mm.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include <common/printk.h>
  4. #include <common/kprint.h>
  5. #include <driver/multiboot2/multiboot2.h>
  6. #include <process/process.h>
  7. #include <common/compiler.h>
  8. #include <common/errno.h>
  9. #include <debug/traceback/traceback.h>
  10. static ul Total_Memory = 0;
  11. static ul total_2M_pages = 0;
  12. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  13. // #pragma GCC push_options
  14. // #pragma GCC optimize("O3")
  15. struct memory_desc memory_management_struct = {{0}, 0};
  16. /**
  17. * @brief 虚拟地址长度所需要的entry数量
  18. *
  19. */
  20. typedef struct
  21. {
  22. int64_t num_PML4E;
  23. int64_t num_PDPTE;
  24. int64_t num_PDE;
  25. int64_t num_PTE;
  26. } mm_pgt_entry_num_t;
  27. /**
  28. * @brief 计算虚拟地址长度对应的页表entry数量
  29. *
  30. * @param length 长度
  31. * @param ent 返回的entry数量结构体
  32. */
  33. static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
  34. {
  35. if (ent == NULL)
  36. return;
  37. ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
  38. ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
  39. ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
  40. ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
  41. }
  42. /**
  43. * @brief 从页表中获取pdt页表项的内容
  44. *
  45. * @param proc_page_table_addr 页表的地址
  46. * @param is_phys 页表地址是否为物理地址
  47. * @param virt_addr_start 要清除的虚拟地址的起始地址
  48. * @param length 要清除的区域的长度
  49. * @param clear 是否清除标志位
  50. */
  51. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  52. /**
  53. * @brief 检查页表是否存在不为0的页表项
  54. *
  55. * @param ptr 页表基指针
  56. * @return int8_t 存在 -> 1
  57. * 不存在 -> 0
  58. */
  59. int8_t mm_check_page_table(uint64_t *ptr)
  60. {
  61. for (int i = 0; i < 512; ++i, ++ptr)
  62. {
  63. if (*ptr != 0)
  64. return 1;
  65. }
  66. return 0;
  67. }
  68. void mm_init()
  69. {
  70. kinfo("Initializing memory management unit...");
  71. // 设置内核程序不同部分的起止地址
  72. memory_management_struct.kernel_code_start = (ul)&_text;
  73. memory_management_struct.kernel_code_end = (ul)&_etext;
  74. memory_management_struct.kernel_data_end = (ul)&_edata;
  75. memory_management_struct.rodata_end = (ul)&_erodata;
  76. memory_management_struct.start_brk = (ul)&_end;
  77. struct multiboot_mmap_entry_t mb2_mem_info[512];
  78. int count;
  79. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  80. io_mfence();
  81. for (int i = 0; i < count; ++i)
  82. {
  83. io_mfence();
  84. //可用的内存
  85. if (mb2_mem_info->type == 1)
  86. Total_Memory += mb2_mem_info->len;
  87. kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
  88. // 保存信息到mms
  89. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  90. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  91. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  92. memory_management_struct.len_e820 = i;
  93. // 脏数据
  94. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  95. break;
  96. }
  97. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  98. // 计算有效内存页数
  99. io_mfence();
  100. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  101. {
  102. if (memory_management_struct.e820[i].type != 1)
  103. continue;
  104. io_mfence();
  105. // 将内存段的起始物理地址按照2M进行对齐
  106. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  107. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  108. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  109. // 内存段不可用
  110. if (addr_end <= addr_start)
  111. continue;
  112. io_mfence();
  113. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  114. }
  115. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  116. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  117. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  118. // 初始化mms的bitmap
  119. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  120. io_mfence();
  121. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  122. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  123. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  124. io_mfence();
  125. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  126. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  127. io_mfence();
  128. kdebug("1212112");
  129. // 初始化内存页结构
  130. // 将页结构映射于bmp之后
  131. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  132. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  133. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  134. // 将pages_struct全部清空,以备后续初始化
  135. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  136. kdebug("ffff");
  137. io_mfence();
  138. // 初始化内存区域
  139. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  140. io_mfence();
  141. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  142. memory_management_struct.count_zones = 0;
  143. io_mfence();
  144. // zones-struct 成员变量暂时按照5个来计算
  145. memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  146. io_mfence();
  147. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  148. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  149. kdebug("ddd");
  150. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  151. {
  152. io_mfence();
  153. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  154. continue;
  155. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  156. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  157. if (addr_end <= addr_start)
  158. continue;
  159. // zone init
  160. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  161. ++memory_management_struct.count_zones;
  162. z->zone_addr_start = addr_start;
  163. z->zone_addr_end = addr_end;
  164. z->zone_length = addr_end - addr_start;
  165. z->count_pages_using = 0;
  166. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  167. z->total_pages_link = 0;
  168. z->attr = 0;
  169. z->gmd_struct = &memory_management_struct;
  170. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  171. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  172. // 初始化页
  173. struct Page *p = z->pages_group;
  174. for (int j = 0; j < z->count_pages; ++j, ++p)
  175. {
  176. p->zone = z;
  177. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  178. p->attr = 0;
  179. p->ref_counts = 0;
  180. p->age = 0;
  181. // 将bmp中对应的位 复位
  182. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  183. }
  184. }
  185. // 初始化0~2MB的物理页
  186. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  187. io_mfence();
  188. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  189. memory_management_struct.pages_struct->addr_phys = 0UL;
  190. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  191. memory_management_struct.pages_struct->ref_counts = 1;
  192. memory_management_struct.pages_struct->age = 0;
  193. // 将第0页的标志位给置上
  194. //*(memory_management_struct.bmp) |= 1UL;
  195. // 计算zone结构体的总长度(按照64位对齐)
  196. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  197. ZONE_DMA_INDEX = 0;
  198. ZONE_NORMAL_INDEX = 0;
  199. ZONE_UNMAPPED_INDEX = 0;
  200. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  201. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  202. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  203. // 初始化内存管理单元结构所占的物理页的结构体
  204. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  205. // kdebug("mms_max_page=%ld", mms_max_page);
  206. struct Page *tmp_page = NULL;
  207. ul page_num;
  208. // 第0个page已经在上方配置
  209. for (ul j = 1; j <= mms_max_page; ++j)
  210. {
  211. barrier();
  212. tmp_page = memory_management_struct.pages_struct + j;
  213. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  214. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  215. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  216. ++tmp_page->zone->count_pages_using;
  217. --tmp_page->zone->count_pages_free;
  218. }
  219. kinfo("Memory management unit initialize complete!");
  220. flush_tlb();
  221. // 初始化slab内存池
  222. slab_init();
  223. page_table_init();
  224. // init_frame_buffer();
  225. }
  226. /**
  227. * @brief 初始化内存页
  228. *
  229. * @param page 内存页结构体
  230. * @param flags 标志位
  231. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  232. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  233. * @return unsigned long
  234. */
  235. unsigned long page_init(struct Page *page, ul flags)
  236. {
  237. page->attr |= flags;
  238. // 若页面的引用计数为0或是共享页,增加引用计数
  239. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  240. {
  241. ++page->ref_counts;
  242. barrier();
  243. ++page->zone->total_pages_link;
  244. }
  245. return 0;
  246. }
  247. /**
  248. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  249. *
  250. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  251. * @param num 需要申请的连续内存页的数量 num<64
  252. * @param flags 将页面属性设置成flag
  253. * @return struct Page*
  254. */
  255. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  256. {
  257. ul zone_start = 0, zone_end = 0;
  258. if (num >= 64 && num <= 0)
  259. {
  260. kerror("alloc_pages(): num is invalid.");
  261. return NULL;
  262. }
  263. ul attr = flags;
  264. switch (zone_select)
  265. {
  266. case ZONE_DMA:
  267. // DMA区域
  268. zone_start = 0;
  269. zone_end = ZONE_DMA_INDEX;
  270. attr |= PAGE_PGT_MAPPED;
  271. break;
  272. case ZONE_NORMAL:
  273. zone_start = ZONE_DMA_INDEX;
  274. zone_end = ZONE_NORMAL_INDEX;
  275. attr |= PAGE_PGT_MAPPED;
  276. break;
  277. case ZONE_UNMAPPED_IN_PGT:
  278. zone_start = ZONE_NORMAL_INDEX;
  279. zone_end = ZONE_UNMAPPED_INDEX;
  280. attr = 0;
  281. break;
  282. default:
  283. kerror("In alloc_pages: param: zone_select incorrect.");
  284. // 返回空
  285. return NULL;
  286. break;
  287. }
  288. for (int i = zone_start; i <= zone_end; ++i)
  289. {
  290. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  291. continue;
  292. struct Zone *z = memory_management_struct.zones_struct + i;
  293. // 区域对应的起止页号
  294. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  295. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  296. ul tmp = 64 - page_start % 64;
  297. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  298. {
  299. // 按照bmp中的每一个元素进行查找
  300. // 先将p定位到bmp的起始元素
  301. ul *p = memory_management_struct.bmp + (j >> 6);
  302. ul shift = j % 64;
  303. ul tmp_num = ((1UL << num) - 1);
  304. for (ul k = shift; k < 64; ++k)
  305. {
  306. // 寻找连续num个空页
  307. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  308. {
  309. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  310. for (ul l = 0; l < num; ++l)
  311. {
  312. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  313. // 分配页面,手动配置属性及计数器
  314. // 置位bmp
  315. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  316. ++(z->count_pages_using);
  317. --(z->count_pages_free);
  318. x->attr = attr;
  319. }
  320. // 成功分配了页面,返回第一个页面的指针
  321. // kwarn("start page num=%d\n", start_page_num);
  322. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  323. }
  324. }
  325. }
  326. }
  327. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, total_2M_pages=%d", zone_select, num, total_2M_pages);
  328. return NULL;
  329. }
  330. /**
  331. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  332. *
  333. * @param p 物理页结构体
  334. * @return unsigned long
  335. */
  336. unsigned long page_clean(struct Page *p)
  337. {
  338. --p->ref_counts;
  339. --p->zone->total_pages_link;
  340. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  341. if (!p->ref_counts)
  342. {
  343. p->attr &= PAGE_PGT_MAPPED;
  344. }
  345. return 0;
  346. }
  347. /**
  348. * @brief Get the page's attr
  349. *
  350. * @param page 内存页结构体
  351. * @return ul 属性
  352. */
  353. ul get_page_attr(struct Page *page)
  354. {
  355. if (page == NULL)
  356. {
  357. kBUG("get_page_attr(): page == NULL");
  358. return EPAGE_NULL;
  359. }
  360. else
  361. return page->attr;
  362. }
  363. /**
  364. * @brief Set the page's attr
  365. *
  366. * @param page 内存页结构体
  367. * @param flags 属性
  368. * @return ul 错误码
  369. */
  370. ul set_page_attr(struct Page *page, ul flags)
  371. {
  372. if (page == NULL)
  373. {
  374. kBUG("get_page_attr(): page == NULL");
  375. return EPAGE_NULL;
  376. }
  377. else
  378. {
  379. page->attr = flags;
  380. return 0;
  381. }
  382. }
  383. /**
  384. * @brief 释放连续number个内存页
  385. *
  386. * @param page 第一个要被释放的页面的结构体
  387. * @param number 要释放的内存页数量 number<64
  388. */
  389. void free_pages(struct Page *page, int number)
  390. {
  391. if (page == NULL)
  392. {
  393. kerror("free_pages() page is invalid.");
  394. return;
  395. }
  396. if (number >= 64 || number <= 0)
  397. {
  398. kerror("free_pages(): number %d is invalid.", number);
  399. return;
  400. }
  401. ul page_num;
  402. for (int i = 0; i < number; ++i, ++page)
  403. {
  404. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  405. // 复位bmp
  406. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  407. // 更新计数器
  408. --page->zone->count_pages_using;
  409. ++page->zone->count_pages_free;
  410. page->attr = 0;
  411. }
  412. return;
  413. }
  414. /**
  415. * @brief 重新初始化页表的函数
  416. * 将所有物理页映射到线性地址空间
  417. */
  418. void page_table_init()
  419. {
  420. kinfo("Re-Initializing page table...");
  421. ul *global_CR3 = get_CR3();
  422. int js = 0;
  423. ul *tmp_addr;
  424. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  425. {
  426. struct Zone *z = memory_management_struct.zones_struct + i;
  427. struct Page *p = z->pages_group;
  428. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  429. break;
  430. for (int j = 0; j < z->count_pages; ++j)
  431. {
  432. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
  433. ++p;
  434. ++js;
  435. }
  436. }
  437. flush_tlb();
  438. kinfo("Page table Initialized. Affects:%d", js);
  439. }
  440. /**
  441. * @brief 将物理地址映射到页表的函数
  442. *
  443. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  444. * @param phys_addr_start 物理地址的起始位置
  445. * @param length 要映射的区域的长度(字节)
  446. * @param flags 标志位
  447. * @param use4k 是否使用4k页
  448. */
  449. int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k)
  450. {
  451. uint64_t global_CR3 = (uint64_t)get_CR3();
  452. return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true, use4k);
  453. }
  454. int mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  455. {
  456. uint64_t global_CR3 = (uint64_t)get_CR3();
  457. return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true, false);
  458. }
  459. /**
  460. * @brief 将将物理地址填写到进程的页表的函数
  461. *
  462. * @param proc_page_table_addr 页表的基地址
  463. * @param is_phys 页表的基地址是否为物理地址
  464. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  465. * @param phys_addr_start 物理地址的起始位置
  466. * @param length 要映射的区域的长度(字节)
  467. * @param user 用户态是否可访问
  468. * @param flush 是否刷新tlb
  469. * @param use4k 是否使用4k页
  470. */
  471. int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush, bool use4k)
  472. {
  473. // 计算线性地址对应的pml4页表项的地址
  474. mm_pgt_entry_num_t pgt_num;
  475. mm_calculate_entry_num(length, &pgt_num);
  476. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  477. // 已映射的内存大小
  478. uint64_t length_mapped = 0;
  479. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  480. uint64_t *pml4_ptr;
  481. if (is_phys)
  482. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  483. else
  484. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  485. // 循环填写顶层页表
  486. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  487. {
  488. // 剩余需要处理的pml4E -1
  489. --(pgt_num.num_PML4E);
  490. ul *pml4e_ptr = pml4_ptr + pml4e_id;
  491. // 创建新的二级页表
  492. if (*pml4e_ptr == 0)
  493. {
  494. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  495. memset(virt_addr, 0, PAGE_4K_SIZE);
  496. set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  497. }
  498. uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
  499. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  500. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  501. // 循环填写二级页表
  502. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  503. {
  504. --pgt_num.num_PDPTE;
  505. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  506. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  507. // 创建新的三级页表
  508. if (*pdpte_ptr == 0)
  509. {
  510. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  511. memset(virt_addr, 0, PAGE_4K_SIZE);
  512. set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  513. // kdebug("created new pdt, *pdpte_ptr=%#018lx, virt_addr=%#018lx", *pdpte_ptr, virt_addr);
  514. }
  515. uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
  516. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  517. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  518. // 循环填写三级页表,初始化2M物理页
  519. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  520. {
  521. --pgt_num.num_PDE;
  522. // 计算当前2M物理页对应的pdt的页表项的物理地址
  523. ul *pde_ptr = pd_ptr + pde_id;
  524. // ====== 使用4k页 =======
  525. if (unlikely(use4k))
  526. {
  527. // kdebug("use 4k");
  528. if (*pde_ptr == 0)
  529. {
  530. // 创建四级页表
  531. // kdebug("create PT");
  532. uint64_t *vaddr = kmalloc(PAGE_4K_SIZE, 0);
  533. memset(vaddr, 0, PAGE_4K_SIZE);
  534. set_pdt(pde_ptr, mk_pdt(virt_2_phys(vaddr), (user ? PAGE_USER_PDE : PAGE_KERNEL_PDE)));
  535. }
  536. else if (unlikely(*pde_ptr & (1 << 7)))
  537. {
  538. // 当前页表项已经被映射了2MB物理页
  539. goto failed;
  540. }
  541. uint64_t pte_id = (((virt_addr_start + length_mapped) >> PAGE_4K_SHIFT) & 0x1ff);
  542. uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0x1fffUL));
  543. // 循环填写4级页表,初始化4K页
  544. for (; pgt_num.num_PTE > 0 && pte_id < 512; ++pte_id)
  545. {
  546. --pgt_num.num_PTE;
  547. uint64_t *pte_ptr = pt_ptr + pte_id;
  548. if (unlikely(*pte_ptr != 0))
  549. {
  550. kwarn("pte already exists.");
  551. length_mapped += PAGE_4K_SIZE;
  552. }
  553. set_pt(pte_ptr, mk_pt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_4K_PAGE : PAGE_KERNEL_4K_PAGE)));
  554. }
  555. }
  556. // ======= 使用2M页 ========
  557. else
  558. {
  559. if (unlikely(*pde_ptr != 0 && user))
  560. {
  561. // kwarn("page already mapped!");
  562. // 如果是用户态可访问的页,则释放当前新获取的物理页
  563. if (likely(((ul)phys_addr_start + length_mapped) < total_2M_pages)) // 校验是否为内存中的物理页
  564. free_pages(Phy_to_2M_Page((ul)phys_addr_start + length_mapped), 1);
  565. length_mapped += PAGE_2M_SIZE;
  566. continue;
  567. }
  568. // 页面写穿,禁止缓存
  569. set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  570. length_mapped += PAGE_2M_SIZE;
  571. }
  572. }
  573. }
  574. }
  575. if (likely(flush))
  576. flush_tlb();
  577. return 0;
  578. failed:;
  579. kerror("Map memory failed. use4k=%d, vaddr=%#018lx, paddr=%#018lx", use4k, virt_addr_start, phys_addr_start);
  580. return -EFAULT;
  581. }
  582. /**
  583. * @brief 从页表中获取pdt页表项的内容
  584. *
  585. * @param proc_page_table_addr 页表的地址
  586. * @param is_phys 页表地址是否为物理地址
  587. * @param virt_addr_start 要清除的虚拟地址的起始地址
  588. * @param length 要清除的区域的长度
  589. * @param clear 是否清除标志位
  590. */
  591. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  592. {
  593. ul *tmp;
  594. if (is_phys)
  595. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  596. else
  597. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  598. // pml4页表项为0
  599. if (*tmp == 0)
  600. return 0;
  601. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  602. // pdpt页表项为0
  603. if (*tmp == 0)
  604. return 0;
  605. // 读取pdt页表项
  606. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  607. if (clear) // 清除页表项的标志位
  608. return *tmp & (~0x1fff);
  609. else
  610. return *tmp;
  611. }
  612. /**
  613. * @brief 从页表中清除虚拟地址的映射
  614. *
  615. * @param proc_page_table_addr 页表的地址
  616. * @param is_phys 页表地址是否为物理地址
  617. * @param virt_addr_start 要清除的虚拟地址的起始地址
  618. * @param length 要清除的区域的长度
  619. */
  620. void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
  621. {
  622. // 计算线性地址对应的pml4页表项的地址
  623. mm_pgt_entry_num_t pgt_num;
  624. mm_calculate_entry_num(length, &pgt_num);
  625. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  626. // 已取消映射的内存大小
  627. uint64_t length_unmapped = 0;
  628. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  629. uint64_t *pml4_ptr;
  630. if (is_phys)
  631. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  632. else
  633. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  634. // 循环填写顶层页表
  635. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  636. {
  637. // 剩余需要处理的pml4E -1
  638. --(pgt_num.num_PML4E);
  639. ul *pml4e_ptr = NULL;
  640. pml4e_ptr = pml4_ptr + pml4e_id;
  641. // 二级页表不存在
  642. if (*pml4e_ptr == 0)
  643. {
  644. continue;
  645. }
  646. uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
  647. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  648. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  649. // 循环处理二级页表
  650. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  651. {
  652. --pgt_num.num_PDPTE;
  653. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  654. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  655. // 三级页表为空
  656. if (*pdpte_ptr == 0)
  657. {
  658. continue;
  659. }
  660. uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
  661. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  662. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  663. // 循环处理三级页表
  664. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  665. {
  666. --pgt_num.num_PDE;
  667. // 计算当前2M物理页对应的pdt的页表项的物理地址
  668. ul *pde_ptr = pd_ptr + pde_id;
  669. // 存在4级页表
  670. if (unlikely(((*pde_ptr) & (1 << 7)) == 0))
  671. {
  672. // 存在4K页
  673. uint64_t pte_id = (((virt_addr_start + length_unmapped) >> PAGE_4K_SHIFT) & 0x1ff);
  674. uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0x1fffUL));
  675. uint64_t *pte_ptr = pt_ptr + pte_id;
  676. // 循环处理4K页表
  677. for (; pgt_num.num_PTE > 0 && pte_id < 512; ++pte_id, ++pte_ptr)
  678. {
  679. --pgt_num.num_PTE;
  680. // todo: 当支持使用slab分配4K内存作为进程的4K页之后,在这里需要释放这些4K对象
  681. *pte_ptr = 0;
  682. length_unmapped += PAGE_4K_SIZE;
  683. }
  684. // 4级页表已经空了,释放页表
  685. if (unlikely(mm_check_page_table(pt_ptr)) == 0)
  686. kfree(pt_ptr);
  687. }
  688. else
  689. {
  690. *pde_ptr = 0;
  691. length_unmapped += PAGE_2M_SIZE;
  692. }
  693. }
  694. // 3级页表已经空了,释放页表
  695. if (unlikely(mm_check_page_table(pd_ptr)) == 0)
  696. kfree(pd_ptr);
  697. }
  698. // 2级页表已经空了,释放页表
  699. if (unlikely(mm_check_page_table(pdpt_ptr)) == 0)
  700. kfree(pdpt_ptr);
  701. }
  702. flush_tlb();
  703. }
  704. /**
  705. * @brief 从mms中寻找Page结构体
  706. *
  707. * @param phys_addr
  708. * @return struct Page*
  709. */
  710. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  711. {
  712. uint32_t zone_start, zone_end;
  713. switch (zone_select)
  714. {
  715. case ZONE_DMA:
  716. // DMA区域
  717. zone_start = 0;
  718. zone_end = ZONE_DMA_INDEX;
  719. break;
  720. case ZONE_NORMAL:
  721. zone_start = ZONE_DMA_INDEX;
  722. zone_end = ZONE_NORMAL_INDEX;
  723. break;
  724. case ZONE_UNMAPPED_IN_PGT:
  725. zone_start = ZONE_NORMAL_INDEX;
  726. zone_end = ZONE_UNMAPPED_INDEX;
  727. break;
  728. default:
  729. kerror("In mm_find_page: param: zone_select incorrect.");
  730. // 返回空
  731. return NULL;
  732. break;
  733. }
  734. for (int i = zone_start; i <= zone_end; ++i)
  735. {
  736. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  737. continue;
  738. struct Zone *z = memory_management_struct.zones_struct + i;
  739. // 区域对应的起止页号
  740. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  741. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  742. ul tmp = 64 - page_start % 64;
  743. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  744. {
  745. // 按照bmp中的每一个元素进行查找
  746. // 先将p定位到bmp的起始元素
  747. ul *p = memory_management_struct.bmp + (j >> 6);
  748. ul shift = j % 64;
  749. for (ul k = shift; k < 64; ++k)
  750. {
  751. if ((*p >> k) & 1) // 若当前页已分配
  752. {
  753. uint64_t page_num = j + k - shift;
  754. struct Page *x = memory_management_struct.pages_struct + page_num;
  755. if (x->addr_phys == phys_addr) // 找到对应的页
  756. return x;
  757. }
  758. }
  759. }
  760. }
  761. return NULL;
  762. }
  763. /**
  764. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  765. *
  766. * @todo 缩小堆区域
  767. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  768. * @param offset 新的地址相对于原地址的偏移量
  769. * @return uint64_t
  770. */
  771. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  772. {
  773. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  774. if (offset >= 0)
  775. {
  776. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  777. {
  778. // kdebug("map [%#018lx]", i);
  779. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
  780. }
  781. current_pcb->mm->brk_end = end_addr;
  782. }
  783. else
  784. {
  785. // 释放堆内存
  786. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  787. {
  788. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  789. // 找到对应的页
  790. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  791. if (p == NULL)
  792. {
  793. kerror("cannot find page addr=%#018lx", phys);
  794. return end_addr;
  795. }
  796. free_pages(p, 1);
  797. }
  798. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  799. // 在页表中取消映射
  800. }
  801. return end_addr;
  802. }
  803. /**
  804. * @brief 检测指定地址是否已经被映射
  805. *
  806. * @param page_table_phys_addr 页表的物理地址
  807. * @param virt_addr 要检测的地址
  808. * @return true 已经被映射
  809. * @return false
  810. */
  811. bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
  812. {
  813. ul *tmp;
  814. tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  815. // pml4页表项为0
  816. if (*tmp == 0)
  817. return 0;
  818. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  819. // pdpt页表项为0
  820. if (*tmp == 0)
  821. return 0;
  822. // 读取pdt页表项
  823. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  824. // pde页表项为0
  825. if (*tmp == 0)
  826. return 0;
  827. if (*tmp & (1 << 7))
  828. {
  829. // 当前为2M物理页
  830. return true;
  831. }
  832. else
  833. {
  834. // 存在4级页表
  835. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_4K_SHIFT) & 0x1ff)));
  836. if (*tmp != 0)
  837. return true;
  838. else
  839. return false;
  840. }
  841. }
  842. /**
  843. * @brief 检测是否为有效的2M页(物理内存页)
  844. *
  845. * @param paddr 物理地址
  846. * @return int8_t 是 -> 1
  847. * 否 -> 0
  848. */
  849. int8_t mm_is_2M_page(uint64_t paddr)
  850. {
  851. if(likely((paddr >> PAGE_2M_SHIFT)<total_2M_pages))
  852. return 1;
  853. else return 0;
  854. }
  855. // #pragma GCC pop_options