_t *filp = process_open_exec_file(path);
  146. if ((unsigned long)filp <= 0)
  147. {
  148. kdebug("(unsigned long)filp=%d", (long)filp);
  149. return (unsigned long)filp;
  150. }
  151. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  152. memset(buf, 0, PAGE_4K_SIZE);
  153. uint64_t pos = 0;
  154. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  155. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  156. retval = 0;
  157. if (!elf_check(buf))
  158. {
  159. kerror("Not an ELF file: %s", path);
  160. retval = -ENOTSUP;
  161. goto load_elf_failed;
  162. }
  163. #if ARCH(X86_64)
  164. // 暂时只支持64位的文件
  165. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  166. {
  167. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  168. retval = -EUNSUPPORTED;
  169. goto load_elf_failed;
  170. }
  171. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  172. // 暂时只支持AMD64架构
  173. if (ehdr.e_machine != EM_AMD64)
  174. {
  175. kerror("e_machine=%d", ehdr.e_machine);
  176. retval = -EUNSUPPORTED;
  177. goto load_elf_failed;
  178. }
  179. #else
  180. #error Unsupported architecture!
  181. #endif
  182. if (ehdr.e_type != ET_EXEC)
  183. {
  184. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  185. retval = -EUNSUPPORTED;
  186. goto load_elf_failed;
  187. }
  188. kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  189. regs->rip = ehdr.e_entry;
  190. current_pcb->mm->code_addr_start = ehdr.e_entry;
  191. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  192. // 将指针移动到program header处
  193. pos = ehdr.e_phoff;
  194. // 读取所有的phdr
  195. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  196. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  197. if ((unsigned long)filp <= 0)
  198. {
  199. kdebug("(unsigned long)filp=%d", (long)filp);
  200. retval = -ENOEXEC;
  201. goto load_elf_failed;
  202. }
  203. Elf64_Phdr *phdr = buf;
  204. // 将程序加载到内存中
  205. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  206. {
  207. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  208. // 不是可加载的段
  209. if (phdr->p_type != PT_LOAD)
  210. continue;
  211. int64_t remain_mem_size = phdr->p_memsz;
  212. int64_t remain_file_size = phdr->p_filesz;
  213. pos = phdr->p_offset;
  214. uint64_t virt_base = phdr->p_vaddr;
  215. kdebug("virt_base = %#018lx, &memory_management_struct=%#018lx", virt_base, &memory_management_struct);
  216. while (remain_mem_size > 0)
  217. {
  218. // todo: 改用slab分配4K大小内存块并映射到4K页
  219. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  220. {
  221. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 10, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  222. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  223. }
  224. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  225. int64_t val = 0;
  226. if (remain_file_size != 0)
  227. {
  228. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  229. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  230. }
  231. if (val < 0)
  232. goto load_elf_failed;
  233. remain_mem_size -= PAGE_2M_SIZE;
  234. remain_file_size -= val;
  235. virt_base += PAGE_2M_SIZE;
  236. }
  237. }
  238. // 分配2MB的栈内存空间
  239. regs->rsp = current_pcb->mm->stack_start;
  240. regs->rbp = current_pcb->mm->stack_start;
  241. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  242. // pa+= PAGE_2M_SIZE;
  243. kdebug("pa1=%#018lx", pa);
  244. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, false);
  245. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  246. // pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  247. // kdebug("pa2=%#018lx", pa);
  248. // // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  249. // pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  250. // kdebug("pa3=%#018lx", pa);
  251. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  252. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, 1 * PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  253. // 清空栈空间
  254. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  255. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE * 2, alloc_pages(ZONE_NORMAL, 2, PAGE_PGT_MAPPED)->addr_phys, 2 * PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  256. // // 清空栈空间
  257. // memset((void *)(current_pcb->mm->stack_start - 2 * PAGE_2M_SIZE), 0, 2 * PAGE_2M_SIZE);
  258. // if (current_pcb->pid == 1 && pid_one_map_count < 2)
  259. // {
  260. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, pid_one_map_offset, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  261. // memset(pid_one_map_offset, 0, PAGE_2M_SIZE);
  262. // pid_one_map_count++;
  263. // pid_one_map_offset += PAGE_2M_SIZE;
  264. // }
  265. load_elf_failed:;
  266. if (buf != NULL)
  267. kfree(buf);
  268. return retval;
  269. }
  270. /**
  271. * @brief 使当前进程去执行新的代码
  272. *
  273. * @param regs 当前进程的寄存器
  274. * @param path 可执行程序的路径
  275. * @param argv 参数列表
  276. * @param envp 环境变量
  277. * @return ul 错误码
  278. */
  279. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  280. {
  281. kdebug("do_execve is running...");
  282. // 当前进程正在与父进程共享地址空间,需要创建
  283. // 独立的地址空间才能使新程序正常运行
  284. if (current_pcb->flags & PF_VFORK)
  285. {
  286. kdebug("proc:%d creating new mem space", current_pcb->pid);
  287. // 分配新的内存空间分布结构体
  288. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  289. memset(new_mms, 0, sizeof(struct mm_struct));
  290. current_pcb->mm = new_mms;
  291. // 分配顶层页表, 并设置顶层页表的物理地址
  292. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  293. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  294. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  295. // 拷贝内核空间的页表指针
  296. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  297. }
  298. // 设置用户栈和用户堆的基地址
  299. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  300. const uint64_t brk_start_addr = 0x700000000000UL;
  301. process_switch_mm(current_pcb);
  302. // 为用户态程序设置地址边界
  303. if (!(current_pcb->flags & PF_KTHREAD))
  304. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  305. current_pcb->mm->code_addr_end = 0;
  306. current_pcb->mm->data_addr_start = 0;
  307. current_pcb->mm->data_addr_end = 0;
  308. current_pcb->mm->rodata_addr_start = 0;
  309. current_pcb->mm->rodata_addr_end = 0;
  310. current_pcb->mm->bss_start = 0;
  311. current_pcb->mm->bss_end = 0;
  312. current_pcb->mm->brk_start = brk_start_addr;
  313. current_pcb->mm->brk_end = brk_start_addr;
  314. current_pcb->mm->stack_start = stack_start_addr;
  315. // 关闭之前的文件描述符
  316. process_exit_files(current_pcb);
  317. // 清除进程的vfork标志位
  318. current_pcb->flags &= ~PF_VFORK;
  319. // 加载elf格式的可执行文件
  320. int tmp = process_load_elf_file(regs, path);
  321. if (tmp < 0)
  322. return tmp;
  323. // 拷贝参数列表
  324. if (argv != NULL)
  325. {
  326. int argc = 0;
  327. // 目标程序的argv基地址指针,最大8个参数
  328. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  329. uint64_t str_addr = (uint64_t)dst_argv;
  330. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  331. {
  332. // 测量参数的长度(最大1023)
  333. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  334. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  335. str_addr -= argv_len;
  336. dst_argv[argc] = (char *)str_addr;
  337. //字符串加上结尾字符
  338. ((char *)str_addr)[argv_len] = '\0';
  339. }
  340. // 重新设定栈基址,并预留空间防止越界
  341. stack_start_addr = str_addr - 8;
  342. current_pcb->mm->stack_start = stack_start_addr;
  343. regs->rsp = regs->rbp = stack_start_addr;
  344. // 传递参数
  345. regs->rdi = argc;
  346. regs->rsi = (uint64_t)dst_argv;
  347. }
  348. kdebug("execve ok");
  349. regs->cs = USER_CS | 3;
  350. regs->ds = USER_DS | 3;
  351. regs->ss = USER_DS | 0x3;
  352. regs->rflags = 0x200246;
  353. regs->rax = 1;
  354. regs->es = 0;
  355. return 0;
  356. }
  357. /**
  358. * @brief 内核init进程
  359. *
  360. * @param arg
  361. * @return ul 参数
  362. */
  363. ul initial_kernel_thread(ul arg)
  364. {
  365. // kinfo("initial proc running...\targ:%#018lx", arg);
  366. fat32_init();
  367. struct pt_regs *regs;
  368. current_pcb->thread->rip = (ul)ret_from_system_call;
  369. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  370. current_pcb->thread->fs = USER_DS | 0x3;
  371. current_pcb->thread->gs = USER_DS | 0x3;
  372. // 主动放弃内核线程身份
  373. current_pcb->flags &= (~PF_KTHREAD);
  374. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  375. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  376. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  377. regs = (struct pt_regs *)current_pcb->thread->rsp;
  378. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  379. current_pcb->flags = 0;
  380. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  381. // 加载用户态程序:shell.elf
  382. char init_path[] = "/shell.elf";
  383. uint64_t addr = (uint64_t)&init_path;
  384. __asm__ __volatile__("movq %1, %%rsp \n\t"
  385. "pushq %2 \n\t"
  386. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  387. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  388. : "memory");
  389. return 1;
  390. }
  391. /**
  392. * @brief 当子进程退出后向父进程发送通知
  393. *
  394. */
  395. void process_exit_notify()
  396. {
  397. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  398. }
  399. /**
  400. * @brief 进程退出时执行的函数
  401. *
  402. * @param code 返回码
  403. * @return ul
  404. */
  405. ul process_do_exit(ul code)
  406. {
  407. kinfo("process exiting..., code is %#018lx.", code);
  408. cli();
  409. struct process_control_block *pcb = current_pcb;
  410. // 进程退出时释放资源
  411. process_exit_files(pcb);
  412. process_exit_thread(pcb);
  413. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  414. pcb->state = PROC_ZOMBIE;
  415. pcb->exit_code = code;
  416. sti();
  417. process_exit_notify();
  418. sched_cfs();
  419. while (1)
  420. hlt();
  421. }
  422. /**
  423. * @brief 初始化内核进程
  424. *
  425. * @param fn 目标程序的地址
  426. * @param arg 向目标程序传入的参数
  427. * @param flags
  428. * @return int
  429. */
  430. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  431. {
  432. struct pt_regs regs;
  433. memset(&regs, 0, sizeof(regs));
  434. // 在rbx寄存器中保存进程的入口地址
  435. regs.rbx = (ul)fn;
  436. // 在rdx寄存器中保存传入的参数
  437. regs.rdx = (ul)arg;
  438. regs.ds = KERNEL_DS;
  439. regs.es = KERNEL_DS;
  440. regs.cs = KERNEL_CS;
  441. regs.ss = KERNEL_DS;
  442. // 置位中断使能标志位
  443. regs.rflags = (1 << 9);
  444. // rip寄存器指向内核线程的引导程序
  445. regs.rip = (ul)kernel_thread_func;
  446. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  447. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  448. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  449. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  450. }
  451. /**
  452. * @brief 初始化进程模块
  453. * ☆前置条件:已完成系统调用模块的初始化
  454. */
  455. void process_init()
  456. {
  457. kinfo("Initializing process...");
  458. initial_mm.pgd = (pml4t_t *)get_CR3();
  459. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  460. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  461. initial_mm.data_addr_start = (ul)&_data;
  462. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  463. initial_mm.rodata_addr_start = (ul)&_rodata;
  464. initial_mm.rodata_addr_end = (ul)&_erodata;
  465. initial_mm.bss_start = (uint64_t)&_bss;
  466. initial_mm.bss_end = (uint64_t)&_ebss;
  467. initial_mm.brk_start = memory_management_struct.start_brk;
  468. initial_mm.brk_end = current_pcb->addr_limit;
  469. initial_mm.stack_start = _stack_start;
  470. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  471. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  472. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  473. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  474. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  475. for (int i = 256; i < 512; ++i)
  476. {
  477. uint64_t *tmp = idle_pml4t_vaddr + i;
  478. if (*tmp == 0)
  479. {
  480. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  481. memset(pdpt, 0, PAGE_4K_SIZE);
  482. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  483. }
  484. }
  485. /*
  486. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  487. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  488. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  489. */
  490. // 初始化pid的写锁
  491. spin_init(&process_global_pid_write_lock);
  492. // 初始化进程的循环链表
  493. list_init(&initial_proc_union.pcb.list);
  494. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  495. initial_proc_union.pcb.state = PROC_RUNNING;
  496. initial_proc_union.pcb.preempt_count = 0;
  497. initial_proc_union.pcb.cpu_id = 0;
  498. }
  499. /**
  500. * @brief fork当前进程
  501. *
  502. * @param regs 新的寄存器值
  503. * @param clone_flags 克隆标志
  504. * @param stack_start 堆栈开始地址
  505. * @param stack_size 堆栈大小
  506. * @return unsigned long
  507. */
  508. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  509. {
  510. int retval = 0;
  511. struct process_control_block *tsk = NULL;
  512. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  513. // 为新的进程分配栈空间,并将pcb放置在底部
  514. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  515. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  516. if (tsk == NULL)
  517. {
  518. retval = -ENOMEM;
  519. return retval;
  520. }
  521. memset(tsk, 0, sizeof(struct process_control_block));
  522. // 将当前进程的pcb复制到新的pcb内
  523. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  524. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  525. // 将进程加入循环链表
  526. list_init(&tsk->list);
  527. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  528. tsk->priority = 2;
  529. tsk->preempt_count = 0;
  530. // 增加全局的pid并赋值给新进程的pid
  531. spin_lock(&process_global_pid_write_lock);
  532. tsk->pid = process_global_pid++;
  533. // 加入到进程链表中
  534. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  535. initial_proc_union.pcb.next_pcb = tsk;
  536. tsk->parent_pcb = current_pcb;
  537. spin_unlock(&process_global_pid_write_lock);
  538. tsk->cpu_id = proc_current_cpu_id;
  539. tsk->state = PROC_UNINTERRUPTIBLE;
  540. tsk->parent_pcb = current_pcb;
  541. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  542. list_init(&tsk->list);
  543. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  544. retval = -ENOMEM;
  545. // 拷贝标志位
  546. if (process_copy_flags(clone_flags, tsk))
  547. goto copy_flags_failed;
  548. // 拷贝内存空间分布结构体
  549. if (process_copy_mm(clone_flags, tsk))
  550. goto copy_mm_failed;
  551. // 拷贝文件
  552. if (process_copy_files(clone_flags, tsk))
  553. goto copy_files_failed;
  554. // 拷贝线程结构体
  555. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  556. goto copy_thread_failed;
  557. // 拷贝成功
  558. retval = tsk->pid;
  559. kdebug("fork done: tsk->pid=%d", tsk->pid);
  560. // kdebug("current_pcb->mm->brk_end=%#018lx", current_pcb->mm->brk_end);
  561. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, 0x0000500000000000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  562. // 唤醒进程
  563. process_wakeup(tsk);
  564. return retval;
  565. copy_thread_failed:;
  566. // 回收线程
  567. process_exit_thread(tsk);
  568. copy_files_failed:;
  569. // 回收文件
  570. process_exit_files(tsk);
  571. copy_mm_failed:;
  572. // 回收内存空间分布结构体
  573. process_exit_mm(tsk);
  574. copy_flags_failed:;
  575. kfree(tsk);
  576. return retval;
  577. return 0;
  578. }
  579. /**
  580. * @brief 根据pid获取进程的pcb
  581. *
  582. * @param pid
  583. * @return struct process_control_block*
  584. */
  585. struct process_control_block *process_get_pcb(long pid)
  586. {
  587. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  588. // 使用蛮力法搜索指定pid的pcb
  589. // todo: 使用哈希表来管理pcb
  590. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  591. {
  592. if (pcb->pid == pid)
  593. return pcb;
  594. }
  595. return NULL;
  596. }
  597. /**
  598. * @brief 将进程加入到调度器的就绪队列中
  599. *
  600. * @param pcb 进程的pcb
  601. */
  602. void process_wakeup(struct process_control_block *pcb)
  603. {
  604. pcb->state = PROC_RUNNING;
  605. sched_cfs_enqueue(pcb);
  606. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  607. current_pcb->flags |= PF_NEED_SCHED;
  608. }
  609. /**
  610. * @brief 拷贝当前进程的标志位
  611. *
  612. * @param clone_flags 克隆标志位
  613. * @param pcb 新的进程的pcb
  614. * @return uint64_t
  615. */
  616. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  617. {
  618. if (clone_flags & CLONE_VM)
  619. pcb->flags |= PF_VFORK;
  620. return 0;
  621. }
  622. /**
  623. * @brief 拷贝当前进程的文件描述符等信息
  624. *
  625. * @param clone_flags 克隆标志位
  626. * @param pcb 新的进程的pcb
  627. * @return uint64_t
  628. */
  629. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  630. {
  631. int retval = 0;
  632. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  633. // 文件描述符已经在复制pcb时被拷贝
  634. if (clone_flags & CLONE_FS)
  635. return retval;
  636. // 为新进程拷贝新的文件描述符
  637. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  638. {
  639. if (current_pcb->fds[i] == NULL)
  640. continue;
  641. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  642. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  643. }
  644. return retval;
  645. }
  646. /**
  647. * @brief 回收进程的所有文件描述符
  648. *
  649. * @param pcb 要被回收的进程的pcb
  650. * @return uint64_t
  651. */
  652. uint64_t process_exit_files(struct process_control_block *pcb)
  653. {
  654. // 不与父进程共享文件描述符
  655. if (!(pcb->flags & PF_VFORK))
  656. {
  657. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  658. {
  659. if (pcb->fds[i] == NULL)
  660. continue;
  661. kfree(pcb->fds[i]);
  662. }
  663. }
  664. // 清空当前进程的文件描述符列表
  665. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  666. }
  667. /**
  668. * @brief 拷贝当前进程的内存空间分布结构体信息
  669. *
  670. * @param clone_flags 克隆标志位
  671. * @param pcb 新的进程的pcb
  672. * @return uint64_t
  673. */
  674. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  675. {
  676. int retval = 0;
  677. // 与父进程共享内存空间
  678. if (clone_flags & CLONE_VM)
  679. {
  680. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  681. pcb->mm = current_pcb->mm;
  682. return retval;
  683. }
  684. // 分配新的内存空间分布结构体
  685. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  686. memset(new_mms, 0, sizeof(struct mm_struct));
  687. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  688. pcb->mm = new_mms;
  689. // 分配顶层页表, 并设置顶层页表的物理地址
  690. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  691. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  692. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  693. // 拷贝内核空间的页表指针
  694. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  695. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  696. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  697. // 迭代地拷贝用户空间
  698. for (int i = 0; i <= 255; ++i)
  699. {
  700. // 当前页表项为空
  701. if ((*(uint64_t *)(current_pgd + i)) == 0)
  702. continue;
  703. kdebug("user page [%d]", i);
  704. // 分配新的二级页表
  705. uint64_t *new_pdpt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  706. memset(new_pdpt, 0, PAGE_4K_SIZE);
  707. // 在新的一级页表中设置新的二级页表表项
  708. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  709. uint64_t *current_pdpt = (uint64_t *)phys_2_virt((*(uint64_t *)(current_pgd + i)) & (~0xfffUL));
  710. kdebug("current_pdpt=%#018lx, current_pid=%d", current_pdpt, current_pcb->pid);
  711. for (int j = 0; j < 512; ++j)
  712. {
  713. if (*(current_pdpt + j) == 0)
  714. continue;
  715. // 分配新的三级页表
  716. uint64_t *new_pdt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  717. memset(new_pdt, 0, PAGE_4K_SIZE);
  718. // 在二级页表中填写新的三级页表
  719. // 在新的二级页表中设置三级页表的表项
  720. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(current_pdpt + j)) & 0xfffUL));
  721. uint64_t *current_pdt = (uint64_t *)phys_2_virt((*(current_pdpt + j)) & (~0xfffUL));
  722. kdebug("current_pdt=%#018lx", current_pdt);
  723. // 循环拷贝三级页表
  724. for (int k = 0; k < 512; ++k)
  725. {
  726. if (*(current_pdt + k) == 0)
  727. continue;
  728. // 获取新的物理页
  729. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  730. memset((void *)phys_2_virt(pa), 0, PAGE_2M_SIZE);
  731. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pa, *(current_pdt + k) & 0x1ffUL));
  732. // 拷贝数据
  733. memcpy(phys_2_virt(pa), phys_2_virt((*(current_pdt + k)) & (~0x1ffUL)), PAGE_2M_SIZE);
  734. // 计算当前虚拟地址
  735. // uint64_t current_vaddr = 0;
  736. // current_vaddr = ((1UL * i) << PAGE_GDT_SHIFT) | ((1UL * j) << PAGE_1G_SHIFT) | ((1UL * k) << PAGE_2M_SHIFT);
  737. // mm_map_proc_page_table((uint64_t)pcb->mm->pgd, true, current_vaddr, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, false);
  738. // memcpy((void *)phys_2_virt(pa), (void *)current_vaddr, PAGE_2M_SIZE);
  739. }
  740. }
  741. }
  742. return retval;
  743. }
  744. /**
  745. * @brief 释放进程的页表
  746. *
  747. * @param pcb 要被释放页表的进程
  748. * @return uint64_t
  749. */
  750. uint64_t process_exit_mm(struct process_control_block *pcb)
  751. {
  752. if (pcb->flags & CLONE_VM)
  753. return 0;
  754. if (pcb->mm == NULL)
  755. {
  756. kdebug("pcb->mm==NULL");
  757. return 0;
  758. }
  759. if (pcb->mm->pgd == NULL)
  760. {
  761. kdebug("pcb->mm->pgd==NULL");
  762. return 0;
  763. }
  764. // 获取顶层页表
  765. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  766. // 迭代地释放用户空间
  767. for (int i = 0; i <= 255; ++i)
  768. {
  769. // 当前页表项为空
  770. if ((current_pgd + i)->pml4t == 0)
  771. continue;
  772. // 二级页表entry
  773. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  774. // 遍历二级页表
  775. for (int j = 0; j < 512; ++j)
  776. {
  777. if ((current_pdpt + j)->pdpt == 0)
  778. continue;
  779. // 三级页表的entry
  780. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  781. // 释放三级页表的内存页
  782. for (int k = 0; k < 512; ++k)
  783. {
  784. if ((current_pdt + k)->pdt == 0)
  785. continue;
  786. // 释放内存页
  787. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  788. }
  789. // 释放三级页表
  790. kfree(current_pdt);
  791. }
  792. // 释放二级页表
  793. kfree(current_pdpt);
  794. }
  795. // 释放顶层页表
  796. kfree(current_pgd);
  797. // 释放内存空间分布结构体
  798. kfree(pcb->mm);
  799. return 0;
  800. }
  801. /**
  802. * @brief 拷贝当前进程的线程结构体
  803. *
  804. * @param clone_flags 克隆标志位
  805. * @param pcb 新的进程的pcb
  806. * @return uint64_t
  807. */
  808. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  809. {
  810. // 将线程结构体放置在pcb后方
  811. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  812. memset(thd, 0, sizeof(struct thread_struct));
  813. pcb->thread = thd;
  814. // 拷贝栈空间
  815. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  816. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  817. // 设置子进程的返回值为0
  818. child_regs->rax = 0;
  819. child_regs->rsp = stack_start;
  820. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  821. thd->rsp = (uint64_t)child_regs;
  822. thd->fs = current_pcb->thread->fs;
  823. thd->gs = current_pcb->thread->gs;
  824. kdebug("pcb->flags=%ld", pcb->flags);
  825. // 根据是否为内核线程,设置进程的开始执行的地址
  826. if (pcb->flags & PF_KTHREAD)
  827. thd->rip = (uint64_t)kernel_thread_func;
  828. else
  829. thd->rip = (uint64_t)ret_from_system_call;
  830. kdebug("new proc's ret addr = %#018lx\tthd->rip=%#018lx stack_start=%#018lx child_regs->rsp = %#018lx, new_rip=%#018lx)", child_regs->rbx, thd->rip, stack_start, child_regs->rsp, child_regs->rip);
  831. return 0;
  832. }
  833. /**
  834. * @brief todo: 回收线程结构体
  835. *
  836. * @param pcb
  837. */
  838. void process_exit_thread(struct process_control_block *pcb)
  839. {
  840. }