fork.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. #include "process.h"
  2. #include <common/err.h>
  3. #include <common/kthread.h>
  4. #include <common/spinlock.h>
  5. extern spinlock_t process_global_pid_write_lock;
  6. extern long process_global_pid;
  7. extern void kernel_thread_func(void);
  8. extern uint64_t rs_procfs_register_pid(uint64_t);
  9. extern uint64_t rs_procfs_unregister_pid(uint64_t);
  10. extern void *rs_dup_fpstate();
  11. extern uint64_t rs_process_copy_mm(bool clone_vm, struct process_control_block *new_pcb);
  12. extern int process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  13. int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  14. int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  15. int process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
  16. uint64_t stack_size, struct pt_regs *current_regs);
  17. extern int process_copy_sighand(uint64_t clone_flags, struct process_control_block *pcb);
  18. extern int process_copy_signal(uint64_t clone_flags, struct process_control_block *pcb);
  19. extern void process_exit_sighand(struct process_control_block *pcb);
  20. extern void process_exit_signal(struct process_control_block *pcb);
  21. /**
  22. * @brief fork当前进程
  23. *
  24. * @param regs 新的寄存器值
  25. * @param clone_flags 克隆标志
  26. * @param stack_start 堆栈开始地址
  27. * @param stack_size 堆栈大小
  28. * @return unsigned long
  29. */
  30. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start,
  31. unsigned long stack_size)
  32. {
  33. int retval = 0;
  34. struct process_control_block *tsk = NULL;
  35. // 为新的进程分配栈空间,并将pcb放置在底部
  36. tsk = (struct process_control_block *)kzalloc(STACK_SIZE, 0);
  37. barrier();
  38. if (tsk == NULL)
  39. {
  40. retval = -ENOMEM;
  41. return retval;
  42. }
  43. barrier();
  44. memset(tsk, 0, sizeof(struct process_control_block));
  45. io_mfence();
  46. // 将当前进程的pcb复制到新的pcb内
  47. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  48. tsk->worker_private = NULL;
  49. io_mfence();
  50. // 初始化进程的循环链表结点
  51. list_init(&tsk->list);
  52. io_mfence();
  53. // 判断是否为内核态调用fork
  54. if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
  55. tsk->flags |= PF_KFORK;
  56. if (tsk->flags & PF_KTHREAD)
  57. {
  58. // 对于内核线程,设置其worker私有信息
  59. retval = kthread_set_worker_private(tsk);
  60. if (IS_ERR_VALUE(retval))
  61. goto copy_flags_failed;
  62. tsk->virtual_runtime = 0;
  63. }
  64. tsk->priority = 2;
  65. tsk->preempt_count = 0;
  66. // 增加全局的pid并赋值给新进程的pid
  67. spin_lock(&process_global_pid_write_lock);
  68. tsk->pid = process_global_pid++;
  69. barrier();
  70. // 加入到进程链表中
  71. // todo: 对pcb_list_lock加锁
  72. tsk->prev_pcb = &initial_proc_union.pcb;
  73. barrier();
  74. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  75. barrier();
  76. initial_proc_union.pcb.next_pcb = tsk;
  77. barrier();
  78. tsk->parent_pcb = current_pcb;
  79. barrier();
  80. spin_unlock(&process_global_pid_write_lock);
  81. tsk->cpu_id = proc_current_cpu_id;
  82. tsk->state = PROC_UNINTERRUPTIBLE;
  83. tsk->parent_pcb = current_pcb;
  84. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  85. barrier();
  86. list_init(&tsk->list);
  87. retval = -ENOMEM;
  88. // 拷贝标志位
  89. retval = process_copy_flags(clone_flags, tsk);
  90. if (retval)
  91. goto copy_flags_failed;
  92. // 拷贝内存空间分布结构体
  93. retval = process_copy_mm(clone_flags, tsk);
  94. if (retval)
  95. goto copy_mm_failed;
  96. // 拷贝文件
  97. retval = process_copy_files(clone_flags, tsk);
  98. if (retval)
  99. goto copy_files_failed;
  100. // 拷贝信号处理函数
  101. retval = process_copy_sighand(clone_flags, tsk);
  102. if (retval)
  103. goto copy_sighand_failed;
  104. retval = process_copy_signal(clone_flags, tsk);
  105. if (retval)
  106. goto copy_signal_failed;
  107. // 拷贝线程结构体
  108. retval = process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs);
  109. if (retval)
  110. goto copy_thread_failed;
  111. // 拷贝成功
  112. retval = tsk->pid;
  113. tsk->flags &= ~PF_KFORK;
  114. // 创建对应procfs文件
  115. rs_procfs_register_pid(tsk->pid);
  116. // kdebug("Fork ok. pid: %d\n", tsk->pid);
  117. // 唤醒进程
  118. process_wakeup(tsk);
  119. return retval;
  120. copy_thread_failed:;
  121. // 回收线程
  122. process_exit_thread(tsk);
  123. copy_files_failed:;
  124. // 回收文件
  125. process_exit_files(tsk);
  126. rs_procfs_unregister_pid(tsk->pid);
  127. copy_sighand_failed:;
  128. process_exit_sighand(tsk);
  129. copy_signal_failed:;
  130. process_exit_signal(tsk);
  131. copy_mm_failed:;
  132. // 回收内存空间分布结构体
  133. process_exit_mm(tsk);
  134. copy_flags_failed:;
  135. kfree(tsk);
  136. return retval;
  137. }
  138. /**
  139. * @brief 拷贝当前进程的标志位
  140. *
  141. * @param clone_flags 克隆标志位
  142. * @param pcb 新的进程的pcb
  143. * @return uint64_t
  144. */
  145. int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  146. {
  147. if (clone_flags & CLONE_VM)
  148. pcb->flags |= PF_VFORK;
  149. return 0;
  150. }
  151. /**
  152. * @brief 拷贝当前进程的内存空间分布结构体信息
  153. *
  154. * @param clone_flags 克隆标志位
  155. * @param pcb 新的进程的pcb
  156. * @return uint64_t
  157. */
  158. int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  159. {
  160. pcb->address_space = NULL;
  161. bool clone_vm = (clone_flags & CLONE_VM);
  162. return (int)rs_process_copy_mm(clone_vm, pcb);
  163. }
  164. /**
  165. * @brief 重写内核栈中的rbp地址
  166. *
  167. * @param new_regs 子进程的reg
  168. * @param new_pcb 子进程的pcb
  169. * @return int
  170. */
  171. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  172. {
  173. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  174. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  175. uint64_t *rbp = &new_regs->rbp;
  176. uint64_t *tmp = rbp;
  177. // 超出内核栈范围
  178. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  179. return 0;
  180. while (1)
  181. {
  182. // 计算delta
  183. uint64_t delta = old_top - *rbp;
  184. // 计算新的rbp值
  185. uint64_t newVal = new_top - delta;
  186. // 新的值不合法
  187. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  188. break;
  189. // 将新的值写入对应位置
  190. *rbp = newVal;
  191. // 跳转栈帧
  192. rbp = (uint64_t *)*rbp;
  193. }
  194. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  195. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  196. return 0;
  197. }
  198. /**
  199. * @brief 拷贝当前进程的线程结构体
  200. *
  201. * @param clone_flags 克隆标志位
  202. * @param pcb 新的进程的pcb
  203. * @return uint64_t
  204. */
  205. int process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
  206. uint64_t stack_size, struct pt_regs *current_regs)
  207. {
  208. // 将线程结构体放置在pcb后方
  209. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  210. memset(thd, 0, sizeof(struct thread_struct));
  211. pcb->thread = thd;
  212. struct pt_regs *child_regs = NULL;
  213. // 拷贝栈空间
  214. if (pcb->flags & PF_KFORK) // 内核态下的fork
  215. {
  216. // 内核态下则拷贝整个内核栈
  217. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  218. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  219. memcpy(child_regs, (void *)current_regs, size);
  220. barrier();
  221. // 然后重写新的栈中,每个栈帧的rbp值
  222. process_rewrite_rbp(child_regs, pcb);
  223. }
  224. else
  225. {
  226. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  227. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  228. barrier();
  229. child_regs->rsp = stack_start;
  230. }
  231. // 设置子进程的返回值为0
  232. child_regs->rax = 0;
  233. if (pcb->flags & PF_KFORK)
  234. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_intr时的rbp)
  235. else
  236. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  237. // 设置新的内核线程开始执行的时候的rsp
  238. thd->rsp = (uint64_t)child_regs;
  239. thd->fs = current_pcb->thread->fs;
  240. thd->gs = current_pcb->thread->gs;
  241. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  242. if (pcb->flags & PF_KFORK)
  243. thd->rip = (uint64_t)ret_from_intr;
  244. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  245. thd->rip = (uint64_t)kernel_thread_func;
  246. else
  247. thd->rip = (uint64_t)ret_from_intr;
  248. pcb->fp_state = rs_dup_fpstate();
  249. return 0;
  250. }