mod.rs 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. pub mod barrier;
  2. use alloc::vec::Vec;
  3. use hashbrown::HashSet;
  4. use x86::time::rdtsc;
  5. use x86_64::registers::model_specific::EferFlags;
  6. use crate::driver::uart::uart::c_uart_send_str;
  7. use crate::include::bindings::bindings::{
  8. disable_textui, enable_textui, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
  9. video_reinitialize,
  10. };
  11. use crate::libs::align::page_align_up;
  12. use crate::libs::printk::PrintkWriter;
  13. use crate::libs::spinlock::SpinLock;
  14. use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount};
  15. use crate::mm::mmio_buddy::mmio_init;
  16. use crate::{
  17. arch::MMArch,
  18. mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
  19. };
  20. use crate::mm::kernel_mapper::KernelMapper;
  21. use crate::mm::page::{PageEntry, PageFlags};
  22. use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, PhysMemoryArea, VirtAddr};
  23. use crate::syscall::SystemError;
  24. use crate::{kdebug, kinfo};
  25. use core::arch::asm;
  26. use core::ffi::c_void;
  27. use core::fmt::{Debug, Write};
  28. use core::mem::{self};
  29. use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
  30. pub type PageMapper =
  31. crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
  32. /// @brief 用于存储物理内存区域的数组
  33. static mut PHYS_MEMORY_AREAS: [PhysMemoryArea; 512] = [PhysMemoryArea {
  34. base: PhysAddr::new(0),
  35. size: 0,
  36. }; 512];
  37. /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
  38. static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
  39. /// 内核的第一个页表在pml4中的索引
  40. /// 顶级页表的[256, 512)项是内核的页表
  41. static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
  42. static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
  43. #[derive(Clone, Copy)]
  44. pub struct X86_64MMBootstrapInfo {
  45. kernel_code_start: usize,
  46. kernel_code_end: usize,
  47. kernel_data_end: usize,
  48. kernel_rodata_end: usize,
  49. start_brk: usize,
  50. }
  51. impl Debug for X86_64MMBootstrapInfo {
  52. fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
  53. write!(
  54. f,
  55. "kernel_code_start: {:x}, kernel_code_end: {:x}, kernel_data_end: {:x}, kernel_rodata_end: {:x}, start_brk: {:x}",
  56. self.kernel_code_start, self.kernel_code_end, self.kernel_data_end, self.kernel_rodata_end, self.start_brk)
  57. }
  58. }
  59. pub static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
  60. /// @brief X86_64的内存管理架构结构体
  61. #[derive(Debug, Clone, Copy, Hash)]
  62. pub struct X86_64MMArch;
  63. /// XD标志位是否被保留
  64. static XD_RESERVED: AtomicBool = AtomicBool::new(false);
  65. impl MemoryManagementArch for X86_64MMArch {
  66. /// 4K页
  67. const PAGE_SHIFT: usize = 12;
  68. /// 每个页表项占8字节,总共有512个页表项
  69. const PAGE_ENTRY_SHIFT: usize = 9;
  70. /// 四级页表(PML4T、PDPT、PDT、PT)
  71. const PAGE_LEVELS: usize = 4;
  72. /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
  73. /// 第[48, 51]位表示保留。因此,有效位的index为52。
  74. /// 请注意,第63位是XD位,表示是否允许执行。
  75. const ENTRY_ADDRESS_SHIFT: usize = 52;
  76. const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
  77. const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
  78. const ENTRY_FLAG_PRESENT: usize = 1 << 0;
  79. const ENTRY_FLAG_READONLY: usize = 0;
  80. const ENTRY_FLAG_READWRITE: usize = 1 << 1;
  81. const ENTRY_FLAG_USER: usize = 1 << 2;
  82. const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
  83. const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
  84. const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
  85. /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
  86. const ENTRY_FLAG_EXEC: usize = 0;
  87. /// 物理地址与虚拟地址的偏移量
  88. /// 0xffff_8000_0000_0000
  89. const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
  90. const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff);
  91. const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
  92. const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
  93. /// @brief 获取物理内存区域
  94. unsafe fn init() -> &'static [crate::mm::PhysMemoryArea] {
  95. extern "C" {
  96. fn _text();
  97. fn _etext();
  98. fn _edata();
  99. fn _erodata();
  100. fn _end();
  101. }
  102. Self::init_xd_rsvd();
  103. let bootstrap_info = X86_64MMBootstrapInfo {
  104. kernel_code_start: _text as usize,
  105. kernel_code_end: _etext as usize,
  106. kernel_data_end: _edata as usize,
  107. kernel_rodata_end: _erodata as usize,
  108. start_brk: _end as usize,
  109. };
  110. unsafe {
  111. BOOTSTRAP_MM_INFO = Some(bootstrap_info);
  112. }
  113. // 初始化物理内存区域(从multiboot2中获取)
  114. let areas_count =
  115. Self::init_memory_area_from_multiboot2().expect("init memory area failed");
  116. c_uart_send_str(0x3f8, "x86 64 init end\n\0".as_ptr());
  117. return &PHYS_MEMORY_AREAS[0..areas_count];
  118. }
  119. /// @brief 刷新TLB中,关于指定虚拟地址的条目
  120. unsafe fn invalidate_page(address: VirtAddr) {
  121. compiler_fence(Ordering::SeqCst);
  122. asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
  123. compiler_fence(Ordering::SeqCst);
  124. }
  125. /// @brief 刷新TLB中,所有的条目
  126. unsafe fn invalidate_all() {
  127. compiler_fence(Ordering::SeqCst);
  128. // 通过设置cr3寄存器,来刷新整个TLB
  129. Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
  130. compiler_fence(Ordering::SeqCst);
  131. }
  132. /// @brief 获取顶级页表的物理地址
  133. unsafe fn table(_table_kind: PageTableKind) -> PhysAddr {
  134. let paddr: usize;
  135. compiler_fence(Ordering::SeqCst);
  136. asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
  137. compiler_fence(Ordering::SeqCst);
  138. return PhysAddr::new(paddr);
  139. }
  140. /// @brief 设置顶级页表的物理地址到处理器中
  141. unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
  142. compiler_fence(Ordering::SeqCst);
  143. asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
  144. compiler_fence(Ordering::SeqCst);
  145. }
  146. /// @brief 判断虚拟地址是否合法
  147. fn virt_is_valid(virt: VirtAddr) -> bool {
  148. return virt.is_canonical();
  149. }
  150. /// 获取内存管理初始化时,创建的第一个内核页表的地址
  151. fn initial_page_table() -> PhysAddr {
  152. unsafe {
  153. return INITIAL_CR3_VALUE;
  154. }
  155. }
  156. /// @brief 创建新的顶层页表
  157. ///
  158. /// 该函数会创建页表并复制内核的映射到新的页表中
  159. ///
  160. /// @return 新的页表
  161. fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
  162. let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
  163. PageMapper::create(PageTableKind::User, LockedFrameAllocator)
  164. .ok_or(SystemError::ENOMEM)?
  165. };
  166. let current_ktable: KernelMapper = KernelMapper::lock();
  167. let copy_mapping = |pml4_entry_no| unsafe {
  168. let entry: PageEntry<X86_64MMArch> = current_ktable
  169. .table()
  170. .entry(pml4_entry_no)
  171. .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
  172. new_umapper.table().set_entry(pml4_entry_no, entry)
  173. };
  174. // 复制内核的映射
  175. for pml4_entry_no in KERNEL_PML4E_NO..512 {
  176. copy_mapping(pml4_entry_no);
  177. }
  178. return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
  179. }
  180. }
  181. impl X86_64MMArch {
  182. unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
  183. // 这个数组用来存放内存区域的信息(从C获取)
  184. let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
  185. c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 begin\n\0".as_ptr());
  186. let mut mb2_count: u32 = 0;
  187. multiboot2_iter(
  188. Some(multiboot2_get_memory),
  189. &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
  190. &mut mb2_count,
  191. );
  192. c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 2\n\0".as_ptr());
  193. let mb2_count = mb2_count as usize;
  194. let mut areas_count = 0usize;
  195. let mut total_mem_size = 0usize;
  196. for i in 0..mb2_count {
  197. // Only use the memory area if its type is 1 (RAM)
  198. if mb2_mem_info[i].type_ == 1 {
  199. // Skip the memory area if its len is 0
  200. if mb2_mem_info[i].len == 0 {
  201. continue;
  202. }
  203. total_mem_size += mb2_mem_info[i].len as usize;
  204. PHYS_MEMORY_AREAS[areas_count].base = PhysAddr::new(mb2_mem_info[i].addr as usize);
  205. PHYS_MEMORY_AREAS[areas_count].size = mb2_mem_info[i].len as usize;
  206. areas_count += 1;
  207. }
  208. }
  209. c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 end\n\0".as_ptr());
  210. kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
  211. return Ok(areas_count);
  212. }
  213. fn init_xd_rsvd() {
  214. // 读取ia32-EFER寄存器的值
  215. let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
  216. if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
  217. // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
  218. kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
  219. XD_RESERVED.store(true, Ordering::Relaxed);
  220. }
  221. compiler_fence(Ordering::SeqCst);
  222. }
  223. /// 判断XD标志位是否被保留
  224. pub fn is_xd_reserved() -> bool {
  225. return XD_RESERVED.load(Ordering::Relaxed);
  226. }
  227. }
  228. impl VirtAddr {
  229. /// @brief 判断虚拟地址是否合法
  230. #[inline(always)]
  231. pub fn is_canonical(self) -> bool {
  232. let x = self.data() & X86_64MMArch::PHYS_OFFSET;
  233. // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
  234. // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
  235. return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
  236. }
  237. }
  238. /// @brief 初始化内存管理模块
  239. pub fn mm_init() {
  240. c_uart_send_str(0x3f8, "mm_init\n\0".as_ptr());
  241. PrintkWriter
  242. .write_fmt(format_args!("mm_init() called\n"))
  243. .unwrap();
  244. // printk_color!(GREEN, BLACK, "mm_init() called\n");
  245. static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
  246. if _CALL_ONCE
  247. .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
  248. .is_err()
  249. {
  250. c_uart_send_str(0x3f8, "mm_init err\n\0".as_ptr());
  251. panic!("mm_init() can only be called once");
  252. }
  253. unsafe { X86_64MMArch::init() };
  254. kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
  255. kdebug!("phys[0]=virt[0x{:x}]", unsafe {
  256. MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
  257. });
  258. // 初始化内存管理器
  259. unsafe { allocator_init() };
  260. // enable mmio
  261. mmio_init();
  262. // 启用printk的alloc选项
  263. PrintkWriter.enable_alloc();
  264. }
  265. unsafe fn allocator_init() {
  266. let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
  267. let phy_offset =
  268. unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
  269. kdebug!("PhysArea[0..10] = {:?}", &PHYS_MEMORY_AREAS[0..10]);
  270. let mut bump_allocator =
  271. BumpAllocator::<X86_64MMArch>::new(&PHYS_MEMORY_AREAS, phy_offset.data());
  272. kdebug!(
  273. "BumpAllocator created, offset={:?}",
  274. bump_allocator.offset()
  275. );
  276. // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
  277. // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
  278. // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
  279. let _old_page_table = MMArch::table(PageTableKind::Kernel);
  280. let new_page_table: PhysAddr;
  281. // 使用bump分配器,把所有的内存页都映射到页表
  282. {
  283. // 用bump allocator创建新的页表
  284. let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
  285. crate::mm::page::PageMapper::<MMArch, _>::create(
  286. PageTableKind::Kernel,
  287. &mut bump_allocator,
  288. )
  289. .expect("Failed to create page mapper");
  290. new_page_table = mapper.table().phys();
  291. kdebug!("PageMapper created");
  292. // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
  293. {
  294. let table = mapper.table();
  295. let empty_entry = PageEntry::<MMArch>::new(0);
  296. for i in 0..MMArch::PAGE_ENTRY_NUM {
  297. table
  298. .set_entry(i, empty_entry)
  299. .expect("Failed to empty page table entry");
  300. }
  301. }
  302. kdebug!("Successfully emptied page table");
  303. for area in PHYS_MEMORY_AREAS.iter() {
  304. // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
  305. for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
  306. let paddr = area.base.add(i * MMArch::PAGE_SIZE);
  307. let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
  308. let flags = kernel_page_flags::<MMArch>(vaddr);
  309. let flusher = mapper
  310. .map_phys(vaddr, paddr, flags)
  311. .expect("Failed to map frame");
  312. // 暂时不刷新TLB
  313. flusher.ignore();
  314. }
  315. }
  316. // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
  317. LowAddressRemapping::remap_at_low_address(&mut mapper);
  318. }
  319. unsafe {
  320. INITIAL_CR3_VALUE = new_page_table;
  321. }
  322. kdebug!(
  323. "After mapping all physical memory, DragonOS used: {} KB",
  324. bump_allocator.offset() / 1024
  325. );
  326. // 初始化buddy_allocator
  327. let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
  328. // 设置全局的页帧分配器
  329. unsafe { set_inner_allocator(buddy_allocator) };
  330. kinfo!("Successfully initialized buddy allocator");
  331. // 关闭显示输出
  332. unsafe {
  333. disable_textui();
  334. }
  335. // make the new page table current
  336. {
  337. let mut binding = INNER_ALLOCATOR.lock();
  338. let mut allocator_guard = binding.as_mut().unwrap();
  339. kdebug!("To enable new page table.");
  340. compiler_fence(Ordering::SeqCst);
  341. let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
  342. PageTableKind::Kernel,
  343. new_page_table,
  344. &mut allocator_guard,
  345. );
  346. compiler_fence(Ordering::SeqCst);
  347. mapper.make_current();
  348. compiler_fence(Ordering::SeqCst);
  349. kdebug!("New page table enabled");
  350. }
  351. kdebug!("Successfully enabled new page table");
  352. // 重置显示输出目标
  353. unsafe {
  354. video_reinitialize(false);
  355. }
  356. // 打开显示输出
  357. unsafe {
  358. enable_textui();
  359. }
  360. kdebug!("Text UI enabled");
  361. }
  362. #[no_mangle]
  363. pub extern "C" fn rs_test_buddy() {
  364. test_buddy();
  365. }
  366. pub fn test_buddy() {
  367. // 申请内存然后写入数据然后free掉
  368. // 总共申请200MB内存
  369. const TOTAL_SIZE: usize = 200 * 1024 * 1024;
  370. for i in 0..10 {
  371. kdebug!("Test buddy, round: {i}");
  372. // 存放申请的内存块
  373. let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
  374. // 存放已经申请的内存块的地址(用于检查重复)
  375. let mut addr_set: HashSet<PhysAddr> = HashSet::new();
  376. let mut allocated = 0usize;
  377. let mut free_count = 0usize;
  378. while allocated < TOTAL_SIZE {
  379. let mut random_size = 0u64;
  380. unsafe { x86::random::rdrand64(&mut random_size) };
  381. // 一次最多申请4M
  382. random_size = random_size % (1024 * 4096);
  383. if random_size == 0 {
  384. continue;
  385. }
  386. let random_size =
  387. core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
  388. let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
  389. // 获取帧
  390. let (paddr, allocated_frame_count) =
  391. unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
  392. assert!(allocated_frame_count.data().is_power_of_two());
  393. assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
  394. unsafe {
  395. assert!(MMArch::phys_2_virt(paddr)
  396. .as_ref()
  397. .unwrap()
  398. .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
  399. }
  400. allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
  401. v.push((paddr, allocated_frame_count));
  402. assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
  403. // 写入数据
  404. let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
  405. let slice = unsafe {
  406. core::slice::from_raw_parts_mut(
  407. vaddr.data() as *mut u8,
  408. allocated_frame_count.data() * MMArch::PAGE_SIZE,
  409. )
  410. };
  411. for i in 0..slice.len() {
  412. slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
  413. }
  414. // 随机释放一个内存块
  415. if v.len() > 0 {
  416. let mut random_index = 0u64;
  417. unsafe { x86::random::rdrand64(&mut random_index) };
  418. // 70%概率释放
  419. if random_index % 10 > 7 {
  420. continue;
  421. }
  422. random_index = random_index % v.len() as u64;
  423. let random_index = random_index as usize;
  424. let (paddr, allocated_frame_count) = v.remove(random_index);
  425. assert!(addr_set.remove(&paddr));
  426. unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
  427. free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
  428. }
  429. }
  430. kdebug!(
  431. "Allocated {} MB memory, release: {} MB, no release: {} bytes",
  432. allocated / 1024 / 1024,
  433. free_count / 1024 / 1024,
  434. (allocated - free_count)
  435. );
  436. kdebug!("Now, to release buddy memory");
  437. // 释放所有的内存
  438. for (paddr, allocated_frame_count) in v {
  439. unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
  440. assert!(addr_set.remove(&paddr));
  441. free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
  442. }
  443. kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
  444. }
  445. }
  446. /// 全局的页帧分配器
  447. #[derive(Debug, Clone, Copy, Hash)]
  448. pub struct LockedFrameAllocator;
  449. impl FrameAllocator for LockedFrameAllocator {
  450. unsafe fn allocate(
  451. &mut self,
  452. count: crate::mm::allocator::page_frame::PageFrameCount,
  453. ) -> Option<(PhysAddr, PageFrameCount)> {
  454. if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
  455. return allocator.allocate(count);
  456. } else {
  457. return None;
  458. }
  459. }
  460. unsafe fn free(
  461. &mut self,
  462. address: crate::mm::PhysAddr,
  463. count: crate::mm::allocator::page_frame::PageFrameCount,
  464. ) {
  465. assert!(count.data().is_power_of_two());
  466. if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
  467. return allocator.free(address, count);
  468. }
  469. }
  470. unsafe fn usage(&self) -> crate::mm::allocator::page_frame::PageFrameUsage {
  471. todo!()
  472. }
  473. }
  474. /// 获取内核地址默认的页面标志
  475. pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
  476. let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
  477. if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
  478. // Remap kernel code execute
  479. return PageFlags::new().set_execute(true).set_write(true);
  480. } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
  481. // Remap kernel rodata read only
  482. return PageFlags::new().set_execute(true);
  483. } else {
  484. return PageFlags::new().set_write(true).set_execute(true);
  485. }
  486. }
  487. unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
  488. static FLAG: AtomicBool = AtomicBool::new(false);
  489. if FLAG
  490. .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
  491. .is_err()
  492. {
  493. panic!("Cannot set inner allocator twice!");
  494. }
  495. *INNER_ALLOCATOR.lock() = Some(allocator);
  496. }
  497. /// 低地址重映射的管理器
  498. ///
  499. /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
  500. pub struct LowAddressRemapping;
  501. impl LowAddressRemapping {
  502. // 映射32M
  503. const REMAP_SIZE: usize = 32 * 1024 * 1024;
  504. pub unsafe fn remap_at_low_address(
  505. mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
  506. ) {
  507. for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
  508. let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
  509. let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
  510. let flags = kernel_page_flags::<MMArch>(vaddr);
  511. let flusher = mapper
  512. .map_phys(vaddr, paddr, flags)
  513. .expect("Failed to map frame");
  514. // 暂时不刷新TLB
  515. flusher.ignore();
  516. }
  517. }
  518. /// 取消低地址的映射
  519. pub unsafe fn unmap_at_low_address(flush: bool) {
  520. let mut mapper = KernelMapper::lock();
  521. assert!(mapper.as_mut().is_some());
  522. for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
  523. let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
  524. let flusher = mapper
  525. .as_mut()
  526. .unwrap()
  527. .unmap(vaddr, true)
  528. .expect("Failed to unmap frame");
  529. if flush == false {
  530. flusher.ignore();
  531. }
  532. }
  533. }
  534. }
  535. #[no_mangle]
  536. pub extern "C" fn rs_mm_init() {
  537. mm_init();
  538. }