process.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/elf.h>
  8. #include <common/kthread.h>
  9. #include <common/time.h>
  10. #include <common/sys/wait.h>
  11. #include <driver/video/video.h>
  12. #include <driver/usb/usb.h>
  13. #include <exception/gate.h>
  14. #include <filesystem/fat32/fat32.h>
  15. #include <filesystem/devfs/devfs.h>
  16. #include <filesystem/rootfs/rootfs.h>
  17. #include <mm/slab.h>
  18. #include <common/spinlock.h>
  19. #include <syscall/syscall.h>
  20. #include <syscall/syscall_num.h>
  21. #include <sched/sched.h>
  22. #include <common/unistd.h>
  23. #include <debug/traceback/traceback.h>
  24. #include <debug/bug.h>
  25. #include <driver/disk/ahci/ahci.h>
  26. #include <ktest/ktest.h>
  27. #include <mm/mmio.h>
  28. #include <common/lz4.h>
  29. // #pragma GCC push_options
  30. // #pragma GCC optimize("O0")
  31. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  32. long process_global_pid = 1; // 系统中最大的pid
  33. extern void system_call(void);
  34. extern void kernel_thread_func(void);
  35. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  36. extern struct mm_struct initial_mm;
  37. struct thread_struct initial_thread =
  38. {
  39. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  40. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  41. .fs = KERNEL_DS,
  42. .gs = KERNEL_DS,
  43. .cr2 = 0,
  44. .trap_num = 0,
  45. .err_code = 0};
  46. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  47. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  48. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  49. // 为每个核心初始化初始进程的tss
  50. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  51. /**
  52. * @brief 拷贝当前进程的标志位
  53. *
  54. * @param clone_flags 克隆标志位
  55. * @param pcb 新的进程的pcb
  56. * @return uint64_t
  57. */
  58. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  59. /**
  60. * @brief 拷贝当前进程的文件描述符等信息
  61. *
  62. * @param clone_flags 克隆标志位
  63. * @param pcb 新的进程的pcb
  64. * @return uint64_t
  65. */
  66. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  67. /**
  68. * @brief 回收进程的所有文件描述符
  69. *
  70. * @param pcb 要被回收的进程的pcb
  71. * @return uint64_t
  72. */
  73. uint64_t process_exit_files(struct process_control_block *pcb);
  74. /**
  75. * @brief 拷贝当前进程的内存空间分布结构体信息
  76. *
  77. * @param clone_flags 克隆标志位
  78. * @param pcb 新的进程的pcb
  79. * @return uint64_t
  80. */
  81. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  82. /**
  83. * @brief 释放进程的页表
  84. *
  85. * @param pcb 要被释放页表的进程
  86. * @return uint64_t
  87. */
  88. uint64_t process_exit_mm(struct process_control_block *pcb);
  89. /**
  90. * @brief 拷贝当前进程的线程结构体
  91. *
  92. * @param clone_flags 克隆标志位
  93. * @param pcb 新的进程的pcb
  94. * @return uint64_t
  95. */
  96. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  97. void process_exit_thread(struct process_control_block *pcb);
  98. /**
  99. * @brief 切换进程
  100. *
  101. * @param prev 上一个进程的pcb
  102. * @param next 将要切换到的进程的pcb
  103. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  104. * 这里切换fs和gs寄存器
  105. */
  106. #pragma GCC push_options
  107. #pragma GCC optimize("O0")
  108. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  109. {
  110. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  111. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  112. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  113. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  114. __asm__ __volatile__("movq %%fs, %0 \n\t"
  115. : "=a"(prev->thread->fs));
  116. __asm__ __volatile__("movq %%gs, %0 \n\t"
  117. : "=a"(prev->thread->gs));
  118. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  119. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  120. }
  121. #pragma GCC pop_options
  122. /**
  123. * @brief 打开要执行的程序文件
  124. *
  125. * @param path
  126. * @return struct vfs_file_t*
  127. */
  128. struct vfs_file_t *process_open_exec_file(char *path)
  129. {
  130. struct vfs_dir_entry_t *dentry = NULL;
  131. struct vfs_file_t *filp = NULL;
  132. dentry = vfs_path_walk(path, 0);
  133. if (dentry == NULL)
  134. return (void *)-ENOENT;
  135. if (dentry->dir_inode->attribute == VFS_IF_DIR)
  136. return (void *)-ENOTDIR;
  137. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  138. if (filp == NULL)
  139. return (void *)-ENOMEM;
  140. filp->position = 0;
  141. filp->mode = 0;
  142. filp->dEntry = dentry;
  143. filp->mode = ATTR_READ_ONLY;
  144. filp->file_ops = dentry->dir_inode->file_ops;
  145. return filp;
  146. }
  147. /**
  148. * @brief 加载elf格式的程序文件到内存中,并设置regs
  149. *
  150. * @param regs 寄存器
  151. * @param path 文件路径
  152. * @return int
  153. */
  154. static int process_load_elf_file(struct pt_regs *regs, char *path)
  155. {
  156. int retval = 0;
  157. struct vfs_file_t *filp = process_open_exec_file(path);
  158. if ((long)filp <= 0 && (long)filp >= -255)
  159. {
  160. // kdebug("(long)filp=%ld", (long)filp);
  161. return (unsigned long)filp;
  162. }
  163. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  164. memset(buf, 0, PAGE_4K_SIZE);
  165. uint64_t pos = 0;
  166. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  167. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  168. retval = 0;
  169. if (!elf_check(buf))
  170. {
  171. kerror("Not an ELF file: %s", path);
  172. retval = -ENOTSUP;
  173. goto load_elf_failed;
  174. }
  175. #if ARCH(X86_64)
  176. // 暂时只支持64位的文件
  177. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  178. {
  179. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  180. retval = -EUNSUPPORTED;
  181. goto load_elf_failed;
  182. }
  183. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  184. // 暂时只支持AMD64架构
  185. if (ehdr.e_machine != EM_AMD64)
  186. {
  187. kerror("e_machine=%d", ehdr.e_machine);
  188. retval = -EUNSUPPORTED;
  189. goto load_elf_failed;
  190. }
  191. #else
  192. #error Unsupported architecture!
  193. #endif
  194. if (ehdr.e_type != ET_EXEC)
  195. {
  196. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  197. retval = -EUNSUPPORTED;
  198. goto load_elf_failed;
  199. }
  200. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  201. regs->rip = ehdr.e_entry;
  202. current_pcb->mm->code_addr_start = ehdr.e_entry;
  203. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  204. // 将指针移动到program header处
  205. pos = ehdr.e_phoff;
  206. // 读取所有的phdr
  207. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  208. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  209. if ((unsigned long)filp <= 0)
  210. {
  211. kdebug("(unsigned long)filp=%d", (long)filp);
  212. retval = -ENOEXEC;
  213. goto load_elf_failed;
  214. }
  215. Elf64_Phdr *phdr = buf;
  216. // 将程序加载到内存中
  217. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  218. {
  219. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  220. // 不是可加载的段
  221. if (phdr->p_type != PT_LOAD)
  222. continue;
  223. int64_t remain_mem_size = phdr->p_memsz;
  224. int64_t remain_file_size = phdr->p_filesz;
  225. pos = phdr->p_offset;
  226. uint64_t virt_base = 0;
  227. uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
  228. if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
  229. virt_base = phdr->p_vaddr & PAGE_2M_MASK;
  230. else // 接下来只有4K页的映射
  231. virt_base = phdr->p_vaddr & PAGE_4K_MASK;
  232. beginning_offset = phdr->p_vaddr - virt_base;
  233. remain_mem_size += beginning_offset;
  234. while (remain_mem_size > 0)
  235. {
  236. // kdebug("loading...");
  237. int64_t map_size = 0;
  238. if (remain_mem_size >= PAGE_2M_SIZE)
  239. {
  240. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  241. struct vm_area_struct *vma = NULL;
  242. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  243. // 防止内存泄露
  244. if (ret == -EEXIST)
  245. free_pages(Phy_to_2M_Page(pa), 1);
  246. else
  247. mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
  248. // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  249. io_mfence();
  250. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  251. map_size = PAGE_2M_SIZE;
  252. }
  253. else
  254. {
  255. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  256. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  257. // 循环分配4K大小内存块
  258. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  259. {
  260. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  261. struct vm_area_struct *vma = NULL;
  262. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  263. // kdebug("virt_base=%#018lx", virt_base + off);
  264. if (val == -EEXIST)
  265. kfree(phys_2_virt(paddr));
  266. else
  267. mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
  268. // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
  269. io_mfence();
  270. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  271. }
  272. }
  273. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  274. int64_t val = 0;
  275. if (remain_file_size > 0)
  276. {
  277. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  278. val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos);
  279. }
  280. if (val < 0)
  281. goto load_elf_failed;
  282. remain_mem_size -= map_size;
  283. remain_file_size -= val;
  284. virt_base += map_size;
  285. }
  286. }
  287. // 分配2MB的栈内存空间
  288. regs->rsp = current_pcb->mm->stack_start;
  289. regs->rbp = current_pcb->mm->stack_start;
  290. {
  291. struct vm_area_struct *vma = NULL;
  292. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  293. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  294. if (val == -EEXIST)
  295. free_pages(Phy_to_2M_Page(pa), 1);
  296. else
  297. mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
  298. }
  299. // 清空栈空间
  300. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  301. load_elf_failed:;
  302. if (buf != NULL)
  303. kfree(buf);
  304. return retval;
  305. }
  306. /**
  307. * @brief 使当前进程去执行新的代码
  308. *
  309. * @param regs 当前进程的寄存器
  310. * @param path 可执行程序的路径
  311. * @param argv 参数列表
  312. * @param envp 环境变量
  313. * @return ul 错误码
  314. */
  315. #pragma GCC push_options
  316. #pragma GCC optimize("O0")
  317. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  318. {
  319. // kdebug("do_execve is running...");
  320. // 当前进程正在与父进程共享地址空间,需要创建
  321. // 独立的地址空间才能使新程序正常运行
  322. if (current_pcb->flags & PF_VFORK)
  323. {
  324. kdebug("proc:%d creating new mem space", current_pcb->pid);
  325. // 分配新的内存空间分布结构体
  326. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  327. memset(new_mms, 0, sizeof(struct mm_struct));
  328. current_pcb->mm = new_mms;
  329. // 分配顶层页表, 并设置顶层页表的物理地址
  330. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  331. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  332. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  333. // 拷贝内核空间的页表指针
  334. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  335. }
  336. // 设置用户栈和用户堆的基地址
  337. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  338. const uint64_t brk_start_addr = 0x700000000000UL;
  339. process_switch_mm(current_pcb);
  340. // 为用户态程序设置地址边界
  341. if (!(current_pcb->flags & PF_KTHREAD))
  342. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  343. current_pcb->mm->code_addr_end = 0;
  344. current_pcb->mm->data_addr_start = 0;
  345. current_pcb->mm->data_addr_end = 0;
  346. current_pcb->mm->rodata_addr_start = 0;
  347. current_pcb->mm->rodata_addr_end = 0;
  348. current_pcb->mm->bss_start = 0;
  349. current_pcb->mm->bss_end = 0;
  350. current_pcb->mm->brk_start = brk_start_addr;
  351. current_pcb->mm->brk_end = brk_start_addr;
  352. current_pcb->mm->stack_start = stack_start_addr;
  353. // 关闭之前的文件描述符
  354. process_exit_files(current_pcb);
  355. // 清除进程的vfork标志位
  356. current_pcb->flags &= ~PF_VFORK;
  357. // 加载elf格式的可执行文件
  358. int tmp = process_load_elf_file(regs, path);
  359. if (tmp < 0)
  360. goto exec_failed;
  361. // 拷贝参数列表
  362. if (argv != NULL)
  363. {
  364. int argc = 0;
  365. // 目标程序的argv基地址指针,最大8个参数
  366. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  367. uint64_t str_addr = (uint64_t)dst_argv;
  368. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  369. {
  370. if (*argv[argc] == NULL)
  371. break;
  372. // 测量参数的长度(最大1023)
  373. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  374. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  375. str_addr -= argv_len;
  376. dst_argv[argc] = (char *)str_addr;
  377. // 字符串加上结尾字符
  378. ((char *)str_addr)[argv_len] = '\0';
  379. }
  380. // 重新设定栈基址,并预留空间防止越界
  381. stack_start_addr = str_addr - 8;
  382. current_pcb->mm->stack_start = stack_start_addr;
  383. regs->rsp = regs->rbp = stack_start_addr;
  384. // 传递参数
  385. regs->rdi = argc;
  386. regs->rsi = (uint64_t)dst_argv;
  387. }
  388. // kdebug("execve ok");
  389. regs->cs = USER_CS | 3;
  390. regs->ds = USER_DS | 3;
  391. regs->ss = USER_DS | 0x3;
  392. regs->rflags = 0x200246;
  393. regs->rax = 1;
  394. regs->es = 0;
  395. return 0;
  396. exec_failed:;
  397. process_do_exit(tmp);
  398. }
  399. #pragma GCC pop_options
  400. /**
  401. * @brief 内核init进程
  402. *
  403. * @param arg
  404. * @return ul 参数
  405. */
  406. #pragma GCC push_options
  407. #pragma GCC optimize("O0")
  408. ul initial_kernel_thread(ul arg)
  409. {
  410. // kinfo("initial proc running...\targ:%#018lx", arg);
  411. ahci_init();
  412. fat32_init();
  413. rootfs_umount();
  414. // 使用单独的内核线程来初始化usb驱动程序
  415. int usb_pid = kernel_thread(usb_init, 0, 0);
  416. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  417. // 对一些组件进行单元测试
  418. uint64_t tpid[] = {
  419. ktest_start(ktest_test_bitree, 0),
  420. ktest_start(ktest_test_kfifo, 0),
  421. ktest_start(ktest_test_mutex, 0),
  422. usb_pid,
  423. };
  424. kinfo("Waiting test thread exit...");
  425. // 等待测试进程退出
  426. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  427. waitpid(tpid[i], NULL, NULL);
  428. kinfo("All test done.");
  429. // 准备切换到用户态
  430. struct pt_regs *regs;
  431. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  432. cli();
  433. current_pcb->thread->rip = (ul)ret_from_system_call;
  434. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  435. current_pcb->thread->fs = USER_DS | 0x3;
  436. barrier();
  437. current_pcb->thread->gs = USER_DS | 0x3;
  438. // 主动放弃内核线程身份
  439. current_pcb->flags &= (~PF_KTHREAD);
  440. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  441. regs = (struct pt_regs *)current_pcb->thread->rsp;
  442. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  443. current_pcb->flags = 0;
  444. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  445. // 加载用户态程序:shell.elf
  446. char init_path[] = "/shell.elf";
  447. uint64_t addr = (uint64_t)&init_path;
  448. __asm__ __volatile__("movq %1, %%rsp \n\t"
  449. "pushq %2 \n\t"
  450. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  451. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  452. : "memory");
  453. return 1;
  454. }
  455. #pragma GCC pop_options
  456. /**
  457. * @brief 当子进程退出后向父进程发送通知
  458. *
  459. */
  460. void process_exit_notify()
  461. {
  462. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  463. }
  464. /**
  465. * @brief 进程退出时执行的函数
  466. *
  467. * @param code 返回码
  468. * @return ul
  469. */
  470. ul process_do_exit(ul code)
  471. {
  472. // kinfo("process exiting..., code is %ld.", (long)code);
  473. cli();
  474. struct process_control_block *pcb = current_pcb;
  475. // 进程退出时释放资源
  476. process_exit_files(pcb);
  477. process_exit_thread(pcb);
  478. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  479. pcb->state = PROC_ZOMBIE;
  480. pcb->exit_code = code;
  481. sti();
  482. process_exit_notify();
  483. sched();
  484. while (1)
  485. pause();
  486. }
  487. /**
  488. * @brief 初始化内核进程
  489. *
  490. * @param fn 目标程序的地址
  491. * @param arg 向目标程序传入的参数
  492. * @param flags
  493. * @return int
  494. */
  495. pid_t kernel_thread(int (*fn)(void*), void* arg, unsigned long flags)
  496. {
  497. struct pt_regs regs;
  498. barrier();
  499. memset(&regs, 0, sizeof(regs));
  500. barrier();
  501. // 在rbx寄存器中保存进程的入口地址
  502. regs.rbx = (ul)fn;
  503. // 在rdx寄存器中保存传入的参数
  504. regs.rdx = (ul)arg;
  505. barrier();
  506. regs.ds = KERNEL_DS;
  507. barrier();
  508. regs.es = KERNEL_DS;
  509. barrier();
  510. regs.cs = KERNEL_CS;
  511. barrier();
  512. regs.ss = KERNEL_DS;
  513. barrier();
  514. // 置位中断使能标志位
  515. regs.rflags = (1 << 9);
  516. barrier();
  517. // rip寄存器指向内核线程的引导程序
  518. regs.rip = (ul)kernel_thread_func;
  519. barrier();
  520. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  521. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  522. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  523. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  524. }
  525. /**
  526. * @brief 初始化进程模块
  527. * ☆前置条件:已完成系统调用模块的初始化
  528. */
  529. void process_init()
  530. {
  531. kinfo("Initializing process...");
  532. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  533. /*
  534. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  535. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  536. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  537. */
  538. // 初始化pid的写锁
  539. spin_init(&process_global_pid_write_lock);
  540. // 初始化进程的循环链表
  541. list_init(&initial_proc_union.pcb.list);
  542. // 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
  543. current_pcb->virtual_runtime = 0;
  544. barrier();
  545. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  546. barrier();
  547. kthread_mechanism_init(); // 初始化kthread机制
  548. initial_proc_union.pcb.state = PROC_RUNNING;
  549. initial_proc_union.pcb.preempt_count = 0;
  550. initial_proc_union.pcb.cpu_id = 0;
  551. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  552. // 将IDLE进程的虚拟运行时间设置为一个很大的数值
  553. current_pcb->virtual_runtime = (1UL << 60);
  554. }
  555. /**
  556. * @brief fork当前进程
  557. *
  558. * @param regs 新的寄存器值
  559. * @param clone_flags 克隆标志
  560. * @param stack_start 堆栈开始地址
  561. * @param stack_size 堆栈大小
  562. * @return unsigned long
  563. */
  564. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  565. {
  566. int retval = 0;
  567. struct process_control_block *tsk = NULL;
  568. // 为新的进程分配栈空间,并将pcb放置在底部
  569. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  570. barrier();
  571. if (tsk == NULL)
  572. {
  573. retval = -ENOMEM;
  574. return retval;
  575. }
  576. barrier();
  577. memset(tsk, 0, sizeof(struct process_control_block));
  578. io_mfence();
  579. // 将当前进程的pcb复制到新的pcb内
  580. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  581. tsk->worker_private = NULL;
  582. io_mfence();
  583. // 初始化进程的循环链表结点
  584. list_init(&tsk->list);
  585. io_mfence();
  586. // 判断是否为内核态调用fork
  587. if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
  588. tsk->flags |= PF_KFORK;
  589. if (tsk->flags & PF_KTHREAD)
  590. {
  591. // 对于内核线程,设置其worker私有信息
  592. retval = kthread_set_worker_private(tsk);
  593. if (IS_ERR_VALUE(retval))
  594. goto copy_flags_failed;
  595. tsk->virtual_runtime = 0;
  596. }
  597. tsk->priority = 2;
  598. tsk->preempt_count = 0;
  599. // 增加全局的pid并赋值给新进程的pid
  600. spin_lock(&process_global_pid_write_lock);
  601. tsk->pid = process_global_pid++;
  602. barrier();
  603. // 加入到进程链表中
  604. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  605. barrier();
  606. initial_proc_union.pcb.next_pcb = tsk;
  607. barrier();
  608. tsk->parent_pcb = current_pcb;
  609. barrier();
  610. spin_unlock(&process_global_pid_write_lock);
  611. tsk->cpu_id = proc_current_cpu_id;
  612. tsk->state = PROC_UNINTERRUPTIBLE;
  613. tsk->parent_pcb = current_pcb;
  614. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  615. barrier();
  616. list_init(&tsk->list);
  617. retval = -ENOMEM;
  618. // 拷贝标志位
  619. if (process_copy_flags(clone_flags, tsk))
  620. goto copy_flags_failed;
  621. // 拷贝内存空间分布结构体
  622. if (process_copy_mm(clone_flags, tsk))
  623. goto copy_mm_failed;
  624. // 拷贝文件
  625. if (process_copy_files(clone_flags, tsk))
  626. goto copy_files_failed;
  627. // 拷贝线程结构体
  628. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  629. goto copy_thread_failed;
  630. // 拷贝成功
  631. retval = tsk->pid;
  632. tsk->flags &= ~PF_KFORK;
  633. // 唤醒进程
  634. process_wakeup(tsk);
  635. return retval;
  636. copy_thread_failed:;
  637. // 回收线程
  638. process_exit_thread(tsk);
  639. copy_files_failed:;
  640. // 回收文件
  641. process_exit_files(tsk);
  642. copy_mm_failed:;
  643. // 回收内存空间分布结构体
  644. process_exit_mm(tsk);
  645. copy_flags_failed:;
  646. kfree(tsk);
  647. return retval;
  648. return 0;
  649. }
  650. /**
  651. * @brief 根据pid获取进程的pcb
  652. *
  653. * @param pid
  654. * @return struct process_control_block*
  655. */
  656. struct process_control_block *process_get_pcb(long pid)
  657. {
  658. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  659. // 使用蛮力法搜索指定pid的pcb
  660. // todo: 使用哈希表来管理pcb
  661. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  662. {
  663. if (pcb->pid == pid)
  664. return pcb;
  665. }
  666. return NULL;
  667. }
  668. /**
  669. * @brief 将进程加入到调度器的就绪队列中
  670. *
  671. * @param pcb 进程的pcb
  672. */
  673. int process_wakeup(struct process_control_block *pcb)
  674. {
  675. BUG_ON(pcb == NULL);
  676. if (pcb == current_pcb || pcb == NULL)
  677. return -EINVAL;
  678. // 如果pcb正在调度队列中,则不重复加入调度队列
  679. if (pcb->state == PROC_RUNNING)
  680. return 0;
  681. pcb->state = PROC_RUNNING;
  682. sched_enqueue(pcb);
  683. return 0;
  684. }
  685. /**
  686. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  687. *
  688. * @param pcb 进程的pcb
  689. */
  690. int process_wakeup_immediately(struct process_control_block *pcb)
  691. {
  692. if (pcb->state == PROC_RUNNING)
  693. return 0;
  694. int retval = process_wakeup(pcb);
  695. if (retval != 0)
  696. return retval;
  697. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  698. current_pcb->flags |= PF_NEED_SCHED;
  699. }
  700. /**
  701. * @brief 拷贝当前进程的标志位
  702. *
  703. * @param clone_flags 克隆标志位
  704. * @param pcb 新的进程的pcb
  705. * @return uint64_t
  706. */
  707. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  708. {
  709. if (clone_flags & CLONE_VM)
  710. pcb->flags |= PF_VFORK;
  711. return 0;
  712. }
  713. /**
  714. * @brief 拷贝当前进程的文件描述符等信息
  715. *
  716. * @param clone_flags 克隆标志位
  717. * @param pcb 新的进程的pcb
  718. * @return uint64_t
  719. */
  720. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  721. {
  722. int retval = 0;
  723. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  724. // 文件描述符已经在复制pcb时被拷贝
  725. if (clone_flags & CLONE_FS)
  726. return retval;
  727. // 为新进程拷贝新的文件描述符
  728. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  729. {
  730. if (current_pcb->fds[i] == NULL)
  731. continue;
  732. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  733. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  734. }
  735. return retval;
  736. }
  737. /**
  738. * @brief 回收进程的所有文件描述符
  739. *
  740. * @param pcb 要被回收的进程的pcb
  741. * @return uint64_t
  742. */
  743. uint64_t process_exit_files(struct process_control_block *pcb)
  744. {
  745. // 不与父进程共享文件描述符
  746. if (!(pcb->flags & PF_VFORK))
  747. {
  748. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  749. {
  750. if (pcb->fds[i] == NULL)
  751. continue;
  752. kfree(pcb->fds[i]);
  753. }
  754. }
  755. // 清空当前进程的文件描述符列表
  756. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  757. }
  758. /**
  759. * @brief 拷贝当前进程的内存空间分布结构体信息
  760. *
  761. * @param clone_flags 克隆标志位
  762. * @param pcb 新的进程的pcb
  763. * @return uint64_t
  764. */
  765. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  766. {
  767. int retval = 0;
  768. // 与父进程共享内存空间
  769. if (clone_flags & CLONE_VM)
  770. {
  771. pcb->mm = current_pcb->mm;
  772. return retval;
  773. }
  774. // 分配新的内存空间分布结构体
  775. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  776. memset(new_mms, 0, sizeof(struct mm_struct));
  777. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  778. new_mms->vmas = NULL;
  779. pcb->mm = new_mms;
  780. // 分配顶层页表, 并设置顶层页表的物理地址
  781. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  782. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  783. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  784. // 拷贝内核空间的页表指针
  785. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  786. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  787. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  788. // 拷贝用户空间的vma
  789. struct vm_area_struct *vma = current_pcb->mm->vmas;
  790. while (vma != NULL)
  791. {
  792. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  793. {
  794. vma = vma->vm_next;
  795. continue;
  796. }
  797. int64_t vma_size = vma->vm_end - vma->vm_start;
  798. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  799. if (vma_size > PAGE_2M_SIZE / 2)
  800. {
  801. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  802. for (int i = 0; i < page_to_alloc; ++i)
  803. {
  804. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  805. struct vm_area_struct *new_vma = NULL;
  806. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  807. // 防止内存泄露
  808. if (unlikely(ret == -EEXIST))
  809. free_pages(Phy_to_2M_Page(pa), 1);
  810. else
  811. mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
  812. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  813. vma_size -= PAGE_2M_SIZE;
  814. }
  815. }
  816. else
  817. {
  818. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  819. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  820. struct vm_area_struct *new_vma = NULL;
  821. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  822. // 防止内存泄露
  823. if (unlikely(ret == -EEXIST))
  824. kfree((void *)va);
  825. else
  826. mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
  827. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  828. }
  829. vma = vma->vm_next;
  830. }
  831. return retval;
  832. }
  833. /**
  834. * @brief 释放进程的页表
  835. *
  836. * @param pcb 要被释放页表的进程
  837. * @return uint64_t
  838. */
  839. uint64_t process_exit_mm(struct process_control_block *pcb)
  840. {
  841. if (pcb->flags & CLONE_VM)
  842. return 0;
  843. if (pcb->mm == NULL)
  844. {
  845. kdebug("pcb->mm==NULL");
  846. return 0;
  847. }
  848. if (pcb->mm->pgd == NULL)
  849. {
  850. kdebug("pcb->mm->pgd==NULL");
  851. return 0;
  852. }
  853. // // 获取顶层页表
  854. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  855. // 循环释放VMA中的内存
  856. struct vm_area_struct *vma = pcb->mm->vmas;
  857. while (vma != NULL)
  858. {
  859. struct vm_area_struct *cur_vma = vma;
  860. vma = cur_vma->vm_next;
  861. uint64_t pa;
  862. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  863. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  864. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  865. // 释放内存
  866. switch (size)
  867. {
  868. case PAGE_4K_SIZE:
  869. kfree(phys_2_virt(pa));
  870. break;
  871. default:
  872. break;
  873. }
  874. vm_area_del(cur_vma);
  875. vm_area_free(cur_vma);
  876. }
  877. // 释放顶层页表
  878. kfree(current_pgd);
  879. if (unlikely(pcb->mm->vmas != NULL))
  880. {
  881. kwarn("pcb.mm.vmas!=NULL");
  882. }
  883. // 释放内存空间分布结构体
  884. kfree(pcb->mm);
  885. return 0;
  886. }
  887. /**
  888. * @brief 重写内核栈中的rbp地址
  889. *
  890. * @param new_regs 子进程的reg
  891. * @param new_pcb 子进程的pcb
  892. * @return int
  893. */
  894. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  895. {
  896. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  897. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  898. uint64_t *rbp = &new_regs->rbp;
  899. uint64_t *tmp = rbp;
  900. // 超出内核栈范围
  901. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  902. return 0;
  903. while (1)
  904. {
  905. // 计算delta
  906. uint64_t delta = old_top - *rbp;
  907. // 计算新的rbp值
  908. uint64_t newVal = new_top - delta;
  909. // 新的值不合法
  910. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  911. break;
  912. // 将新的值写入对应位置
  913. *rbp = newVal;
  914. // 跳转栈帧
  915. rbp = (uint64_t *)*rbp;
  916. }
  917. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  918. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  919. return 0;
  920. }
  921. /**
  922. * @brief 拷贝当前进程的线程结构体
  923. *
  924. * @param clone_flags 克隆标志位
  925. * @param pcb 新的进程的pcb
  926. * @return uint64_t
  927. */
  928. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  929. {
  930. // 将线程结构体放置在pcb后方
  931. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  932. memset(thd, 0, sizeof(struct thread_struct));
  933. pcb->thread = thd;
  934. struct pt_regs *child_regs = NULL;
  935. // 拷贝栈空间
  936. if (pcb->flags & PF_KFORK) // 内核态下的fork
  937. {
  938. // 内核态下则拷贝整个内核栈
  939. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  940. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  941. memcpy(child_regs, (void *)current_regs, size);
  942. barrier();
  943. // 然后重写新的栈中,每个栈帧的rbp值
  944. process_rewrite_rbp(child_regs, pcb);
  945. }
  946. else
  947. {
  948. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  949. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  950. barrier();
  951. child_regs->rsp = stack_start;
  952. }
  953. // 设置子进程的返回值为0
  954. child_regs->rax = 0;
  955. if (pcb->flags & PF_KFORK)
  956. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  957. else
  958. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  959. // 设置新的内核线程开始执行的时候的rsp
  960. thd->rsp = (uint64_t)child_regs;
  961. thd->fs = current_pcb->thread->fs;
  962. thd->gs = current_pcb->thread->gs;
  963. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  964. if (pcb->flags & PF_KFORK)
  965. thd->rip = (uint64_t)ret_from_system_call;
  966. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  967. thd->rip = (uint64_t)kernel_thread_func;
  968. else
  969. thd->rip = (uint64_t)ret_from_system_call;
  970. return 0;
  971. }
  972. /**
  973. * @brief todo: 回收线程结构体
  974. *
  975. * @param pcb
  976. */
  977. void process_exit_thread(struct process_control_block *pcb)
  978. {
  979. }
  980. /**
  981. * @brief 释放pcb
  982. *
  983. * @param pcb
  984. * @return int
  985. */
  986. int process_release_pcb(struct process_control_block *pcb)
  987. {
  988. kfree(pcb);
  989. return 0;
  990. }
  991. /**
  992. * @brief 申请可用的文件句柄
  993. *
  994. * @return int
  995. */
  996. int process_fd_alloc(struct vfs_file_t *file)
  997. {
  998. int fd_num = -1;
  999. struct vfs_file_t **f = current_pcb->fds;
  1000. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  1001. {
  1002. /* 找到指针数组中的空位 */
  1003. if (f[i] == NULL)
  1004. {
  1005. fd_num = i;
  1006. f[i] = file;
  1007. break;
  1008. }
  1009. }
  1010. return fd_num;
  1011. }