mm.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. ul Total_Memory = 0;
  7. ul total_2M_pages = 0;
  8. static ul root_page_table_phys_addr=0; // 内核层根页表的物理地址
  9. void mm_init()
  10. {
  11. kinfo("Initializing memory management unit...");
  12. // 设置内核程序不同部分的起止地址
  13. memory_management_struct.kernel_code_start = (ul)&_text;
  14. memory_management_struct.kernel_code_end = (ul)&_etext;
  15. memory_management_struct.kernel_data_end = (ul)&_edata;
  16. memory_management_struct.kernel_end = (ul)&_end;
  17. struct multiboot_mmap_entry_t *mb2_mem_info;
  18. int count;
  19. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  20. for (int i = 0; i < count; ++i)
  21. {
  22. //可用的内存
  23. if (mb2_mem_info->type == 1)
  24. Total_Memory += mb2_mem_info->len;
  25. // 保存信息到mms
  26. memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr;
  27. memory_management_struct.e820[i].Length = mb2_mem_info->len;
  28. memory_management_struct.e820[i].type = mb2_mem_info->type;
  29. memory_management_struct.len_e820 = i;
  30. ++mb2_mem_info;
  31. // 脏数据
  32. if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1)
  33. break;
  34. }
  35. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  36. // 计算有效内存页数
  37. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  38. {
  39. if (memory_management_struct.e820[i].type != 1)
  40. continue;
  41. // 将内存段的起始物理地址按照2M进行对齐
  42. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  43. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  44. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  45. // 内存段不可用
  46. if (addr_end <= addr_start)
  47. continue;
  48. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  49. }
  50. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  51. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  52. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  53. // 初始化mms的bitmap
  54. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  55. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  56. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  57. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  58. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  59. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  60. // 初始化内存页结构
  61. // 将页结构映射于bmp之后
  62. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  63. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  64. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  65. // 将pages_struct全部清空,以备后续初始化
  66. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  67. // 初始化内存区域
  68. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  69. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  70. memory_management_struct.count_zones = 0;
  71. // zones-struct 成员变量暂时按照5个来计算
  72. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  73. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  74. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  75. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  76. {
  77. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  78. continue;
  79. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  80. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  81. if (addr_end <= addr_start)
  82. continue;
  83. // zone init
  84. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  85. ++memory_management_struct.count_zones;
  86. z->zone_addr_start = addr_start;
  87. z->zone_addr_end = addr_end;
  88. z->zone_length = addr_end - addr_start;
  89. z->count_pages_using = 0;
  90. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  91. z->total_pages_link = 0;
  92. z->attr = 0;
  93. z->gmd_struct = &memory_management_struct;
  94. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  95. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  96. // 初始化页
  97. struct Page *p = z->pages_group;
  98. for (int j = 0; j < z->count_pages; ++j, ++p)
  99. {
  100. p->zone = z;
  101. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  102. p->attr = 0;
  103. p->ref_counts = 0;
  104. p->age = 0;
  105. // 将bmp中对应的位 复位
  106. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  107. }
  108. }
  109. // 初始化0~2MB的物理页
  110. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  111. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  112. memory_management_struct.pages_struct->addr_phys = 0UL;
  113. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  114. memory_management_struct.pages_struct->ref_counts = 1;
  115. memory_management_struct.pages_struct->age = 0;
  116. // 将第0页的标志位给置上
  117. //*(memory_management_struct.bmp) |= 1UL;
  118. // 计算zone结构体的总长度(按照64位对齐)
  119. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  120. ZONE_DMA_INDEX = 0;
  121. ZONE_NORMAL_INDEX = 0;
  122. ZONE_UNMAPPED_INDEX = 0;
  123. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  124. {
  125. struct Zone *z = memory_management_struct.zones_struct + i;
  126. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  127. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  128. // 1GB以上的内存空间不做映射
  129. if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  130. ZONE_UNMAPPED_INDEX = i;
  131. }
  132. kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  133. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  134. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  135. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  136. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  137. // 初始化内存管理单元结构所占的物理页的结构体
  138. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  139. kdebug("mms_max_page=%ld", mms_max_page);
  140. struct Page *tmp_page = NULL;
  141. ul page_num;
  142. // 第0个page已经在上方配置
  143. for (ul j = 1; j <= mms_max_page; ++j)
  144. {
  145. tmp_page = memory_management_struct.pages_struct + j;
  146. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  147. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  148. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  149. ++tmp_page->zone->count_pages_using;
  150. --tmp_page->zone->count_pages_free;
  151. }
  152. global_CR3 = get_CR3();
  153. //root_page_table_phys_addr = global_CR3;
  154. kdebug("global_CR3\t:%#018lx", global_CR3);
  155. kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff));
  156. kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff));
  157. kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  158. kinfo("Memory management unit initialize complete!");
  159. /*
  160. kinfo("Cleaning page table remapping at 0x0000");
  161. for (int i = 0; i < 10; ++i)
  162. *(phys_2_virt(global_CR3) + i) = 0UL;
  163. kinfo("Successfully cleaned page table remapping!\n");
  164. */
  165. flush_tlb();
  166. // 初始化slab内存池
  167. slab_init();
  168. init_frame_buffer();
  169. page_table_init();
  170. }
  171. /**
  172. * @brief 初始化内存页
  173. *
  174. * @param page 内存页结构体
  175. * @param flags 标志位
  176. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  177. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  178. * @return unsigned long
  179. */
  180. unsigned long page_init(struct Page *page, ul flags)
  181. {
  182. page->attr |= flags;
  183. // 若页面的引用计数为0或是共享页,增加引用计数
  184. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  185. {
  186. ++page->ref_counts;
  187. ++page->zone->total_pages_link;
  188. }
  189. return 0;
  190. }
  191. /**
  192. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  193. *
  194. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  195. * @param num 需要申请的连续内存页的数量 num<64
  196. * @param flags 将页面属性设置成flag
  197. * @return struct Page*
  198. */
  199. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  200. {
  201. ul zone_start = 0, zone_end = 0;
  202. if (num >= 64 && num <= 0)
  203. {
  204. kerror("alloc_pages(): num is invalid.");
  205. return NULL;
  206. }
  207. ul attr = flags;
  208. switch (zone_select)
  209. {
  210. case ZONE_DMA:
  211. // DMA区域
  212. zone_start = 0;
  213. zone_end = ZONE_DMA_INDEX;
  214. attr |= PAGE_PGT_MAPPED;
  215. break;
  216. case ZONE_NORMAL:
  217. zone_start = ZONE_DMA_INDEX;
  218. zone_end = ZONE_NORMAL_INDEX;
  219. attr |= PAGE_PGT_MAPPED;
  220. break;
  221. case ZONE_UNMAPPED_IN_PGT:
  222. zone_start = ZONE_NORMAL_INDEX;
  223. zone_end = ZONE_UNMAPPED_INDEX;
  224. attr = 0;
  225. break;
  226. default:
  227. kerror("In alloc_pages: param: zone_select incorrect.");
  228. // 返回空
  229. return NULL;
  230. break;
  231. }
  232. for (int i = zone_start; i <= zone_end; ++i)
  233. {
  234. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  235. continue;
  236. struct Zone *z = memory_management_struct.zones_struct + i;
  237. // 区域对应的起止页号
  238. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  239. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  240. ul tmp = 64 - page_start % 64;
  241. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  242. {
  243. // 按照bmp中的每一个元素进行查找
  244. // 先将p定位到bmp的起始元素
  245. ul *p = memory_management_struct.bmp + (j >> 6);
  246. ul shift = j % 64;
  247. ul tmp_num = ((1UL << num) - 1);
  248. for (ul k = shift; k < 64; ++k)
  249. {
  250. // 寻找连续num个空页
  251. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  252. {
  253. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  254. for (ul l = 0; l < num; ++l)
  255. {
  256. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  257. // 分配页面,手动配置属性及计数器
  258. // 置位bmp
  259. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  260. ++z->count_pages_using;
  261. --z->count_pages_free;
  262. x->attr = attr;
  263. }
  264. // 成功分配了页面,返回第一个页面的指针
  265. // printk("start page num=%d\n",start_page_num);
  266. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  267. }
  268. }
  269. }
  270. }
  271. return NULL;
  272. }
  273. /**
  274. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  275. *
  276. * @param p 物理页结构体
  277. * @return unsigned long
  278. */
  279. unsigned long page_clean(struct Page *p)
  280. {
  281. --p->ref_counts;
  282. --p->zone->total_pages_link;
  283. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  284. if (!p->ref_counts)
  285. {
  286. p->attr &= PAGE_PGT_MAPPED;
  287. }
  288. return 0;
  289. }
  290. /**
  291. * @brief Get the page's attr
  292. *
  293. * @param page 内存页结构体
  294. * @return ul 属性
  295. */
  296. ul get_page_attr(struct Page *page)
  297. {
  298. if (page == NULL)
  299. {
  300. kBUG("get_page_attr(): page == NULL");
  301. return EPAGE_NULL;
  302. }
  303. else
  304. return page->attr;
  305. }
  306. /**
  307. * @brief Set the page's attr
  308. *
  309. * @param page 内存页结构体
  310. * @param flags 属性
  311. * @return ul 错误码
  312. */
  313. ul set_page_attr(struct Page *page, ul flags)
  314. {
  315. if (page == NULL)
  316. {
  317. kBUG("get_page_attr(): page == NULL");
  318. return EPAGE_NULL;
  319. }
  320. else
  321. {
  322. page->attr = flags;
  323. return 0;
  324. }
  325. }
  326. /**
  327. * @brief 释放连续number个内存页
  328. *
  329. * @param page 第一个要被释放的页面的结构体
  330. * @param number 要释放的内存页数量 number<64
  331. */
  332. void free_pages(struct Page *page, int number)
  333. {
  334. if (page == NULL)
  335. {
  336. kerror("free_pages() page is invalid.");
  337. return;
  338. }
  339. if (number >= 64 || number <= 0)
  340. {
  341. kerror("free_pages(): number %d is invalid.", number);
  342. return;
  343. }
  344. ul page_num;
  345. for (int i = 0; i < number; ++i, ++page)
  346. {
  347. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  348. // 复位bmp
  349. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  350. // 更新计数器
  351. --page->zone->count_pages_using;
  352. ++page->zone->count_pages_free;
  353. page->attr = 0;
  354. }
  355. return;
  356. }
  357. /**
  358. * @brief 重新初始化页表的函数
  359. * 将0~4GB的物理页映射到线性地址空间
  360. */
  361. void page_table_init()
  362. {
  363. kinfo("Initializing page table...");
  364. global_CR3 = get_CR3();
  365. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  366. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  367. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  368. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  369. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  370. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  371. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  372. ul *tmp_addr;
  373. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  374. {
  375. struct Zone *z = memory_management_struct.zones_struct + i;
  376. struct Page *p = z->pages_group;
  377. if (i == ZONE_UNMAPPED_INDEX)
  378. break;
  379. for (int j = 0; j < z->count_pages; ++j)
  380. {
  381. // 计算出PML4页表中的页表项的地址
  382. tmp_addr = (ul *)((ul)pml4_addr + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_GDT_SHIFT) & 0x1ff) * 8);
  383. // 说明该页还没有分配pdpt页表,使用kmalloc分配一个
  384. if (*tmp_addr = 0)
  385. {
  386. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  387. set_pml4t(tmp_addr, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  388. }
  389. // 计算出pdpt页表的页表项的地址
  390. tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_1G_SHIFT) & 0x1ff) * 8);
  391. // 说明该页还没有分配pd页表,使用kmalloc分配一个
  392. if (*tmp_addr = 0)
  393. {
  394. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  395. set_pdpt(tmp_addr, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  396. }
  397. // 计算出pd页表的页表项的地址
  398. tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_2M_SHIFT) & 0x1ff) * 8);
  399. // 填入pd页表的页表项,映射2MB物理页
  400. set_pdt(tmp_addr, mk_pdt(virt_2_phys(p->addr_phys), PAGE_KERNEL_PAGE));
  401. // 测试
  402. if (j % 50 == 0)
  403. kdebug("pd_addr=%#018lx, *pd_addr=%#018lx", tmp_addr, *tmp_addr);
  404. }
  405. }
  406. flush_tlb();
  407. kinfo("Page table Initialized.");
  408. }
  409. /**
  410. * @brief VBE帧缓存区的地址重新映射
  411. * 将帧缓存区映射到地址0xffff800003000000处
  412. */
  413. void init_frame_buffer()
  414. {
  415. kinfo("Re-mapping VBE frame buffer...");
  416. global_CR3 = get_CR3();
  417. ul fb_virt_addr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
  418. ul fb_phys_addr = get_VBE_FB_phys_addr();
  419. // 计算帧缓冲区的线性地址对应的pml4页表项的地址
  420. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  421. if (*tmp == 0)
  422. {
  423. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  424. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  425. }
  426. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  427. if (*tmp == 0)
  428. {
  429. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  430. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  431. }
  432. ul vbe_fb_length = get_VBE_FB_length();
  433. ul *tmp1;
  434. // 初始化2M物理页
  435. for (ul i = 0; i < (vbe_fb_length << 2); i += PAGE_2M_SIZE)
  436. {
  437. // 计算当前2M物理页对应的pdt的页表项的物理地址
  438. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff));
  439. // 页面写穿,禁止缓存
  440. set_pdt(tmp1, mk_pdt((ul)fb_phys_addr + i, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD));
  441. }
  442. set_pos_VBE_FB_addr((uint *)fb_virt_addr);
  443. flush_tlb();
  444. kinfo("VBE frame buffer successfully Re-mapped!");
  445. }
  446. /**
  447. * @brief 将物理地址映射到页表的函数
  448. *
  449. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  450. * @param phys_addr_start 物理地址的起始位置
  451. * @param length 要映射的区域的长度(字节)
  452. */
  453. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  454. {
  455. global_CR3 = get_CR3();
  456. // 计算线性地址对应的pml4页表项的地址
  457. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  458. if (*tmp == 0)
  459. {
  460. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  461. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  462. }
  463. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  464. if (*tmp == 0)
  465. {
  466. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  467. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  468. }
  469. ul *tmp1;
  470. // 初始化2M物理页
  471. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  472. {
  473. // 计算当前2M物理页对应的pdt的页表项的物理地址
  474. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  475. // 页面写穿,禁止缓存
  476. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags));
  477. }
  478. flush_tlb();
  479. }
  480. /**
  481. * @brief 将将物理地址填写到进程的页表的函数
  482. *
  483. * @param proc_page_table_addr 进程的页表的虚拟基地址
  484. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  485. * @param phys_addr_start 物理地址的起始位置
  486. * @param length 要映射的区域的长度(字节)
  487. * @param user 用户态是否可访问
  488. */
  489. void mm_map_proc_page_table(ul *proc_page_table_addr, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user)
  490. {
  491. // 计算线性地址对应的pml4页表项的地址
  492. ul *tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  493. if (*tmp == 0)
  494. {
  495. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  496. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  497. }
  498. tmp = (ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff);
  499. if (*tmp == 0)
  500. {
  501. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  502. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  503. }
  504. ul *tmp1;
  505. // 初始化2M物理页
  506. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  507. {
  508. // 计算当前2M物理页对应的pdt的页表项的物理地址
  509. tmp1 = ((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  510. // 页面写穿,禁止缓存
  511. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  512. }
  513. flush_tlb();
  514. }