123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- use core::{ptr::null_mut, sync::atomic::compiler_fence};
- use alloc::{boxed::Box, vec::Vec, collections::LinkedList};
- use crate::{
- arch::asm::current::current_pcb,
- include::bindings::bindings::{process_control_block, PF_NEED_SCHED, SCHED_FIFO, SCHED_RR},
- kBUG, kdebug,
- libs::spinlock::RawSpinlock,
- };
- use super::core::{sched_enqueue, Scheduler};
- /// 声明全局的rt调度器实例
- pub static mut RT_SCHEDULER_PTR: *mut SchedulerRT = null_mut();
- /// @brief 获取rt调度器实例的可变引用
- #[inline]
- pub fn __get_rt_scheduler() -> &'static mut SchedulerRT {
- return unsafe { RT_SCHEDULER_PTR.as_mut().unwrap() };
- }
- /// @brief 初始化rt调度器
- pub unsafe fn sched_rt_init() {
- kdebug!("test rt init");
- if RT_SCHEDULER_PTR.is_null() {
- RT_SCHEDULER_PTR = Box::leak(Box::new(SchedulerRT::new()));
- } else {
- kBUG!("Try to init RT Scheduler twice.");
- panic!("Try to init RT Scheduler twice.");
- }
- }
- /// @brief RT队列(per-cpu的)
- #[derive(Debug)]
- struct RTQueue {
- /// 队列的锁
- lock: RawSpinlock,
- /// 存储进程的双向队列
- queue: LinkedList<&'static mut process_control_block>,
- }
- impl RTQueue {
- pub fn new() -> RTQueue {
- RTQueue {
- queue: LinkedList::new(),
- lock: RawSpinlock::INIT,
- }
- }
- /// @brief 将pcb加入队列
- pub fn enqueue(&mut self, pcb: &'static mut process_control_block) {
- self.lock.lock();
- // 如果进程是IDLE进程,那么就不加入队列
- if pcb.pid == 0 {
- self.lock.unlock();
- return;
- }
- self.queue.push_back(pcb);
- self.lock.unlock();
- }
- /// @brief 将pcb从调度队列头部取出,若队列为空,则返回None
- pub fn dequeue(&mut self) -> Option<&'static mut process_control_block> {
- let res: Option<&'static mut process_control_block>;
- self.lock.lock();
- if self.queue.len() > 0 {
- // 队列不为空,返回下一个要执行的pcb
- res = Some(self.queue.pop_front().unwrap());
- } else {
- // 如果队列为空,则返回None
- res = None;
- }
- self.lock.unlock();
- return res;
- }
- pub fn enqueue_front(&mut self, pcb: &'static mut process_control_block) {
- self.lock.lock();
- // 如果进程是IDLE进程,那么就不加入队列
- if pcb.pid == 0 {
- self.lock.unlock();
- return;
- }
- self.queue.push_front(pcb);
- self.lock.unlock();
- }
- }
- /// @brief RT调度器类
- pub struct SchedulerRT {
- cpu_queue: Vec<&'static mut RTQueue>,
- }
- impl SchedulerRT {
- const RR_TIMESLICE: i64 = 100;
- const MAX_RT_PRIO: i64 = 100;
- pub fn new() -> SchedulerRT {
- // 暂时手动指定核心数目
- // todo: 从cpu模块来获取核心的数目
- let mut result = SchedulerRT {
- cpu_queue: Default::default(),
- };
- // 为每个cpu核心创建队列
- for _ in 0..SchedulerRT::MAX_RT_PRIO {
- result.cpu_queue.push(Box::leak(Box::new(RTQueue::new())));
- }
- return result;
- }
- /// @brief 挑选下一个可执行的rt进程
- pub fn pick_next_task_rt(&mut self) -> Option<&'static mut process_control_block> {
- // 循环查找,直到找到
- // 这里应该是优先级数量,而不是CPU数量,需要修改
- for i in 0..SchedulerRT::MAX_RT_PRIO {
- let cpu_queue_i: &mut RTQueue = self.cpu_queue[i as usize];
- let proc: Option<&'static mut process_control_block> = cpu_queue_i.dequeue();
- if proc.is_some() {
- return proc;
- }
- }
- // return 一个空值
- None
- }
- }
- impl Scheduler for SchedulerRT {
- /// @brief 在当前cpu上进行调度。
- /// 请注意,进入该函数之前,需要关中断
- fn sched(&mut self) -> Option<&'static mut process_control_block> {
- current_pcb().flags &= !(PF_NEED_SCHED as u64);
- // 正常流程下,这里一定是会pick到next的pcb的,如果是None的话,要抛出错误
- let proc: &'static mut process_control_block =
- self.pick_next_task_rt().expect("No RT process found");
- // 如果是fifo策略,则可以一直占有cpu直到有优先级更高的任务就绪(即使优先级相同也不行)或者主动放弃(等待资源)
- if proc.policy == SCHED_FIFO {
- // 如果挑选的进程优先级小于当前进程,则不进行切换
- if proc.priority <= current_pcb().priority {
- sched_enqueue(proc, false);
- } else {
- // 将当前的进程加进队列
- sched_enqueue(current_pcb(), false);
- compiler_fence(core::sync::atomic::Ordering::SeqCst);
- return Some(proc);
- }
- }
- // RR调度策略需要考虑时间片
- else if proc.policy == SCHED_RR {
- // 同等优先级的,考虑切换
- if proc.priority >= current_pcb().priority {
- // 判断这个进程时间片是否耗尽,若耗尽则将其时间片赋初值然后入队
- if proc.rt_time_slice <= 0 {
- proc.rt_time_slice = SchedulerRT::RR_TIMESLICE;
- proc.flags |= !(PF_NEED_SCHED as u64);
- sched_enqueue(proc, false);
- }
- // 目标进程时间片未耗尽,切换到目标进程
- else {
- // 将当前进程加进队列
- sched_enqueue(current_pcb(), false);
- compiler_fence(core::sync::atomic::Ordering::SeqCst);
- return Some(proc);
- }
- }
- // curr优先级更大,说明一定是实时进程,将所选进程入队列,此时需要入队首
- else {
- self.cpu_queue[proc.cpu_id as usize].enqueue_front(proc);
- }
- }
- return None;
- }
- fn enqueue(&mut self, pcb: &'static mut process_control_block) {
- let cpu_queue = &mut self.cpu_queue[pcb.cpu_id as usize];
- cpu_queue.enqueue(pcb);
- }
- }
|