process.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <mm/slab.h>
  15. #include <common/spinlock.h>
  16. #include <syscall/syscall.h>
  17. #include <syscall/syscall_num.h>
  18. #include <sched/sched.h>
  19. #include <common/unistd.h>
  20. #include <debug/traceback/traceback.h>
  21. #include <ktest/ktest.h>
  22. #include <mm/mmio.h>
  23. #include <common/lz4.h>
  24. // #pragma GCC push_options
  25. // #pragma GCC optimize("O0")
  26. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  27. long process_global_pid = 1; // 系统中最大的pid
  28. extern void system_call(void);
  29. extern void kernel_thread_func(void);
  30. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  31. extern struct mm_struct initial_mm;
  32. struct thread_struct initial_thread =
  33. {
  34. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  35. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  36. .fs = KERNEL_DS,
  37. .gs = KERNEL_DS,
  38. .cr2 = 0,
  39. .trap_num = 0,
  40. .err_code = 0};
  41. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  42. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  43. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  44. // 为每个核心初始化初始进程的tss
  45. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  46. /**
  47. * @brief 拷贝当前进程的标志位
  48. *
  49. * @param clone_flags 克隆标志位
  50. * @param pcb 新的进程的pcb
  51. * @return uint64_t
  52. */
  53. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  54. /**
  55. * @brief 拷贝当前进程的文件描述符等信息
  56. *
  57. * @param clone_flags 克隆标志位
  58. * @param pcb 新的进程的pcb
  59. * @return uint64_t
  60. */
  61. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  62. /**
  63. * @brief 回收进程的所有文件描述符
  64. *
  65. * @param pcb 要被回收的进程的pcb
  66. * @return uint64_t
  67. */
  68. uint64_t process_exit_files(struct process_control_block *pcb);
  69. /**
  70. * @brief 拷贝当前进程的内存空间分布结构体信息
  71. *
  72. * @param clone_flags 克隆标志位
  73. * @param pcb 新的进程的pcb
  74. * @return uint64_t
  75. */
  76. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  77. /**
  78. * @brief 释放进程的页表
  79. *
  80. * @param pcb 要被释放页表的进程
  81. * @return uint64_t
  82. */
  83. uint64_t process_exit_mm(struct process_control_block *pcb);
  84. /**
  85. * @brief 拷贝当前进程的线程结构体
  86. *
  87. * @param clone_flags 克隆标志位
  88. * @param pcb 新的进程的pcb
  89. * @return uint64_t
  90. */
  91. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  92. void process_exit_thread(struct process_control_block *pcb);
  93. /**
  94. * @brief 切换进程
  95. *
  96. * @param prev 上一个进程的pcb
  97. * @param next 将要切换到的进程的pcb
  98. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  99. * 这里切换fs和gs寄存器
  100. */
  101. #pragma GCC push_options
  102. #pragma GCC optimize("O0")
  103. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  104. {
  105. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  106. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  107. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  108. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  109. __asm__ __volatile__("movq %%fs, %0 \n\t"
  110. : "=a"(prev->thread->fs));
  111. __asm__ __volatile__("movq %%gs, %0 \n\t"
  112. : "=a"(prev->thread->gs));
  113. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  114. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  115. }
  116. #pragma GCC pop_options
  117. /**
  118. * @brief 打开要执行的程序文件
  119. *
  120. * @param path
  121. * @return struct vfs_file_t*
  122. */
  123. struct vfs_file_t *process_open_exec_file(char *path)
  124. {
  125. struct vfs_dir_entry_t *dentry = NULL;
  126. struct vfs_file_t *filp = NULL;
  127. dentry = vfs_path_walk(path, 0);
  128. if (dentry == NULL)
  129. return (void *)-ENOENT;
  130. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  131. return (void *)-ENOTDIR;
  132. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  133. if (filp == NULL)
  134. return (void *)-ENOMEM;
  135. filp->position = 0;
  136. filp->mode = 0;
  137. filp->dEntry = dentry;
  138. filp->mode = ATTR_READ_ONLY;
  139. filp->file_ops = dentry->dir_inode->file_ops;
  140. return filp;
  141. }
  142. /**
  143. * @brief 加载elf格式的程序文件到内存中,并设置regs
  144. *
  145. * @param regs 寄存器
  146. * @param path 文件路径
  147. * @return int
  148. */
  149. static int process_load_elf_file(struct pt_regs *regs, char *path)
  150. {
  151. int retval = 0;
  152. struct vfs_file_t *filp = process_open_exec_file(path);
  153. if ((long)filp <= 0 && (long)filp >= -255)
  154. {
  155. // kdebug("(long)filp=%ld", (long)filp);
  156. return (unsigned long)filp;
  157. }
  158. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  159. memset(buf, 0, PAGE_4K_SIZE);
  160. uint64_t pos = 0;
  161. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  162. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  163. retval = 0;
  164. if (!elf_check(buf))
  165. {
  166. kerror("Not an ELF file: %s", path);
  167. retval = -ENOTSUP;
  168. goto load_elf_failed;
  169. }
  170. #if ARCH(X86_64)
  171. // 暂时只支持64位的文件
  172. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  173. {
  174. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  175. retval = -EUNSUPPORTED;
  176. goto load_elf_failed;
  177. }
  178. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  179. // 暂时只支持AMD64架构
  180. if (ehdr.e_machine != EM_AMD64)
  181. {
  182. kerror("e_machine=%d", ehdr.e_machine);
  183. retval = -EUNSUPPORTED;
  184. goto load_elf_failed;
  185. }
  186. #else
  187. #error Unsupported architecture!
  188. #endif
  189. if (ehdr.e_type != ET_EXEC)
  190. {
  191. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  192. retval = -EUNSUPPORTED;
  193. goto load_elf_failed;
  194. }
  195. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  196. regs->rip = ehdr.e_entry;
  197. current_pcb->mm->code_addr_start = ehdr.e_entry;
  198. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  199. // 将指针移动到program header处
  200. pos = ehdr.e_phoff;
  201. // 读取所有的phdr
  202. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  203. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  204. if ((unsigned long)filp <= 0)
  205. {
  206. kdebug("(unsigned long)filp=%d", (long)filp);
  207. retval = -ENOEXEC;
  208. goto load_elf_failed;
  209. }
  210. Elf64_Phdr *phdr = buf;
  211. // 将程序加载到内存中
  212. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  213. {
  214. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  215. // 不是可加载的段
  216. if (phdr->p_type != PT_LOAD)
  217. continue;
  218. int64_t remain_mem_size = phdr->p_memsz;
  219. int64_t remain_file_size = phdr->p_filesz;
  220. pos = phdr->p_offset;
  221. uint64_t virt_base = phdr->p_vaddr;
  222. while (remain_mem_size > 0)
  223. {
  224. // kdebug("loading...");
  225. int64_t map_size = 0;
  226. if (remain_mem_size > PAGE_2M_SIZE / 2)
  227. {
  228. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  229. struct vm_area_struct *vma = NULL;
  230. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  231. // 防止内存泄露
  232. if (ret == -EEXIST)
  233. free_pages(Phy_to_2M_Page(pa), 1);
  234. else
  235. mm_map_vma(vma, pa);
  236. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  237. map_size = PAGE_2M_SIZE;
  238. }
  239. else
  240. {
  241. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  242. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  243. // 循环分配4K大小内存块
  244. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  245. {
  246. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  247. struct vm_area_struct *vma = NULL;
  248. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  249. if (val == -EEXIST)
  250. kfree(phys_2_virt(paddr));
  251. else
  252. mm_map_vma(vma, paddr);
  253. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  254. }
  255. }
  256. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  257. int64_t val = 0;
  258. if (remain_file_size != 0)
  259. {
  260. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  261. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  262. }
  263. if (val < 0)
  264. goto load_elf_failed;
  265. remain_mem_size -= map_size;
  266. remain_file_size -= val;
  267. virt_base += map_size;
  268. }
  269. }
  270. // 分配2MB的栈内存空间
  271. regs->rsp = current_pcb->mm->stack_start;
  272. regs->rbp = current_pcb->mm->stack_start;
  273. {
  274. struct vm_area_struct *vma = NULL;
  275. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  276. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  277. if (val == -EEXIST)
  278. free_pages(Phy_to_2M_Page(pa), 1);
  279. else
  280. mm_map_vma(vma, pa);
  281. }
  282. // 清空栈空间
  283. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  284. load_elf_failed:;
  285. if (buf != NULL)
  286. kfree(buf);
  287. return retval;
  288. }
  289. /**
  290. * @brief 使当前进程去执行新的代码
  291. *
  292. * @param regs 当前进程的寄存器
  293. * @param path 可执行程序的路径
  294. * @param argv 参数列表
  295. * @param envp 环境变量
  296. * @return ul 错误码
  297. */
  298. #pragma GCC push_options
  299. #pragma GCC optimize("O0")
  300. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  301. {
  302. // kdebug("do_execve is running...");
  303. // 当前进程正在与父进程共享地址空间,需要创建
  304. // 独立的地址空间才能使新程序正常运行
  305. if (current_pcb->flags & PF_VFORK)
  306. {
  307. kdebug("proc:%d creating new mem space", current_pcb->pid);
  308. // 分配新的内存空间分布结构体
  309. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  310. memset(new_mms, 0, sizeof(struct mm_struct));
  311. current_pcb->mm = new_mms;
  312. // 分配顶层页表, 并设置顶层页表的物理地址
  313. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  314. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  315. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  316. // 拷贝内核空间的页表指针
  317. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  318. }
  319. // 设置用户栈和用户堆的基地址
  320. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  321. const uint64_t brk_start_addr = 0x700000000000UL;
  322. process_switch_mm(current_pcb);
  323. // 为用户态程序设置地址边界
  324. if (!(current_pcb->flags & PF_KTHREAD))
  325. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  326. current_pcb->mm->code_addr_end = 0;
  327. current_pcb->mm->data_addr_start = 0;
  328. current_pcb->mm->data_addr_end = 0;
  329. current_pcb->mm->rodata_addr_start = 0;
  330. current_pcb->mm->rodata_addr_end = 0;
  331. current_pcb->mm->bss_start = 0;
  332. current_pcb->mm->bss_end = 0;
  333. current_pcb->mm->brk_start = brk_start_addr;
  334. current_pcb->mm->brk_end = brk_start_addr;
  335. current_pcb->mm->stack_start = stack_start_addr;
  336. // 关闭之前的文件描述符
  337. process_exit_files(current_pcb);
  338. // 清除进程的vfork标志位
  339. current_pcb->flags &= ~PF_VFORK;
  340. // 加载elf格式的可执行文件
  341. int tmp = process_load_elf_file(regs, path);
  342. if (tmp < 0)
  343. goto exec_failed;
  344. // 拷贝参数列表
  345. if (argv != NULL)
  346. {
  347. int argc = 0;
  348. // 目标程序的argv基地址指针,最大8个参数
  349. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  350. uint64_t str_addr = (uint64_t)dst_argv;
  351. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  352. {
  353. if (*argv[argc] == NULL)
  354. break;
  355. // 测量参数的长度(最大1023)
  356. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  357. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  358. str_addr -= argv_len;
  359. dst_argv[argc] = (char *)str_addr;
  360. // 字符串加上结尾字符
  361. ((char *)str_addr)[argv_len] = '\0';
  362. }
  363. // 重新设定栈基址,并预留空间防止越界
  364. stack_start_addr = str_addr - 8;
  365. current_pcb->mm->stack_start = stack_start_addr;
  366. regs->rsp = regs->rbp = stack_start_addr;
  367. // 传递参数
  368. regs->rdi = argc;
  369. regs->rsi = (uint64_t)dst_argv;
  370. }
  371. // kdebug("execve ok");
  372. regs->cs = USER_CS | 3;
  373. regs->ds = USER_DS | 3;
  374. regs->ss = USER_DS | 0x3;
  375. regs->rflags = 0x200246;
  376. regs->rax = 1;
  377. regs->es = 0;
  378. return 0;
  379. exec_failed:;
  380. process_do_exit(tmp);
  381. }
  382. #pragma GCC pop_options
  383. /**
  384. * @brief 内核init进程
  385. *
  386. * @param arg
  387. * @return ul 参数
  388. */
  389. #pragma GCC push_options
  390. #pragma GCC optimize("O0")
  391. ul initial_kernel_thread(ul arg)
  392. {
  393. // kinfo("initial proc running...\targ:%#018lx", arg);
  394. fat32_init();
  395. usb_init();
  396. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  397. // 对一些组件进行单元测试
  398. uint64_t tpid[] = {
  399. ktest_start(ktest_test_bitree, 0),
  400. ktest_start(ktest_test_kfifo, 0),
  401. ktest_start(ktest_test_mutex, 0),
  402. };
  403. kinfo("Waiting test thread exit...");
  404. // 等待测试进程退出
  405. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  406. waitpid(tpid[i], NULL, NULL);
  407. kinfo("All test done.");
  408. // pid_t p = fork();
  409. // if (p == 0)
  410. // {
  411. // kdebug("in subproc, rflags=%#018lx", get_rflags());
  412. // while (1)
  413. // usleep(1000);
  414. // }
  415. // kdebug("subprocess pid=%d", p);
  416. // 准备切换到用户态
  417. struct pt_regs *regs;
  418. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  419. cli();
  420. current_pcb->thread->rip = (ul)ret_from_system_call;
  421. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  422. current_pcb->thread->fs = USER_DS | 0x3;
  423. barrier();
  424. current_pcb->thread->gs = USER_DS | 0x3;
  425. // 主动放弃内核线程身份
  426. current_pcb->flags &= (~PF_KTHREAD);
  427. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  428. regs = (struct pt_regs *)current_pcb->thread->rsp;
  429. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  430. current_pcb->flags = 0;
  431. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  432. // 加载用户态程序:shell.elf
  433. char init_path[] = "/shell.elf";
  434. uint64_t addr = (uint64_t)&init_path;
  435. __asm__ __volatile__("movq %1, %%rsp \n\t"
  436. "pushq %2 \n\t"
  437. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  438. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  439. : "memory");
  440. return 1;
  441. }
  442. #pragma GCC pop_options
  443. /**
  444. * @brief 当子进程退出后向父进程发送通知
  445. *
  446. */
  447. void process_exit_notify()
  448. {
  449. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  450. }
  451. /**
  452. * @brief 进程退出时执行的函数
  453. *
  454. * @param code 返回码
  455. * @return ul
  456. */
  457. ul process_do_exit(ul code)
  458. {
  459. // kinfo("process exiting..., code is %ld.", (long)code);
  460. cli();
  461. struct process_control_block *pcb = current_pcb;
  462. // 进程退出时释放资源
  463. process_exit_files(pcb);
  464. process_exit_thread(pcb);
  465. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  466. pcb->state = PROC_ZOMBIE;
  467. pcb->exit_code = code;
  468. sti();
  469. process_exit_notify();
  470. sched();
  471. while (1)
  472. pause();
  473. }
  474. /**
  475. * @brief 初始化内核进程
  476. *
  477. * @param fn 目标程序的地址
  478. * @param arg 向目标程序传入的参数
  479. * @param flags
  480. * @return int
  481. */
  482. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  483. {
  484. struct pt_regs regs;
  485. barrier();
  486. memset(&regs, 0, sizeof(regs));
  487. barrier();
  488. // 在rbx寄存器中保存进程的入口地址
  489. regs.rbx = (ul)fn;
  490. // 在rdx寄存器中保存传入的参数
  491. regs.rdx = (ul)arg;
  492. barrier();
  493. regs.ds = KERNEL_DS;
  494. barrier();
  495. regs.es = KERNEL_DS;
  496. barrier();
  497. regs.cs = KERNEL_CS;
  498. barrier();
  499. regs.ss = KERNEL_DS;
  500. barrier();
  501. // 置位中断使能标志位
  502. regs.rflags = (1 << 9);
  503. barrier();
  504. // rip寄存器指向内核线程的引导程序
  505. regs.rip = (ul)kernel_thread_func;
  506. barrier();
  507. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  508. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  509. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  510. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  511. }
  512. /**
  513. * @brief 初始化进程模块
  514. * ☆前置条件:已完成系统调用模块的初始化
  515. */
  516. void process_init()
  517. {
  518. kinfo("Initializing process...");
  519. initial_mm.pgd = (pml4t_t *)get_CR3();
  520. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  521. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  522. initial_mm.data_addr_start = (ul)&_data;
  523. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  524. initial_mm.rodata_addr_start = (ul)&_rodata;
  525. initial_mm.rodata_addr_end = (ul)&_erodata;
  526. initial_mm.bss_start = (uint64_t)&_bss;
  527. initial_mm.bss_end = (uint64_t)&_ebss;
  528. initial_mm.brk_start = memory_management_struct.start_brk;
  529. initial_mm.brk_end = current_pcb->addr_limit;
  530. initial_mm.stack_start = _stack_start;
  531. initial_mm.vmas = NULL;
  532. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  533. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  534. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  535. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  536. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  537. for (int i = 256; i < 512; ++i)
  538. {
  539. uint64_t *tmp = idle_pml4t_vaddr + i;
  540. barrier();
  541. if (*tmp == 0)
  542. {
  543. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  544. barrier();
  545. memset(pdpt, 0, PAGE_4K_SIZE);
  546. barrier();
  547. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  548. }
  549. }
  550. barrier();
  551. flush_tlb();
  552. /*
  553. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  554. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  555. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  556. */
  557. // 初始化pid的写锁
  558. spin_init(&process_global_pid_write_lock);
  559. // 初始化进程的循环链表
  560. list_init(&initial_proc_union.pcb.list);
  561. barrier();
  562. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  563. barrier();
  564. initial_proc_union.pcb.state = PROC_RUNNING;
  565. initial_proc_union.pcb.preempt_count = 0;
  566. initial_proc_union.pcb.cpu_id = 0;
  567. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  568. current_pcb->virtual_runtime = (1UL << 60);
  569. }
  570. /**
  571. * @brief fork当前进程
  572. *
  573. * @param regs 新的寄存器值
  574. * @param clone_flags 克隆标志
  575. * @param stack_start 堆栈开始地址
  576. * @param stack_size 堆栈大小
  577. * @return unsigned long
  578. */
  579. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  580. {
  581. int retval = 0;
  582. struct process_control_block *tsk = NULL;
  583. // 为新的进程分配栈空间,并将pcb放置在底部
  584. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  585. barrier();
  586. if (tsk == NULL)
  587. {
  588. retval = -ENOMEM;
  589. return retval;
  590. }
  591. barrier();
  592. memset(tsk, 0, sizeof(struct process_control_block));
  593. io_mfence();
  594. // 将当前进程的pcb复制到新的pcb内
  595. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  596. io_mfence();
  597. // 初始化进程的循环链表结点
  598. list_init(&tsk->list);
  599. io_mfence();
  600. // 判断是否为内核态调用fork
  601. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  602. tsk->flags |= PF_KFORK;
  603. tsk->priority = 2;
  604. tsk->preempt_count = 0;
  605. // 增加全局的pid并赋值给新进程的pid
  606. spin_lock(&process_global_pid_write_lock);
  607. tsk->pid = process_global_pid++;
  608. barrier();
  609. // 加入到进程链表中
  610. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  611. barrier();
  612. initial_proc_union.pcb.next_pcb = tsk;
  613. barrier();
  614. tsk->parent_pcb = current_pcb;
  615. barrier();
  616. spin_unlock(&process_global_pid_write_lock);
  617. tsk->cpu_id = proc_current_cpu_id;
  618. tsk->state = PROC_UNINTERRUPTIBLE;
  619. tsk->parent_pcb = current_pcb;
  620. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  621. barrier();
  622. list_init(&tsk->list);
  623. retval = -ENOMEM;
  624. // 拷贝标志位
  625. if (process_copy_flags(clone_flags, tsk))
  626. goto copy_flags_failed;
  627. // 拷贝内存空间分布结构体
  628. if (process_copy_mm(clone_flags, tsk))
  629. goto copy_mm_failed;
  630. // 拷贝文件
  631. if (process_copy_files(clone_flags, tsk))
  632. goto copy_files_failed;
  633. // 拷贝线程结构体
  634. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  635. goto copy_thread_failed;
  636. // 拷贝成功
  637. retval = tsk->pid;
  638. tsk->flags &= ~PF_KFORK;
  639. // 唤醒进程
  640. process_wakeup(tsk);
  641. return retval;
  642. copy_thread_failed:;
  643. // 回收线程
  644. process_exit_thread(tsk);
  645. copy_files_failed:;
  646. // 回收文件
  647. process_exit_files(tsk);
  648. copy_mm_failed:;
  649. // 回收内存空间分布结构体
  650. process_exit_mm(tsk);
  651. copy_flags_failed:;
  652. kfree(tsk);
  653. return retval;
  654. return 0;
  655. }
  656. /**
  657. * @brief 根据pid获取进程的pcb
  658. *
  659. * @param pid
  660. * @return struct process_control_block*
  661. */
  662. struct process_control_block *process_get_pcb(long pid)
  663. {
  664. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  665. // 使用蛮力法搜索指定pid的pcb
  666. // todo: 使用哈希表来管理pcb
  667. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  668. {
  669. if (pcb->pid == pid)
  670. return pcb;
  671. }
  672. return NULL;
  673. }
  674. /**
  675. * @brief 将进程加入到调度器的就绪队列中
  676. *
  677. * @param pcb 进程的pcb
  678. */
  679. void process_wakeup(struct process_control_block *pcb)
  680. {
  681. pcb->state = PROC_RUNNING;
  682. sched_enqueue(pcb);
  683. }
  684. /**
  685. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  686. *
  687. * @param pcb 进程的pcb
  688. */
  689. void process_wakeup_immediately(struct process_control_block *pcb)
  690. {
  691. pcb->state = PROC_RUNNING;
  692. sched_enqueue(pcb);
  693. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  694. current_pcb->flags |= PF_NEED_SCHED;
  695. }
  696. /**
  697. * @brief 拷贝当前进程的标志位
  698. *
  699. * @param clone_flags 克隆标志位
  700. * @param pcb 新的进程的pcb
  701. * @return uint64_t
  702. */
  703. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  704. {
  705. if (clone_flags & CLONE_VM)
  706. pcb->flags |= PF_VFORK;
  707. return 0;
  708. }
  709. /**
  710. * @brief 拷贝当前进程的文件描述符等信息
  711. *
  712. * @param clone_flags 克隆标志位
  713. * @param pcb 新的进程的pcb
  714. * @return uint64_t
  715. */
  716. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  717. {
  718. int retval = 0;
  719. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  720. // 文件描述符已经在复制pcb时被拷贝
  721. if (clone_flags & CLONE_FS)
  722. return retval;
  723. // 为新进程拷贝新的文件描述符
  724. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  725. {
  726. if (current_pcb->fds[i] == NULL)
  727. continue;
  728. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  729. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  730. }
  731. return retval;
  732. }
  733. /**
  734. * @brief 回收进程的所有文件描述符
  735. *
  736. * @param pcb 要被回收的进程的pcb
  737. * @return uint64_t
  738. */
  739. uint64_t process_exit_files(struct process_control_block *pcb)
  740. {
  741. // 不与父进程共享文件描述符
  742. if (!(pcb->flags & PF_VFORK))
  743. {
  744. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  745. {
  746. if (pcb->fds[i] == NULL)
  747. continue;
  748. kfree(pcb->fds[i]);
  749. }
  750. }
  751. // 清空当前进程的文件描述符列表
  752. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  753. }
  754. /**
  755. * @brief 拷贝当前进程的内存空间分布结构体信息
  756. *
  757. * @param clone_flags 克隆标志位
  758. * @param pcb 新的进程的pcb
  759. * @return uint64_t
  760. */
  761. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  762. {
  763. int retval = 0;
  764. // 与父进程共享内存空间
  765. if (clone_flags & CLONE_VM)
  766. {
  767. pcb->mm = current_pcb->mm;
  768. return retval;
  769. }
  770. // 分配新的内存空间分布结构体
  771. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  772. memset(new_mms, 0, sizeof(struct mm_struct));
  773. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  774. new_mms->vmas = NULL;
  775. pcb->mm = new_mms;
  776. // 分配顶层页表, 并设置顶层页表的物理地址
  777. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  778. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  779. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  780. // 拷贝内核空间的页表指针
  781. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  782. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  783. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  784. // 拷贝用户空间的vma
  785. struct vm_area_struct *vma = current_pcb->mm->vmas;
  786. while (vma != NULL)
  787. {
  788. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  789. {
  790. vma = vma->vm_next;
  791. continue;
  792. }
  793. int64_t vma_size = vma->vm_end - vma->vm_start;
  794. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  795. if (vma_size > PAGE_2M_SIZE / 2)
  796. {
  797. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  798. for (int i = 0; i < page_to_alloc; ++i)
  799. {
  800. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  801. struct vm_area_struct *new_vma = NULL;
  802. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  803. // 防止内存泄露
  804. if (unlikely(ret == -EEXIST))
  805. free_pages(Phy_to_2M_Page(pa), 1);
  806. else
  807. mm_map_vma(new_vma, pa);
  808. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  809. vma_size -= PAGE_2M_SIZE;
  810. }
  811. }
  812. else
  813. {
  814. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  815. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  816. struct vm_area_struct *new_vma = NULL;
  817. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  818. // 防止内存泄露
  819. if (unlikely(ret == -EEXIST))
  820. kfree((void *)va);
  821. else
  822. mm_map_vma(new_vma, virt_2_phys(va));
  823. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  824. }
  825. vma = vma->vm_next;
  826. }
  827. return retval;
  828. }
  829. /**
  830. * @brief 释放进程的页表
  831. *
  832. * @param pcb 要被释放页表的进程
  833. * @return uint64_t
  834. */
  835. uint64_t process_exit_mm(struct process_control_block *pcb)
  836. {
  837. if (pcb->flags & CLONE_VM)
  838. return 0;
  839. if (pcb->mm == NULL)
  840. {
  841. kdebug("pcb->mm==NULL");
  842. return 0;
  843. }
  844. if (pcb->mm->pgd == NULL)
  845. {
  846. kdebug("pcb->mm->pgd==NULL");
  847. return 0;
  848. }
  849. // // 获取顶层页表
  850. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  851. // 循环释放VMA中的内存
  852. struct vm_area_struct *vma = pcb->mm->vmas;
  853. while (vma != NULL)
  854. {
  855. struct vm_area_struct *cur_vma = vma;
  856. vma = cur_vma->vm_next;
  857. uint64_t pa;
  858. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  859. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  860. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  861. // 释放内存
  862. switch (size)
  863. {
  864. case PAGE_4K_SIZE:
  865. kfree(phys_2_virt(pa));
  866. break;
  867. default:
  868. break;
  869. }
  870. vm_area_del(cur_vma);
  871. vm_area_free(cur_vma);
  872. }
  873. // 释放顶层页表
  874. kfree(current_pgd);
  875. if (unlikely(pcb->mm->vmas != NULL))
  876. {
  877. kwarn("pcb.mm.vmas!=NULL");
  878. }
  879. // 释放内存空间分布结构体
  880. kfree(pcb->mm);
  881. return 0;
  882. }
  883. /**
  884. * @brief 重写内核栈中的rbp地址
  885. *
  886. * @param new_regs 子进程的reg
  887. * @param new_pcb 子进程的pcb
  888. * @return int
  889. */
  890. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  891. {
  892. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  893. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  894. uint64_t *rbp = &new_regs->rbp;
  895. uint64_t *tmp = rbp;
  896. // 超出内核栈范围
  897. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  898. return 0;
  899. while (1)
  900. {
  901. // 计算delta
  902. uint64_t delta = old_top - *rbp;
  903. // 计算新的rbp值
  904. uint64_t newVal = new_top - delta;
  905. // 新的值不合法
  906. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  907. break;
  908. // 将新的值写入对应位置
  909. *rbp = newVal;
  910. // 跳转栈帧
  911. rbp = (uint64_t *)*rbp;
  912. }
  913. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  914. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  915. return 0;
  916. }
  917. /**
  918. * @brief 拷贝当前进程的线程结构体
  919. *
  920. * @param clone_flags 克隆标志位
  921. * @param pcb 新的进程的pcb
  922. * @return uint64_t
  923. */
  924. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  925. {
  926. // 将线程结构体放置在pcb后方
  927. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  928. memset(thd, 0, sizeof(struct thread_struct));
  929. pcb->thread = thd;
  930. struct pt_regs *child_regs = NULL;
  931. // 拷贝栈空间
  932. if (pcb->flags & PF_KFORK) // 内核态下的fork
  933. {
  934. // 内核态下则拷贝整个内核栈
  935. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  936. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  937. memcpy(child_regs, (void *)current_regs, size);
  938. barrier();
  939. // 然后重写新的栈中,每个栈帧的rbp值
  940. process_rewrite_rbp(child_regs, pcb);
  941. }
  942. else
  943. {
  944. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  945. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  946. barrier();
  947. child_regs->rsp = stack_start;
  948. }
  949. // 设置子进程的返回值为0
  950. child_regs->rax = 0;
  951. if (pcb->flags & PF_KFORK)
  952. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  953. else
  954. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  955. // 设置新的内核线程开始执行的时候的rsp
  956. thd->rsp = (uint64_t)child_regs;
  957. thd->fs = current_pcb->thread->fs;
  958. thd->gs = current_pcb->thread->gs;
  959. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  960. if (pcb->flags & PF_KFORK)
  961. thd->rip = (uint64_t)ret_from_system_call;
  962. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  963. thd->rip = (uint64_t)kernel_thread_func;
  964. else
  965. thd->rip = (uint64_t)ret_from_system_call;
  966. return 0;
  967. }
  968. /**
  969. * @brief todo: 回收线程结构体
  970. *
  971. * @param pcb
  972. */
  973. void process_exit_thread(struct process_control_block *pcb)
  974. {
  975. }
  976. /**
  977. * @brief 申请可用的文件句柄
  978. *
  979. * @return int
  980. */
  981. int process_fd_alloc(struct vfs_file_t *file)
  982. {
  983. int fd_num = -1;
  984. struct vfs_file_t **f = current_pcb->fds;
  985. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  986. {
  987. /* 找到指针数组中的空位 */
  988. if (f[i] == NULL)
  989. {
  990. fd_num = i;
  991. f[i] = file;
  992. break;
  993. }
  994. }
  995. return fd_num;
  996. }