sched.c 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. #include "sched.h"
  2. #include <common/kprint.h>
  3. #include <driver/video/video.h>
  4. #include <process/spinlock.h>
  5. struct sched_queue_t sched_cfs_ready_queue[MAX_CPU_NUM]; // 就绪队列
  6. /**
  7. * @brief 从就绪队列中取出PCB
  8. *
  9. * @return struct process_control_block*
  10. */
  11. struct process_control_block *sched_cfs_dequeue()
  12. {
  13. if (list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list))
  14. {
  15. // kdebug("list empty, count=%d", sched_cfs_ready_queue[proc_current_cpu_id].count);
  16. return &initial_proc_union.pcb;
  17. }
  18. struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
  19. list_del(&proc->list);
  20. --sched_cfs_ready_queue[proc_current_cpu_id].count;
  21. return proc;
  22. }
  23. /**
  24. * @brief 将PCB加入就绪队列
  25. *
  26. * @param pcb
  27. */
  28. void sched_cfs_enqueue(struct process_control_block *pcb)
  29. {
  30. if (pcb == initial_proc[proc_current_cpu_id])
  31. return;
  32. struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
  33. if ((list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list)) == 0)
  34. {
  35. while (proc->virtual_runtime < pcb->virtual_runtime)
  36. {
  37. proc = container_of(list_next(&proc->list), struct process_control_block, list);
  38. }
  39. }
  40. list_append(&proc->list, &pcb->list);
  41. ++sched_cfs_ready_queue[proc_current_cpu_id].count;
  42. }
  43. /**
  44. * @brief 调度函数
  45. *
  46. */
  47. void sched_cfs()
  48. {
  49. cli();
  50. current_pcb->flags &= ~PF_NEED_SCHED;
  51. struct process_control_block *proc = sched_cfs_dequeue();
  52. // kdebug("sched_cfs_ready_queue[proc_current_cpu_id].count = %d", sched_cfs_ready_queue[proc_current_cpu_id].count);
  53. if (current_pcb->virtual_runtime >= proc->virtual_runtime || current_pcb->state != PROC_RUNNING) // 当前进程运行时间大于了下一进程的运行时间,进行切换
  54. {
  55. if (current_pcb->state == PROC_RUNNING) // 本次切换由于时间片到期引发,则再次加入就绪队列,否则交由其它功能模块进行管理
  56. sched_cfs_enqueue(current_pcb);
  57. // kdebug("proc->pid=%d, count=%d", proc->pid, sched_cfs_ready_queue[proc_current_cpu_id].count);
  58. if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
  59. {
  60. switch (proc->priority)
  61. {
  62. case 0:
  63. case 1:
  64. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
  65. break;
  66. case 2:
  67. default:
  68. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
  69. break;
  70. }
  71. }
  72. process_switch_mm(proc);
  73. switch_proc(current_pcb, proc);
  74. }
  75. else // 不进行切换
  76. {
  77. // kdebug("not switch.");
  78. sched_cfs_enqueue(proc);
  79. if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
  80. {
  81. switch (proc->priority)
  82. {
  83. case 0:
  84. case 1:
  85. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
  86. // sched_cfs_ready_queue.cpu_exec_proc_jiffies = 5;
  87. break;
  88. case 2:
  89. default:
  90. // sched_cfs_ready_queue.cpu_exec_proc_jiffies = 5;
  91. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
  92. break;
  93. }
  94. }
  95. }
  96. sti();
  97. }
  98. /**
  99. * @brief 当时钟中断到达时,更新时间片
  100. *
  101. */
  102. void sched_update_jiffies()
  103. {
  104. // if (current_pcb->cpu_id == 0)
  105. // return;
  106. switch (current_pcb->priority)
  107. {
  108. case 0:
  109. case 1:
  110. --sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies;
  111. ++current_pcb->virtual_runtime;
  112. break;
  113. case 2:
  114. default:
  115. sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies -= 2;
  116. current_pcb->virtual_runtime += 2;
  117. break;
  118. }
  119. // 时间片耗尽,标记可调度
  120. if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
  121. current_pcb->flags |= PF_NEED_SCHED;
  122. }
  123. /**
  124. * @brief 初始化进程调度器
  125. *
  126. */
  127. void sched_init()
  128. {
  129. memset(&sched_cfs_ready_queue, 0, sizeof(struct sched_queue_t) * MAX_CPU_NUM);
  130. for (int i = 0; i < MAX_CPU_NUM; ++i)
  131. {
  132. list_init(&sched_cfs_ready_queue[i].proc_queue.list);
  133. sched_cfs_ready_queue[i].count = 1; // 因为存在IDLE进程,因此为1
  134. sched_cfs_ready_queue[i].cpu_exec_proc_jiffies = 5;
  135. sched_cfs_ready_queue[i].proc_queue.virtual_runtime = 0x7fffffffffffffff;
  136. }
  137. }