mm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. #include "mm.h"
  2. #include "mm-types.h"
  3. #include "slab.h"
  4. #include <common/printk.h>
  5. #include <common/kprint.h>
  6. #include <driver/multiboot2/multiboot2.h>
  7. #include <process/process.h>
  8. #include <common/compiler.h>
  9. #include <common/errno.h>
  10. #include <debug/traceback/traceback.h>
  11. uint64_t mm_Total_Memory = 0;
  12. uint64_t mm_total_2M_pages = 0;
  13. struct memory_desc memory_management_struct = {{0}, 0};
  14. /**
  15. * @brief 从页表中获取pdt页表项的内容
  16. *
  17. * @param proc_page_table_addr 页表的地址
  18. * @param is_phys 页表地址是否为物理地址
  19. * @param virt_addr_start 要清除的虚拟地址的起始地址
  20. * @param length 要清除的区域的长度
  21. * @param clear 是否清除标志位
  22. */
  23. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  24. /**
  25. * @brief 检查页表是否存在不为0的页表项
  26. *
  27. * @param ptr 页表基指针
  28. * @return int8_t 存在 -> 1
  29. * 不存在 -> 0
  30. */
  31. int8_t mm_check_page_table(uint64_t *ptr)
  32. {
  33. for (int i = 0; i < 512; ++i, ++ptr)
  34. {
  35. if (*ptr != 0)
  36. return 1;
  37. }
  38. return 0;
  39. }
  40. void mm_init()
  41. {
  42. kinfo("Initializing memory management unit...");
  43. // 设置内核程序不同部分的起止地址
  44. memory_management_struct.kernel_code_start = (ul)&_text;
  45. memory_management_struct.kernel_code_end = (ul)&_etext;
  46. memory_management_struct.kernel_data_end = (ul)&_edata;
  47. memory_management_struct.rodata_end = (ul)&_erodata;
  48. memory_management_struct.start_brk = (ul)&_end;
  49. struct multiboot_mmap_entry_t mb2_mem_info[512];
  50. int count;
  51. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  52. io_mfence();
  53. for (int i = 0; i < count; ++i)
  54. {
  55. io_mfence();
  56. //可用的内存
  57. if (mb2_mem_info->type == 1)
  58. mm_Total_Memory += mb2_mem_info->len;
  59. kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
  60. // 保存信息到mms
  61. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  62. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  63. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  64. memory_management_struct.len_e820 = i;
  65. // 脏数据
  66. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  67. break;
  68. }
  69. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", mm_Total_Memory);
  70. // 计算有效内存页数
  71. io_mfence();
  72. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  73. {
  74. if (memory_management_struct.e820[i].type != 1)
  75. continue;
  76. io_mfence();
  77. // 将内存段的起始物理地址按照2M进行对齐
  78. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  79. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  80. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  81. // 内存段不可用
  82. if (addr_end <= addr_start)
  83. continue;
  84. io_mfence();
  85. mm_total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  86. }
  87. kinfo("Total amounts of 2M pages : %ld.", mm_total_2M_pages);
  88. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  89. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  90. // 初始化mms的bitmap
  91. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  92. io_mfence();
  93. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  94. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  95. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  96. io_mfence();
  97. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  98. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  99. io_mfence();
  100. // 初始化内存页结构
  101. // 将页结构映射于bmp之后
  102. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  103. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  104. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  105. // 将pages_struct全部清空,以备后续初始化
  106. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  107. io_mfence();
  108. // 初始化内存区域
  109. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  110. io_mfence();
  111. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  112. memory_management_struct.count_zones = 0;
  113. io_mfence();
  114. // zones-struct 成员变量暂时按照5个来计算
  115. memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  116. io_mfence();
  117. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  118. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  119. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  120. {
  121. io_mfence();
  122. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  123. continue;
  124. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  125. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  126. if (addr_end <= addr_start)
  127. continue;
  128. // zone init
  129. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  130. ++memory_management_struct.count_zones;
  131. z->zone_addr_start = addr_start;
  132. z->zone_addr_end = addr_end;
  133. z->zone_length = addr_end - addr_start;
  134. z->count_pages_using = 0;
  135. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  136. z->total_pages_link = 0;
  137. z->attr = 0;
  138. z->gmd_struct = &memory_management_struct;
  139. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  140. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  141. // 初始化页
  142. struct Page *p = z->pages_group;
  143. for (int j = 0; j < z->count_pages; ++j, ++p)
  144. {
  145. p->zone = z;
  146. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  147. p->attr = 0;
  148. p->ref_counts = 0;
  149. p->age = 0;
  150. // 将bmp中对应的位 复位
  151. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  152. }
  153. }
  154. // 初始化0~2MB的物理页
  155. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  156. io_mfence();
  157. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  158. memory_management_struct.pages_struct->addr_phys = 0UL;
  159. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  160. memory_management_struct.pages_struct->ref_counts = 1;
  161. memory_management_struct.pages_struct->age = 0;
  162. // 将第0页的标志位给置上
  163. //*(memory_management_struct.bmp) |= 1UL;
  164. // 计算zone结构体的总长度(按照64位对齐)
  165. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  166. ZONE_DMA_INDEX = 0;
  167. ZONE_NORMAL_INDEX = 0;
  168. ZONE_UNMAPPED_INDEX = 0;
  169. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  170. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  171. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  172. // 初始化内存管理单元结构所占的物理页的结构体
  173. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  174. // kdebug("mms_max_page=%ld", mms_max_page);
  175. struct Page *tmp_page = NULL;
  176. ul page_num;
  177. // 第0个page已经在上方配置
  178. for (ul j = 1; j <= mms_max_page; ++j)
  179. {
  180. barrier();
  181. tmp_page = memory_management_struct.pages_struct + j;
  182. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  183. barrier();
  184. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  185. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  186. ++tmp_page->zone->count_pages_using;
  187. --tmp_page->zone->count_pages_free;
  188. }
  189. kinfo("Memory management unit initialize complete!");
  190. flush_tlb();
  191. // todo: 在这里增加代码,暂时停止视频输出,否则可能会导致图像数据写入slab的区域,从而造成异常
  192. // 初始化slab内存池
  193. slab_init();
  194. page_table_init();
  195. }
  196. /**
  197. * @brief 初始化内存页
  198. *
  199. * @param page 内存页结构体
  200. * @param flags 标志位
  201. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  202. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  203. * @return unsigned long
  204. */
  205. unsigned long page_init(struct Page *page, ul flags)
  206. {
  207. page->attr |= flags;
  208. // 若页面的引用计数为0或是共享页,增加引用计数
  209. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  210. {
  211. ++page->ref_counts;
  212. barrier();
  213. ++page->zone->total_pages_link;
  214. }
  215. page->anon_vma = NULL;
  216. spin_init(&(page->op_lock));
  217. return 0;
  218. }
  219. /**
  220. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  221. *
  222. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  223. * @param num 需要申请的连续内存页的数量 num<64
  224. * @param flags 将页面属性设置成flag
  225. * @return struct Page*
  226. */
  227. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  228. {
  229. ul zone_start = 0, zone_end = 0;
  230. if (num >= 64 && num <= 0)
  231. {
  232. kerror("alloc_pages(): num is invalid.");
  233. return NULL;
  234. }
  235. ul attr = flags;
  236. switch (zone_select)
  237. {
  238. case ZONE_DMA:
  239. // DMA区域
  240. zone_start = 0;
  241. zone_end = ZONE_DMA_INDEX;
  242. attr |= PAGE_PGT_MAPPED;
  243. break;
  244. case ZONE_NORMAL:
  245. zone_start = ZONE_DMA_INDEX;
  246. zone_end = ZONE_NORMAL_INDEX;
  247. attr |= PAGE_PGT_MAPPED;
  248. break;
  249. case ZONE_UNMAPPED_IN_PGT:
  250. zone_start = ZONE_NORMAL_INDEX;
  251. zone_end = ZONE_UNMAPPED_INDEX;
  252. attr = 0;
  253. break;
  254. default:
  255. kerror("In alloc_pages: param: zone_select incorrect.");
  256. // 返回空
  257. return NULL;
  258. break;
  259. }
  260. for (int i = zone_start; i <= zone_end; ++i)
  261. {
  262. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  263. continue;
  264. struct Zone *z = memory_management_struct.zones_struct + i;
  265. // 区域对应的起止页号
  266. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  267. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  268. ul tmp = 64 - page_start % 64;
  269. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  270. {
  271. // 按照bmp中的每一个元素进行查找
  272. // 先将p定位到bmp的起始元素
  273. ul *p = memory_management_struct.bmp + (j >> 6);
  274. ul shift = j % 64;
  275. ul tmp_num = ((1UL << num) - 1);
  276. for (ul k = shift; k < 64; ++k)
  277. {
  278. // 寻找连续num个空页
  279. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  280. {
  281. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  282. for (ul l = 0; l < num; ++l)
  283. {
  284. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  285. // 分配页面,手动配置属性及计数器
  286. // 置位bmp
  287. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  288. ++(z->count_pages_using);
  289. --(z->count_pages_free);
  290. x->attr = attr;
  291. }
  292. // 成功分配了页面,返回第一个页面的指针
  293. // kwarn("start page num=%d\n", start_page_num);
  294. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  295. }
  296. }
  297. }
  298. }
  299. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, mm_total_2M_pages=%d", zone_select, num, mm_total_2M_pages);
  300. return NULL;
  301. }
  302. /**
  303. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  304. *
  305. * @param p 物理页结构体
  306. * @return unsigned long
  307. */
  308. unsigned long page_clean(struct Page *p)
  309. {
  310. --p->ref_counts;
  311. --p->zone->total_pages_link;
  312. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  313. if (!p->ref_counts)
  314. {
  315. p->attr &= PAGE_PGT_MAPPED;
  316. }
  317. return 0;
  318. }
  319. /**
  320. * @brief Get the page's attr
  321. *
  322. * @param page 内存页结构体
  323. * @return ul 属性
  324. */
  325. ul get_page_attr(struct Page *page)
  326. {
  327. if (page == NULL)
  328. {
  329. kBUG("get_page_attr(): page == NULL");
  330. return EPAGE_NULL;
  331. }
  332. else
  333. return page->attr;
  334. }
  335. /**
  336. * @brief Set the page's attr
  337. *
  338. * @param page 内存页结构体
  339. * @param flags 属性
  340. * @return ul 错误码
  341. */
  342. ul set_page_attr(struct Page *page, ul flags)
  343. {
  344. if (page == NULL)
  345. {
  346. kBUG("get_page_attr(): page == NULL");
  347. return EPAGE_NULL;
  348. }
  349. else
  350. {
  351. page->attr = flags;
  352. return 0;
  353. }
  354. }
  355. /**
  356. * @brief 释放连续number个内存页
  357. *
  358. * @param page 第一个要被释放的页面的结构体
  359. * @param number 要释放的内存页数量 number<64
  360. */
  361. void free_pages(struct Page *page, int number)
  362. {
  363. if (page == NULL)
  364. {
  365. kerror("free_pages() page is invalid.");
  366. return;
  367. }
  368. if (number >= 64 || number <= 0)
  369. {
  370. kerror("free_pages(): number %d is invalid.", number);
  371. return;
  372. }
  373. ul page_num;
  374. for (int i = 0; i < number; ++i, ++page)
  375. {
  376. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  377. // 复位bmp
  378. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  379. // 更新计数器
  380. --page->zone->count_pages_using;
  381. ++page->zone->count_pages_free;
  382. page->attr = 0;
  383. }
  384. return;
  385. }
  386. /**
  387. * @brief 重新初始化页表的函数
  388. * 将所有物理页映射到线性地址空间
  389. */
  390. void page_table_init()
  391. {
  392. kinfo("Re-Initializing page table...");
  393. ul *global_CR3 = get_CR3();
  394. int js = 0;
  395. ul *tmp_addr;
  396. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  397. {
  398. struct Zone *z = memory_management_struct.zones_struct + i;
  399. struct Page *p = z->pages_group;
  400. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  401. break;
  402. for (int j = 0; j < z->count_pages; ++j)
  403. {
  404. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
  405. ++p;
  406. ++js;
  407. }
  408. }
  409. flush_tlb();
  410. kinfo("Page table Initialized. Affects:%d", js);
  411. }
  412. /**
  413. * @brief 从页表中获取pdt页表项的内容
  414. *
  415. * @param proc_page_table_addr 页表的地址
  416. * @param is_phys 页表地址是否为物理地址
  417. * @param virt_addr_start 要清除的虚拟地址的起始地址
  418. * @param length 要清除的区域的长度
  419. * @param clear 是否清除标志位
  420. */
  421. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  422. {
  423. ul *tmp;
  424. if (is_phys)
  425. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  426. else
  427. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  428. // pml4页表项为0
  429. if (*tmp == 0)
  430. return 0;
  431. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  432. // pdpt页表项为0
  433. if (*tmp == 0)
  434. return 0;
  435. // 读取pdt页表项
  436. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  437. if (clear) // 清除页表项的标志位
  438. return *tmp & (~0x1fff);
  439. else
  440. return *tmp;
  441. }
  442. /**
  443. * @brief 从mms中寻找Page结构体
  444. *
  445. * @param phys_addr
  446. * @return struct Page*
  447. */
  448. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  449. {
  450. uint32_t zone_start, zone_end;
  451. switch (zone_select)
  452. {
  453. case ZONE_DMA:
  454. // DMA区域
  455. zone_start = 0;
  456. zone_end = ZONE_DMA_INDEX;
  457. break;
  458. case ZONE_NORMAL:
  459. zone_start = ZONE_DMA_INDEX;
  460. zone_end = ZONE_NORMAL_INDEX;
  461. break;
  462. case ZONE_UNMAPPED_IN_PGT:
  463. zone_start = ZONE_NORMAL_INDEX;
  464. zone_end = ZONE_UNMAPPED_INDEX;
  465. break;
  466. default:
  467. kerror("In mm_find_page: param: zone_select incorrect.");
  468. // 返回空
  469. return NULL;
  470. break;
  471. }
  472. for (int i = zone_start; i <= zone_end; ++i)
  473. {
  474. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  475. continue;
  476. struct Zone *z = memory_management_struct.zones_struct + i;
  477. // 区域对应的起止页号
  478. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  479. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  480. ul tmp = 64 - page_start % 64;
  481. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  482. {
  483. // 按照bmp中的每一个元素进行查找
  484. // 先将p定位到bmp的起始元素
  485. ul *p = memory_management_struct.bmp + (j >> 6);
  486. ul shift = j % 64;
  487. for (ul k = shift; k < 64; ++k)
  488. {
  489. if ((*p >> k) & 1) // 若当前页已分配
  490. {
  491. uint64_t page_num = j + k - shift;
  492. struct Page *x = memory_management_struct.pages_struct + page_num;
  493. if (x->addr_phys == phys_addr) // 找到对应的页
  494. return x;
  495. }
  496. }
  497. }
  498. }
  499. return NULL;
  500. }
  501. /**
  502. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  503. *
  504. * @todo 缩小堆区域
  505. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  506. * @param offset 新的地址相对于原地址的偏移量
  507. * @return uint64_t
  508. */
  509. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  510. {
  511. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  512. if (offset >= 0)
  513. {
  514. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  515. {
  516. struct vm_area_struct * vma=NULL;
  517. mm_create_vma(current_pcb->mm, i, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  518. mm_map_vma(vma, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys);
  519. }
  520. current_pcb->mm->brk_end = end_addr;
  521. }
  522. else
  523. {
  524. // 释放堆内存
  525. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  526. {
  527. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  528. // 找到对应的页
  529. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  530. if (p == NULL)
  531. {
  532. kerror("cannot find page addr=%#018lx", phys);
  533. return end_addr;
  534. }
  535. free_pages(p, 1);
  536. }
  537. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  538. // 在页表中取消映射
  539. }
  540. return end_addr;
  541. }