mod.rs 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713
  1. pub mod barrier;
  2. pub mod bump;
  3. pub mod fault;
  4. pub mod pkru;
  5. use alloc::sync::Arc;
  6. use alloc::vec::Vec;
  7. use hashbrown::HashSet;
  8. use log::{debug, info, warn};
  9. use x86::time::rdtsc;
  10. use x86_64::registers::model_specific::EferFlags;
  11. use crate::driver::serial::serial8250::send_to_default_serial8250_port;
  12. use crate::include::bindings::bindings::{
  13. multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
  14. multiboot_tag_load_base_addr_t,
  15. };
  16. use crate::libs::align::page_align_up;
  17. use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
  18. use crate::libs::spinlock::SpinLock;
  19. use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
  20. use crate::mm::memblock::mem_block_manager;
  21. use crate::mm::ucontext::LockedVMA;
  22. use crate::{
  23. arch::MMArch,
  24. mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
  25. };
  26. use crate::mm::kernel_mapper::KernelMapper;
  27. use crate::mm::page::{PageEntry, PageFlags, PAGE_1G_SHIFT};
  28. use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
  29. use system_error::SystemError;
  30. use core::arch::asm;
  31. use core::ffi::c_void;
  32. use core::fmt::Debug;
  33. use core::mem::{self};
  34. use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
  35. use super::kvm::vmx::vmcs::VmcsFields;
  36. use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
  37. pub type PageMapper =
  38. crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
  39. /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
  40. static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
  41. static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
  42. #[derive(Clone, Copy, Debug)]
  43. pub struct X86_64MMBootstrapInfo {
  44. kernel_load_base_paddr: usize,
  45. kernel_code_start: usize,
  46. kernel_code_end: usize,
  47. kernel_data_end: usize,
  48. kernel_rodata_end: usize,
  49. start_brk: usize,
  50. }
  51. pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
  52. /// @brief X86_64的内存管理架构结构体
  53. #[derive(Debug, Clone, Copy, Hash)]
  54. pub struct X86_64MMArch;
  55. /// XD标志位是否被保留
  56. static XD_RESERVED: AtomicBool = AtomicBool::new(false);
  57. impl MemoryManagementArch for X86_64MMArch {
  58. /// X86目前支持缺页中断
  59. const PAGE_FAULT_ENABLED: bool = true;
  60. /// 4K页
  61. const PAGE_SHIFT: usize = 12;
  62. /// 每个页表项占8字节,总共有512个页表项
  63. const PAGE_ENTRY_SHIFT: usize = 9;
  64. /// 四级页表(PML4T、PDPT、PDT、PT)
  65. const PAGE_LEVELS: usize = 4;
  66. /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
  67. /// 第[48, 51]位表示保留。因此,有效位的index为52。
  68. /// 请注意,第63位是XD位,表示是否允许执行。
  69. const ENTRY_ADDRESS_SHIFT: usize = 52;
  70. const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
  71. const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
  72. const ENTRY_FLAG_PRESENT: usize = 1 << 0;
  73. const ENTRY_FLAG_READONLY: usize = 0;
  74. const ENTRY_FLAG_WRITEABLE: usize = 1 << 1;
  75. const ENTRY_FLAG_READWRITE: usize = 1 << 1;
  76. const ENTRY_FLAG_USER: usize = 1 << 2;
  77. const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
  78. const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
  79. const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
  80. /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
  81. const ENTRY_FLAG_EXEC: usize = 0;
  82. const ENTRY_FLAG_ACCESSED: usize = 1 << 5;
  83. const ENTRY_FLAG_DIRTY: usize = 1 << 6;
  84. const ENTRY_FLAG_HUGE_PAGE: usize = 1 << 7;
  85. const ENTRY_FLAG_GLOBAL: usize = 1 << 8;
  86. /// 物理地址与虚拟地址的偏移量
  87. /// 0xffff_8000_0000_0000
  88. const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
  89. const KERNEL_LINK_OFFSET: usize = 0x100000;
  90. // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75
  91. const USER_END_VADDR: VirtAddr =
  92. VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE);
  93. const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
  94. const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
  95. const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
  96. /// 设置FIXMAP区域大小为1M
  97. const FIXMAP_SIZE: usize = 256 * 4096;
  98. const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000);
  99. const MMIO_SIZE: usize = 1 << PAGE_1G_SHIFT;
  100. /// @brief 获取物理内存区域
  101. unsafe fn init() {
  102. extern "C" {
  103. fn _text();
  104. fn _etext();
  105. fn _edata();
  106. fn _erodata();
  107. fn _end();
  108. }
  109. Self::init_xd_rsvd();
  110. let load_base_paddr = Self::get_load_base_paddr();
  111. let bootstrap_info = X86_64MMBootstrapInfo {
  112. kernel_load_base_paddr: load_base_paddr.data(),
  113. kernel_code_start: _text as usize,
  114. kernel_code_end: _etext as usize,
  115. kernel_data_end: _edata as usize,
  116. kernel_rodata_end: _erodata as usize,
  117. start_brk: _end as usize,
  118. };
  119. unsafe {
  120. BOOTSTRAP_MM_INFO = Some(bootstrap_info);
  121. }
  122. // 初始化物理内存区域(从multiboot2中获取)
  123. Self::init_memory_area_from_multiboot2().expect("init memory area failed");
  124. debug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
  125. debug!("phys[0]=virt[0x{:x}]", unsafe {
  126. MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
  127. });
  128. // 初始化内存管理器
  129. unsafe { allocator_init() };
  130. send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes());
  131. }
  132. /// @brief 刷新TLB中,关于指定虚拟地址的条目
  133. unsafe fn invalidate_page(address: VirtAddr) {
  134. compiler_fence(Ordering::SeqCst);
  135. asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
  136. compiler_fence(Ordering::SeqCst);
  137. }
  138. /// @brief 刷新TLB中,所有的条目
  139. unsafe fn invalidate_all() {
  140. compiler_fence(Ordering::SeqCst);
  141. // 通过设置cr3寄存器,来刷新整个TLB
  142. Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
  143. compiler_fence(Ordering::SeqCst);
  144. }
  145. /// @brief 获取顶级页表的物理地址
  146. unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
  147. match table_kind {
  148. PageTableKind::Kernel | PageTableKind::User => {
  149. compiler_fence(Ordering::SeqCst);
  150. let cr3 = x86::controlregs::cr3() as usize;
  151. compiler_fence(Ordering::SeqCst);
  152. return PhysAddr::new(cr3);
  153. }
  154. PageTableKind::EPT => {
  155. let eptp =
  156. vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
  157. return PhysAddr::new(eptp as usize);
  158. }
  159. }
  160. }
  161. /// @brief 设置顶级页表的物理地址到处理器中
  162. unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
  163. compiler_fence(Ordering::SeqCst);
  164. asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
  165. compiler_fence(Ordering::SeqCst);
  166. }
  167. /// @brief 判断虚拟地址是否合法
  168. fn virt_is_valid(virt: VirtAddr) -> bool {
  169. return virt.is_canonical();
  170. }
  171. /// 获取内存管理初始化时,创建的第一个内核页表的地址
  172. fn initial_page_table() -> PhysAddr {
  173. unsafe {
  174. return INITIAL_CR3_VALUE;
  175. }
  176. }
  177. /// @brief 创建新的顶层页表
  178. ///
  179. /// 该函数会创建页表并复制内核的映射到新的页表中
  180. ///
  181. /// @return 新的页表
  182. fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
  183. let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
  184. PageMapper::create(PageTableKind::User, LockedFrameAllocator)
  185. .ok_or(SystemError::ENOMEM)?
  186. };
  187. let current_ktable: KernelMapper = KernelMapper::lock();
  188. let copy_mapping = |pml4_entry_no| unsafe {
  189. let entry: PageEntry<X86_64MMArch> = current_ktable
  190. .table()
  191. .entry(pml4_entry_no)
  192. .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
  193. new_umapper.table().set_entry(pml4_entry_no, entry)
  194. };
  195. // 复制内核的映射
  196. for pml4_entry_no in MMArch::PAGE_KERNEL_INDEX..MMArch::PAGE_ENTRY_NUM {
  197. copy_mapping(pml4_entry_no);
  198. }
  199. return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
  200. }
  201. const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
  202. const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
  203. const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
  204. const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
  205. const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
  206. const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
  207. const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
  208. const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
  209. const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
  210. const PAGE_KERNEL_INDEX: usize = (Self::PHYS_OFFSET & Self::PAGE_ADDRESS_MASK)
  211. >> (Self::PAGE_ADDRESS_SHIFT - Self::PAGE_ENTRY_SHIFT);
  212. const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
  213. const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
  214. const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
  215. const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
  216. unsafe fn read<T>(address: VirtAddr) -> T {
  217. return core::ptr::read(address.data() as *const T);
  218. }
  219. unsafe fn write<T>(address: VirtAddr, value: T) {
  220. core::ptr::write(address.data() as *mut T, value);
  221. }
  222. unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
  223. core::ptr::write_bytes(address.data() as *mut u8, value, count);
  224. }
  225. unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
  226. if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
  227. return Some(VirtAddr::new(vaddr));
  228. } else {
  229. return None;
  230. }
  231. }
  232. unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
  233. if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
  234. return Some(PhysAddr::new(paddr));
  235. } else {
  236. return None;
  237. }
  238. }
  239. #[inline(always)]
  240. fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
  241. return paddr.data() | page_flags;
  242. }
  243. fn vma_access_permitted(
  244. vma: Arc<LockedVMA>,
  245. write: bool,
  246. execute: bool,
  247. foreign: bool,
  248. ) -> bool {
  249. if execute {
  250. return true;
  251. }
  252. if foreign | vma.is_foreign() {
  253. return true;
  254. }
  255. pkru::pkru_allows_pkey(pkru::vma_pkey(vma), write)
  256. }
  257. }
  258. impl X86_64MMArch {
  259. unsafe fn get_load_base_paddr() -> PhysAddr {
  260. let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
  261. send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
  262. let mut mb2_count: u32 = 0;
  263. multiboot2_iter(
  264. Some(multiboot2_get_load_base),
  265. &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
  266. &mut mb2_count,
  267. );
  268. if mb2_count == 0 {
  269. send_to_default_serial8250_port(
  270. "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
  271. );
  272. return PhysAddr::new(0x100000);
  273. }
  274. let phys = mb2_lb_info[0].load_base_addr as usize;
  275. return PhysAddr::new(phys);
  276. }
  277. unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
  278. // 这个数组用来存放内存区域的信息(从C获取)
  279. let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
  280. send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
  281. let mut mb2_count: u32 = 0;
  282. multiboot2_iter(
  283. Some(multiboot2_get_memory),
  284. &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
  285. &mut mb2_count,
  286. );
  287. send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
  288. let mb2_count = mb2_count as usize;
  289. let mut areas_count = 0usize;
  290. let mut total_mem_size = 0usize;
  291. for info_entry in mb2_mem_info.iter().take(mb2_count) {
  292. // Only use the memory area if its type is 1 (RAM)
  293. if info_entry.type_ == 1 {
  294. // Skip the memory area if its len is 0
  295. if info_entry.len == 0 {
  296. continue;
  297. }
  298. total_mem_size += info_entry.len as usize;
  299. mem_block_manager()
  300. .add_block(
  301. PhysAddr::new(info_entry.addr as usize),
  302. info_entry.len as usize,
  303. )
  304. .unwrap_or_else(|e| {
  305. warn!(
  306. "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
  307. info_entry.addr, info_entry.len, e
  308. );
  309. });
  310. areas_count += 1;
  311. }
  312. }
  313. send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
  314. info!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
  315. return Ok(areas_count);
  316. }
  317. fn init_xd_rsvd() {
  318. // 读取ia32-EFER寄存器的值
  319. let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
  320. if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
  321. // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
  322. debug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
  323. XD_RESERVED.store(true, Ordering::Relaxed);
  324. }
  325. compiler_fence(Ordering::SeqCst);
  326. }
  327. /// 判断XD标志位是否被保留
  328. pub fn is_xd_reserved() -> bool {
  329. // return XD_RESERVED.load(Ordering::Relaxed);
  330. // 由于暂时不支持execute disable,因此直接返回true
  331. // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
  332. return true;
  333. }
  334. }
  335. impl VirtAddr {
  336. /// @brief 判断虚拟地址是否合法
  337. #[inline(always)]
  338. pub fn is_canonical(self) -> bool {
  339. let x = self.data() & X86_64MMArch::PHYS_OFFSET;
  340. // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
  341. // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
  342. return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
  343. }
  344. }
  345. unsafe fn allocator_init() {
  346. let virt_offset = VirtAddr::new(page_align_up(BOOTSTRAP_MM_INFO.unwrap().start_brk));
  347. let phy_offset = unsafe { MMArch::virt_2_phys(virt_offset) }.unwrap();
  348. mem_block_manager()
  349. .reserve_block(PhysAddr::new(0), phy_offset.data())
  350. .expect("Failed to reserve block");
  351. let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
  352. debug!(
  353. "BumpAllocator created, offset={:?}",
  354. bump_allocator.offset()
  355. );
  356. // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
  357. // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
  358. // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
  359. let _old_page_table = MMArch::table(PageTableKind::Kernel);
  360. let new_page_table: PhysAddr;
  361. // 使用bump分配器,把所有的内存页都映射到页表
  362. {
  363. // 用bump allocator创建新的页表
  364. let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
  365. crate::mm::page::PageMapper::<MMArch, _>::create(
  366. PageTableKind::Kernel,
  367. &mut bump_allocator,
  368. )
  369. .expect("Failed to create page mapper");
  370. new_page_table = mapper.table().phys();
  371. debug!("PageMapper created");
  372. // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
  373. {
  374. let table = mapper.table();
  375. let empty_entry = PageEntry::<MMArch>::from_usize(0);
  376. for i in 0..MMArch::PAGE_ENTRY_NUM {
  377. table
  378. .set_entry(i, empty_entry)
  379. .expect("Failed to empty page table entry");
  380. }
  381. }
  382. debug!("Successfully emptied page table");
  383. let total_num = mem_block_manager().total_initial_memory_regions();
  384. for i in 0..total_num {
  385. let area = mem_block_manager().get_initial_memory_region(i).unwrap();
  386. // debug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
  387. for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
  388. let paddr = area.base.add(i * MMArch::PAGE_SIZE);
  389. let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
  390. let flags = kernel_page_flags::<MMArch>(vaddr);
  391. let flusher = mapper
  392. .map_phys(vaddr, paddr, flags)
  393. .expect("Failed to map frame");
  394. // 暂时不刷新TLB
  395. flusher.ignore();
  396. }
  397. }
  398. }
  399. unsafe {
  400. INITIAL_CR3_VALUE = new_page_table;
  401. }
  402. debug!(
  403. "After mapping all physical memory, DragonOS used: {} KB",
  404. bump_allocator.offset() / 1024
  405. );
  406. // 初始化buddy_allocator
  407. let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
  408. // 设置全局的页帧分配器
  409. unsafe { set_inner_allocator(buddy_allocator) };
  410. info!("Successfully initialized buddy allocator");
  411. // 关闭显示输出
  412. scm_disable_put_to_window();
  413. // make the new page table current
  414. {
  415. let mut binding = INNER_ALLOCATOR.lock();
  416. let mut allocator_guard = binding.as_mut().unwrap();
  417. debug!("To enable new page table.");
  418. compiler_fence(Ordering::SeqCst);
  419. let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
  420. PageTableKind::Kernel,
  421. new_page_table,
  422. &mut allocator_guard,
  423. );
  424. compiler_fence(Ordering::SeqCst);
  425. mapper.make_current();
  426. compiler_fence(Ordering::SeqCst);
  427. debug!("New page table enabled");
  428. }
  429. debug!("Successfully enabled new page table");
  430. }
  431. #[no_mangle]
  432. pub extern "C" fn rs_test_buddy() {
  433. test_buddy();
  434. }
  435. pub fn test_buddy() {
  436. // 申请内存然后写入数据然后free掉
  437. // 总共申请200MB内存
  438. const TOTAL_SIZE: usize = 200 * 1024 * 1024;
  439. for i in 0..10 {
  440. debug!("Test buddy, round: {i}");
  441. // 存放申请的内存块
  442. let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
  443. // 存放已经申请的内存块的地址(用于检查重复)
  444. let mut addr_set: HashSet<PhysAddr> = HashSet::new();
  445. let mut allocated = 0usize;
  446. let mut free_count = 0usize;
  447. while allocated < TOTAL_SIZE {
  448. let mut random_size = 0u64;
  449. unsafe { x86::random::rdrand64(&mut random_size) };
  450. // 一次最多申请4M
  451. random_size %= 1024 * 4096;
  452. if random_size == 0 {
  453. continue;
  454. }
  455. let random_size =
  456. core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
  457. let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
  458. // 获取帧
  459. let (paddr, allocated_frame_count) =
  460. unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
  461. assert!(allocated_frame_count.data().is_power_of_two());
  462. assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
  463. unsafe {
  464. assert!(MMArch::phys_2_virt(paddr)
  465. .as_ref()
  466. .unwrap()
  467. .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
  468. }
  469. allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
  470. v.push((paddr, allocated_frame_count));
  471. assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
  472. // 写入数据
  473. let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
  474. let slice = unsafe {
  475. core::slice::from_raw_parts_mut(
  476. vaddr.data() as *mut u8,
  477. allocated_frame_count.data() * MMArch::PAGE_SIZE,
  478. )
  479. };
  480. for (i, item) in slice.iter_mut().enumerate() {
  481. *item = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
  482. }
  483. // 随机释放一个内存块
  484. if !v.is_empty() {
  485. let mut random_index = 0u64;
  486. unsafe { x86::random::rdrand64(&mut random_index) };
  487. // 70%概率释放
  488. if random_index % 10 > 7 {
  489. continue;
  490. }
  491. random_index %= v.len() as u64;
  492. let random_index = random_index as usize;
  493. let (paddr, allocated_frame_count) = v.remove(random_index);
  494. assert!(addr_set.remove(&paddr));
  495. unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
  496. free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
  497. }
  498. }
  499. debug!(
  500. "Allocated {} MB memory, release: {} MB, no release: {} bytes",
  501. allocated / 1024 / 1024,
  502. free_count / 1024 / 1024,
  503. (allocated - free_count)
  504. );
  505. debug!("Now, to release buddy memory");
  506. // 释放所有的内存
  507. for (paddr, allocated_frame_count) in v {
  508. unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
  509. assert!(addr_set.remove(&paddr));
  510. free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
  511. }
  512. debug!("release done!, allocated: {allocated}, free_count: {free_count}");
  513. }
  514. }
  515. /// 全局的页帧分配器
  516. #[derive(Debug, Clone, Copy, Hash)]
  517. pub struct LockedFrameAllocator;
  518. impl FrameAllocator for LockedFrameAllocator {
  519. unsafe fn allocate(&mut self, mut count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
  520. count = count.next_power_of_two();
  521. if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
  522. return allocator.allocate(count);
  523. } else {
  524. return None;
  525. }
  526. }
  527. unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
  528. assert!(count.data().is_power_of_two());
  529. if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
  530. return allocator.free(address, count);
  531. }
  532. }
  533. unsafe fn usage(&self) -> PageFrameUsage {
  534. if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
  535. return allocator.usage();
  536. } else {
  537. panic!("usage error");
  538. }
  539. }
  540. }
  541. /// 获取内核地址默认的页面标志
  542. pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
  543. let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.unwrap();
  544. if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
  545. // Remap kernel code execute
  546. return PageFlags::new().set_execute(true).set_write(true);
  547. } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
  548. // Remap kernel rodata read only
  549. return PageFlags::new().set_execute(true);
  550. } else {
  551. return PageFlags::new().set_write(true).set_execute(true);
  552. }
  553. }
  554. unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
  555. static FLAG: AtomicBool = AtomicBool::new(false);
  556. if FLAG
  557. .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
  558. .is_err()
  559. {
  560. panic!("Cannot set inner allocator twice!");
  561. }
  562. *INNER_ALLOCATOR.lock() = Some(allocator);
  563. }
  564. /// 低地址重映射的管理器
  565. ///
  566. /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
  567. pub struct LowAddressRemapping;
  568. impl LowAddressRemapping {
  569. // 映射64M
  570. const REMAP_SIZE: usize = 64 * 1024 * 1024;
  571. pub unsafe fn remap_at_low_address(mapper: &mut PageMapper) {
  572. for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
  573. let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
  574. let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
  575. let flags = kernel_page_flags::<MMArch>(vaddr);
  576. let flusher = mapper
  577. .map_phys(vaddr, paddr, flags)
  578. .expect("Failed to map frame");
  579. // 暂时不刷新TLB
  580. flusher.ignore();
  581. }
  582. }
  583. /// 取消低地址的映射
  584. pub unsafe fn unmap_at_low_address(mapper: &mut PageMapper, flush: bool) {
  585. for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
  586. let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
  587. let (_, _, flusher) = mapper
  588. .unmap_phys(vaddr, true)
  589. .expect("Failed to unmap frame");
  590. if !flush {
  591. flusher.ignore();
  592. }
  593. }
  594. }
  595. }