slab.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. #include "slab.h"
  2. struct slab kmalloc_cache_group[16] =
  3. {
  4. {32, 0, 0, NULL, NULL, NULL, NULL},
  5. {64, 0, 0, NULL, NULL, NULL, NULL},
  6. {128, 0, 0, NULL, NULL, NULL, NULL},
  7. {256, 0, 0, NULL, NULL, NULL, NULL},
  8. {512, 0, 0, NULL, NULL, NULL, NULL},
  9. {1024, 0, 0, NULL, NULL, NULL, NULL}, // 1KB
  10. {2048, 0, 0, NULL, NULL, NULL, NULL},
  11. {4096, 0, 0, NULL, NULL, NULL, NULL}, // 4KB
  12. {8192, 0, 0, NULL, NULL, NULL, NULL},
  13. {16384, 0, 0, NULL, NULL, NULL, NULL},
  14. {32768, 0, 0, NULL, NULL, NULL, NULL},
  15. {65536, 0, 0, NULL, NULL, NULL, NULL},
  16. {131072, 0, 0, NULL, NULL, NULL, NULL}, // 128KB
  17. {262144, 0, 0, NULL, NULL, NULL, NULL},
  18. {524288, 0, 0, NULL, NULL, NULL, NULL},
  19. {1048576, 0, 0, NULL, NULL, NULL, NULL}, // 1MB
  20. };
  21. /**
  22. * @brief 创建一个内存池
  23. *
  24. * @param size 内存池容量大小
  25. * @param constructor 构造函数
  26. * @param destructor 析构函数
  27. * @param arg 参数
  28. * @return struct slab* 构建好的内存池对象
  29. */
  30. struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), void *(*destructor)(void *vaddr, ul arg), ul arg)
  31. {
  32. struct slab *slab_pool = (struct slab *)kmalloc(sizeof(struct slab), 0);
  33. // BUG
  34. if (slab_pool == NULL)
  35. {
  36. kBUG("slab_create()->kmalloc()->slab == NULL");
  37. return NULL;
  38. }
  39. memset(slab_pool, 0, sizeof(struct slab));
  40. slab_pool->size = SIZEOF_LONG_ALIGN(size);
  41. slab_pool->count_total_using = 0;
  42. slab_pool->count_total_free = 0;
  43. // 直接分配cache_pool_entry结构体,避免每次访问都要检测是否为NULL,提升效率
  44. slab_pool->cache_pool_entry = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
  45. // BUG
  46. if (slab_pool->cache_pool_entry == NULL)
  47. {
  48. kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
  49. kfree(slab_pool);
  50. return NULL;
  51. }
  52. memset(slab_pool->cache_pool_entry, 0, sizeof(struct slab_obj));
  53. // dma内存池设置为空
  54. slab_pool->cache_dma_pool_entry = NULL;
  55. // 设置构造及析构函数
  56. slab_pool->constructor = constructor;
  57. slab_pool->destructor = destructor;
  58. list_init(&slab_pool->cache_pool_entry->list);
  59. // 分配属于内存池的内存页
  60. slab_pool->cache_pool_entry->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
  61. // BUG
  62. if (slab_pool->cache_pool_entry->page == NULL)
  63. {
  64. kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
  65. kfree(slab_pool->cache_pool_entry);
  66. kfree(slab_pool);
  67. return NULL;
  68. }
  69. // page_init(slab_pool->cache_pool_entry->page, PAGE_KERNEL);
  70. slab_pool->cache_pool_entry->count_using = 0;
  71. slab_pool->cache_pool_entry->count_free = PAGE_2M_SIZE / slab_pool->size;
  72. slab_pool->count_total_free = slab_pool->cache_pool_entry->count_free;
  73. slab_pool->cache_pool_entry->vaddr = phys_2_virt(slab_pool->cache_pool_entry->page->addr_phys);
  74. // bitmap有多少有效位
  75. slab_pool->cache_pool_entry->bmp_count = slab_pool->cache_pool_entry->count_free;
  76. // 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
  77. slab_pool->cache_pool_entry->bmp_len = ((slab_pool->cache_pool_entry->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  78. // 初始化位图
  79. slab_pool->cache_pool_entry->bmp = (ul *)kmalloc(slab_pool->cache_pool_entry->bmp_len, 0);
  80. // BUG
  81. if (slab_pool->cache_pool_entry->bmp == NULL)
  82. {
  83. kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
  84. free_pages(slab_pool->cache_pool_entry->page, 1);
  85. kfree(slab_pool->cache_pool_entry);
  86. kfree(slab_pool);
  87. return NULL;
  88. }
  89. // 将位图清空
  90. memset(slab_pool->cache_pool_entry->bmp, 0, slab_pool->cache_pool_entry->bmp_len);
  91. return slab_pool;
  92. }
  93. /**
  94. * @brief 销毁内存池
  95. * 只有当slab是空的时候才能销毁
  96. * @param slab_pool 要销毁的内存池
  97. * @return ul
  98. *
  99. */
  100. ul slab_destroy(struct slab *slab_pool)
  101. {
  102. struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
  103. if (slab_pool->count_total_using)
  104. {
  105. kBUG("slab_cache->count_total_using != 0");
  106. return ESLAB_NOTNULL;
  107. }
  108. struct slab_obj *tmp_slab_obj = NULL;
  109. while (!list_empty(&slab_obj_ptr->list))
  110. {
  111. tmp_slab_obj = slab_obj_ptr;
  112. // 获取下一个slab_obj的起始地址
  113. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  114. list_del(&tmp_slab_obj->list);
  115. kfree(tmp_slab_obj->bmp);
  116. page_clean(tmp_slab_obj->page);
  117. free_pages(tmp_slab_obj->page, 1);
  118. kfree(tmp_slab_obj);
  119. }
  120. kfree(slab_obj_ptr->bmp);
  121. page_clean(slab_obj_ptr->page);
  122. free_pages(slab_obj_ptr->page, 1);
  123. kfree(slab_obj_ptr);
  124. kfree(slab_pool);
  125. return 0;
  126. }
  127. /**
  128. * @brief 分配SLAB内存池中的内存对象
  129. *
  130. * @param slab_pool slab内存池
  131. * @param arg 传递给内存对象构造函数的参数
  132. * @return void* 内存空间的虚拟地址
  133. */
  134. void *slab_malloc(struct slab *slab_pool, ul arg)
  135. {
  136. struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
  137. struct slab_obj *tmp_slab_obj = NULL;
  138. // slab内存池中已经没有空闲的内存对象,进行扩容
  139. if (slab_pool->count_total_free == 0)
  140. {
  141. tmp_slab_obj = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
  142. // BUG
  143. if (tmp_slab_obj == NULL)
  144. {
  145. kBUG("slab_malloc()->kmalloc()->slab->tmp_slab_obj == NULL");
  146. return NULL;
  147. }
  148. memset(tmp_slab_obj, 0, sizeof(struct slab_obj));
  149. list_init(&tmp_slab_obj->list);
  150. tmp_slab_obj->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
  151. // BUG
  152. if (tmp_slab_obj->page == NULL)
  153. {
  154. kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->page == NULL");
  155. kfree(tmp_slab_obj);
  156. return NULL;
  157. }
  158. tmp_slab_obj->count_using = 0;
  159. tmp_slab_obj->count_free = PAGE_2M_SIZE / slab_pool->size;
  160. tmp_slab_obj->vaddr = phys_2_virt(tmp_slab_obj->page->addr_phys);
  161. tmp_slab_obj->bmp_count = tmp_slab_obj->count_free;
  162. // 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
  163. tmp_slab_obj->bmp_len = ((tmp_slab_obj->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  164. tmp_slab_obj->bmp = (ul *)kmalloc(tmp_slab_obj->bmp_len, 0);
  165. // BUG
  166. if (tmp_slab_obj->bmp == NULL)
  167. {
  168. kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->bmp == NULL");
  169. free_pages(tmp_slab_obj->page, 1);
  170. kfree(tmp_slab_obj);
  171. return NULL;
  172. }
  173. memset(tmp_slab_obj->bmp, 0, tmp_slab_obj->bmp_len);
  174. list_add(&slab_pool->cache_pool_entry->list, &tmp_slab_obj->list);
  175. slab_pool->count_total_free += tmp_slab_obj->count_free;
  176. slab_obj_ptr = tmp_slab_obj;
  177. }
  178. // 扩容完毕或无需扩容,开始分配内存对象
  179. int tmp_md;
  180. do
  181. {
  182. if (slab_obj_ptr->count_free == 0)
  183. {
  184. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  185. continue;
  186. }
  187. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  188. {
  189. // 当前bmp对应的内存对象都已经被分配
  190. if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
  191. {
  192. i += 63;
  193. continue;
  194. }
  195. // 第i个内存对象是空闲的
  196. tmp_md = i % 64;
  197. if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << tmp_md)) == 0)
  198. {
  199. // 置位bmp
  200. *(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << tmp_md);
  201. // 更新当前slab对象的计数器
  202. ++(slab_obj_ptr->count_using);
  203. --(slab_obj_ptr->count_free);
  204. // 更新slab内存池的计数器
  205. ++(slab_pool->count_total_using);
  206. --(slab_pool->count_total_free);
  207. if (slab_pool->constructor != NULL)
  208. {
  209. // 返回内存对象指针(要求构造函数返回内存对象指针)
  210. return slab_pool->constructor((char *)slab_obj_ptr->vaddr + slab_pool->size * i, arg);
  211. }
  212. // 返回内存对象指针
  213. else
  214. return (void *)((char *)slab_obj_ptr->vaddr + slab_pool->size * i);
  215. }
  216. }
  217. } while (slab_obj_ptr != slab_pool->cache_pool_entry);
  218. // should not be here
  219. kBUG("slab_malloc() ERROR: can't malloc");
  220. // 释放内存
  221. if (tmp_slab_obj != NULL)
  222. {
  223. list_del(&tmp_slab_obj->list);
  224. kfree(tmp_slab_obj->bmp);
  225. page_clean(tmp_slab_obj->page);
  226. free_pages(tmp_slab_obj->page, 1);
  227. kfree(tmp_slab_obj);
  228. }
  229. return NULL;
  230. }
  231. /**
  232. * @brief 回收slab内存池中的对象
  233. *
  234. * @param slab_pool 对应的内存池
  235. * @param addr 内存对象的虚拟地址
  236. * @param arg 传递给虚构函数的参数
  237. * @return ul
  238. */
  239. ul slab_free(struct slab *slab_pool, void *addr, ul arg)
  240. {
  241. struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
  242. do
  243. {
  244. // 虚拟地址不在当前内存池对象的管理范围内
  245. if (!(slab_obj_ptr->vaddr <= addr && addr <= (slab_obj_ptr->vaddr + PAGE_2M_SIZE)))
  246. {
  247. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  248. }
  249. else
  250. {
  251. // 计算出给定内存对象是第几个
  252. int index = (addr - slab_obj_ptr->vaddr) / slab_pool->size;
  253. // 复位位图中对应的位
  254. *(slab_obj_ptr->bmp + (index >> 6)) ^= (1UL << index % 64);
  255. ++(slab_obj_ptr->count_free);
  256. --(slab_obj_ptr->count_using);
  257. ++(slab_pool->count_total_free);
  258. --(slab_pool->count_total_using);
  259. // 有对应的析构函数,调用析构函数
  260. if (slab_pool->destructor != NULL)
  261. slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
  262. // 当前内存对象池的正在使用的内存对象为0,且内存池的空闲对象大于当前对象池的2倍,则销毁当前对象池,以减轻系统内存压力
  263. if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free) && (slab_obj_ptr != slab_pool->cache_pool_entry))
  264. {
  265. list_del(&slab_obj_ptr->list);
  266. slab_pool->count_total_free -= slab_obj_ptr->count_free;
  267. kfree(slab_obj_ptr->bmp);
  268. page_clean(slab_obj_ptr->page);
  269. free_pages(slab_obj_ptr->page, 1);
  270. kfree(slab_obj_ptr);
  271. }
  272. }
  273. return 0;
  274. } while (slab_obj_ptr != slab_pool->cache_pool_entry);
  275. kwarn("slab_free(): address not in current slab");
  276. return ENOT_IN_SLAB;
  277. }
  278. /**
  279. * @brief 初始化内存池组
  280. * 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
  281. * @return ul
  282. */
  283. ul slab_init()
  284. {
  285. kinfo("Initializing SLAB...");
  286. // 将slab的内存池空间放置在mms的后方
  287. ul tmp_addr = memory_management_struct.end_of_struct;
  288. for (int i = 0; i < 16; ++i)
  289. {
  290. // 将slab内存池对象的空间放置在mms的后面,并且预留4个unsigned long 的空间以防止内存越界
  291. kmalloc_cache_group[i].cache_pool_entry = (struct slab_obj *)memory_management_struct.end_of_struct;
  292. memory_management_struct.end_of_struct += sizeof(struct slab_obj) + (sizeof(ul) << 2);
  293. list_init(&kmalloc_cache_group[i].cache_pool_entry->list);
  294. // 初始化内存池对象
  295. kmalloc_cache_group[i].cache_pool_entry->count_using = 0;
  296. kmalloc_cache_group[i].cache_pool_entry->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
  297. kmalloc_cache_group[i].cache_pool_entry->bmp_len = (((kmalloc_cache_group[i].cache_pool_entry->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
  298. kmalloc_cache_group[i].cache_pool_entry->bmp_count = kmalloc_cache_group[i].cache_pool_entry->count_free;
  299. // 在slab对象后方放置bmp
  300. kmalloc_cache_group[i].cache_pool_entry->bmp = (ul *)memory_management_struct.end_of_struct;
  301. // bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
  302. memory_management_struct.end_of_struct = (ul)(memory_management_struct.end_of_struct + kmalloc_cache_group[i].cache_pool_entry->bmp_len + (sizeof(ul) << 2)) & (~(sizeof(ul) - 1));
  303. // @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
  304. memset(kmalloc_cache_group[i].cache_pool_entry->bmp, 0xff, kmalloc_cache_group[i].cache_pool_entry->bmp_len);
  305. for (int j = 0; j < kmalloc_cache_group[i].cache_pool_entry->bmp_count; ++j)
  306. *(kmalloc_cache_group[i].cache_pool_entry->bmp + (j >> 6)) ^= 1UL << (j % 64);
  307. kmalloc_cache_group[i].count_total_using = 0;
  308. kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool_entry->count_free;
  309. }
  310. struct Page *page = NULL;
  311. // 将上面初始化内存池组时,所占用的内存页进行初始化
  312. ul tmp_page_mms_end = virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT;
  313. ul page_num = 0;
  314. for (int i = PAGE_2M_ALIGN(virt_2_phys(tmp_addr)) >> PAGE_2M_SHIFT; i <= tmp_page_mms_end; ++i)
  315. {
  316. page = memory_management_struct.pages_struct + i;
  317. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  318. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  319. ++page->zone->count_pages_using;
  320. --page->zone->count_pages_free;
  321. page_init(page, PAGE_KERNEL_INIT | PAGE_KERNEL | PAGE_PGT_MAPPED);
  322. }
  323. //kdebug("2.memory_management_struct.bmp:%#018lx\tzone_struct->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  324. // 为slab内存池对象分配内存空间
  325. ul *virt = NULL;
  326. for (int i = 0; i < 16; ++i)
  327. {
  328. // 获取一个新的空页并添加到空页表,然后返回其虚拟地址
  329. virt = (ul *)((memory_management_struct.end_of_struct + PAGE_2M_SIZE * i + PAGE_2M_SIZE - 1) & PAGE_2M_MASK);
  330. page = Virt_To_2M_Page(virt);
  331. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  332. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  333. ++page->zone->count_pages_using;
  334. --page->zone->count_pages_free;
  335. page_init(page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  336. kmalloc_cache_group[i].cache_pool_entry->page = page;
  337. kmalloc_cache_group[i].cache_pool_entry->vaddr = virt;
  338. }
  339. //kdebug("3.memory_management_struct.bmp:%#018lx\tzone_struct->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  340. kinfo("SLAB initialized successfully!");
  341. return 0;
  342. }
  343. /**
  344. * @brief 在kmalloc中创建slab_obj的函数(与slab_malloc()中的类似)
  345. *
  346. * @param size
  347. * @return struct slab_obj* 创建好的slab_obj
  348. */
  349. struct slab_obj *kmalloc_create_slab_obj(ul size)
  350. {
  351. struct Page *page = alloc_pages(ZONE_NORMAL, 1, 0);
  352. // BUG
  353. if (page == NULL)
  354. {
  355. kBUG("kmalloc_create()->alloc_pages()=>page == NULL");
  356. return NULL;
  357. }
  358. page_init(page, PAGE_KERNEL);
  359. ul *vaddr = NULL;
  360. ul struct_size = 0;
  361. struct slab_obj *slab_obj_ptr;
  362. // 根据size大小,选择不同的分支来处理
  363. // 之所以选择512byte为分界点,是因为,此时bmp大小刚好为512byte。显而易见,选择过小的话会导致kmalloc函数与当前函数反复互相调用,最终导致栈溢出
  364. switch (size)
  365. {
  366. // ============ 对于size<=512byte的内存池对象,将slab_obj结构体和bmp放置在物理页的内部 ========
  367. // 由于这些对象的特征是,bmp占的空间大,而内存块的空间小,这样做的目的是避免再去申请一块内存来存储bmp,减少浪费。
  368. case 32:
  369. case 64:
  370. case 128:
  371. case 256:
  372. case 512:
  373. vaddr = phys_2_virt(page->addr_phys);
  374. // slab_obj结构体的大小 (本身的大小+bmp的大小)
  375. struct_size = sizeof(struct slab_obj) + PAGE_2M_SIZE / size / 8;
  376. // 将slab_obj放置到物理页的末尾
  377. slab_obj_ptr = (struct slab_obj *)((unsigned char *)vaddr + PAGE_2M_SIZE - struct_size);
  378. slab_obj_ptr->bmp = (void *)slab_obj_ptr + sizeof(struct slab_obj);
  379. slab_obj_ptr->count_free = (PAGE_2M_SIZE - struct_size) / size;
  380. slab_obj_ptr->count_using = 0;
  381. slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
  382. slab_obj_ptr->vaddr = vaddr;
  383. slab_obj_ptr->page = page;
  384. list_init(&slab_obj_ptr->list);
  385. slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  386. // @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
  387. memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
  388. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  389. *(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
  390. break;
  391. // ================= 较大的size时,slab_obj和bmp不再放置于当前物理页内部 ============
  392. // 因为在这种情况下,bmp很短,继续放置在当前物理页内部则会造成可分配的对象少,加剧了内存空间的浪费
  393. case 1024: // 1KB
  394. case 2048:
  395. case 4096: // 4KB
  396. case 8192:
  397. case 16384:
  398. case 32768:
  399. case 65536:
  400. case 131072: // 128KB
  401. case 262144:
  402. case 524288:
  403. case 1048576: // 1MB
  404. slab_obj_ptr = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
  405. slab_obj_ptr->count_free = PAGE_2M_SIZE / size;
  406. slab_obj_ptr->count_using = 0;
  407. slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
  408. slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
  409. slab_obj_ptr->bmp = (ul *)kmalloc(slab_obj_ptr->bmp_len, 0);
  410. // @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
  411. memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
  412. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  413. *(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
  414. slab_obj_ptr->vaddr = phys_2_virt(page->addr_phys);
  415. slab_obj_ptr->page = page;
  416. list_init(&slab_obj_ptr->list);
  417. break;
  418. // size 错误
  419. default:
  420. kerror("kamlloc_create(): Wrong size%d", size);
  421. free_pages(page, 1);
  422. return NULL;
  423. break;
  424. }
  425. return slab_obj_ptr;
  426. }
  427. /**
  428. * @brief 通用内存分配函数
  429. *
  430. * @param size 要分配的内存大小
  431. * @param flags 内存的flag
  432. * @return void* 内核内存虚拟地址
  433. */
  434. void *kmalloc(unsigned long size, unsigned long flags)
  435. {
  436. if (size > 1048576)
  437. {
  438. kwarn("kmalloc(): Can't alloc such memory: %ld bytes, because it is too large.", size);
  439. return NULL;
  440. }
  441. int index;
  442. for (int i = 0; i < 16; ++i)
  443. if (kmalloc_cache_group[i].size >= size)
  444. {
  445. index = i;
  446. break;
  447. }
  448. struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool_entry;
  449. //kdebug("count_total_free=%d", kmalloc_cache_group[index].count_total_free);
  450. // 内存池没有可用的内存对象,需要进行扩容
  451. if (kmalloc_cache_group[index].count_total_free == 0)
  452. {
  453. // 创建slab_obj
  454. slab_obj_ptr = kmalloc_create_slab_obj(kmalloc_cache_group[index].size);
  455. // BUG
  456. if (slab_obj_ptr == NULL)
  457. {
  458. kBUG("kmalloc()->kmalloc_create_slab_obj()=>slab == NULL");
  459. return NULL;
  460. }
  461. kmalloc_cache_group[index].count_total_free += slab_obj_ptr->count_free;
  462. list_add(&kmalloc_cache_group[index].cache_pool_entry->list, &slab_obj_ptr->list);
  463. }
  464. else // 内存对象充足
  465. {
  466. do
  467. {
  468. // 跳转到下一个内存池对象
  469. if (slab_obj_ptr->count_free == 0)
  470. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  471. else
  472. break;
  473. } while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool_entry);
  474. }
  475. // 寻找一块可用的内存对象
  476. int md;
  477. for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
  478. {
  479. // 当前bmp全部被使用
  480. if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
  481. {
  482. i += 63;
  483. continue;
  484. }
  485. md = i % 64;
  486. // 找到相应的内存对象
  487. if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << md)) == 0)
  488. {
  489. *(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << md);
  490. ++(slab_obj_ptr->count_using);
  491. --(slab_obj_ptr->count_free);
  492. --kmalloc_cache_group[index].count_total_free;
  493. ++kmalloc_cache_group[index].count_total_using;
  494. return (void *)((char *)slab_obj_ptr->vaddr + kmalloc_cache_group[index].size * i);
  495. }
  496. }
  497. kerror("kmalloc(): Cannot alloc more memory: %d bytes", size);
  498. return NULL;
  499. }
  500. /**
  501. * @brief 通用内存释放函数
  502. *
  503. * @param address 要释放的内存线性地址
  504. * @return unsigned long
  505. */
  506. unsigned long kfree(void *address)
  507. {
  508. struct slab_obj *slab_obj_ptr = NULL;
  509. // 将线性地址按照2M物理页对齐, 获得所在物理页的起始线性地址
  510. void *page_base_addr = (void *)((ul)address & PAGE_2M_MASK);
  511. int index;
  512. for (int i = 0; i < 16; ++i)
  513. {
  514. slab_obj_ptr = kmalloc_cache_group[i].cache_pool_entry;
  515. do
  516. {
  517. // 不属于当前slab_obj的管理范围
  518. if (slab_obj_ptr->vaddr != page_base_addr)
  519. {
  520. slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
  521. }
  522. else
  523. {
  524. // 计算地址属于哪一个内存对象
  525. index = (address - slab_obj_ptr->vaddr) / kmalloc_cache_group[i].size;
  526. // 复位bmp
  527. *(slab_obj_ptr->bmp + (index >> 6)) ^= 1UL << (index % 64);
  528. ++(slab_obj_ptr->count_free);
  529. --(slab_obj_ptr->count_using);
  530. ++kmalloc_cache_group[i].count_total_free;
  531. --kmalloc_cache_group[i].count_total_using;
  532. // 回收空闲的slab_obj
  533. // 条件:当前slab_obj_ptr的使用为0、总空闲内存对象>=当前slab_obj的总对象的2倍 且当前slab_pool不为起始slab_obj
  534. if ((slab_obj_ptr->count_using == 0) && (kmalloc_cache_group[i].count_total_free >= ((slab_obj_ptr->bmp_count) << 1)) && (kmalloc_cache_group[i].cache_pool_entry != slab_obj_ptr))
  535. {
  536. switch (kmalloc_cache_group[i].size)
  537. {
  538. case 32:
  539. case 64:
  540. case 128:
  541. case 256:
  542. case 512:
  543. // 在这种情况下,slab_obj是被安放在page内部的
  544. list_del(&slab_obj_ptr->list);
  545. kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
  546. page_clean(slab_obj_ptr->page);
  547. free_pages(slab_obj_ptr->page, 1);
  548. break;
  549. default:
  550. // 在这种情况下,slab_obj是被安放在额外获取的内存对象中的
  551. list_del(&slab_obj_ptr->list);
  552. kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
  553. kfree(slab_obj_ptr->bmp);
  554. page_clean(slab_obj_ptr->page);
  555. free_pages(slab_obj_ptr->page, 1);
  556. kfree(slab_obj_ptr);
  557. break;
  558. }
  559. }
  560. return 0;
  561. }
  562. } while (slab_obj_ptr != kmalloc_cache_group[i].cache_pool_entry);
  563. }
  564. kBUG("kfree(): Can't free memory.");
  565. return ECANNOT_FREE_MEM;
  566. }