mm.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. #include <process/process.h>
  7. ul Total_Memory = 0;
  8. ul total_2M_pages = 0;
  9. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  10. /**
  11. * @brief 虚拟地址长度所需要的entry数量
  12. *
  13. */
  14. typedef struct
  15. {
  16. int64_t num_PML4E;
  17. int64_t num_PDPTE;
  18. int64_t num_PDE;
  19. int64_t num_PTE;
  20. } mm_pgt_entry_num_t;
  21. /**
  22. * @brief 计算虚拟地址长度对应的页表entry数量
  23. *
  24. * @param length 长度
  25. * @param ent 返回的entry数量结构体
  26. */
  27. static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
  28. {
  29. if (ent == NULL)
  30. return;
  31. ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
  32. ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
  33. ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
  34. ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
  35. }
  36. /**
  37. * @brief 从页表中获取pdt页表项的内容
  38. *
  39. * @param proc_page_table_addr 页表的地址
  40. * @param is_phys 页表地址是否为物理地址
  41. * @param virt_addr_start 要清除的虚拟地址的起始地址
  42. * @param length 要清除的区域的长度
  43. * @param clear 是否清除标志位
  44. */
  45. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  46. void mm_init()
  47. {
  48. kinfo("Initializing memory management unit...");
  49. // 设置内核程序不同部分的起止地址
  50. memory_management_struct.kernel_code_start = (ul)&_text;
  51. memory_management_struct.kernel_code_end = (ul)&_etext;
  52. memory_management_struct.kernel_data_end = (ul)&_edata;
  53. memory_management_struct.rodata_end = (ul)&_erodata;
  54. memory_management_struct.start_brk = (ul)&_end;
  55. struct multiboot_mmap_entry_t mb2_mem_info[512];
  56. int count;
  57. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  58. for (int i = 0; i < count; ++i)
  59. {
  60. //可用的内存
  61. if (mb2_mem_info->type == 1)
  62. Total_Memory += mb2_mem_info->len;
  63. kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
  64. // 保存信息到mms
  65. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  66. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  67. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  68. memory_management_struct.len_e820 = i;
  69. // 脏数据
  70. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  71. break;
  72. }
  73. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  74. // 计算有效内存页数
  75. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  76. {
  77. if (memory_management_struct.e820[i].type != 1)
  78. continue;
  79. // 将内存段的起始物理地址按照2M进行对齐
  80. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  81. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  82. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  83. // 内存段不可用
  84. if (addr_end <= addr_start)
  85. continue;
  86. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  87. }
  88. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  89. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  90. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  91. // 初始化mms的bitmap
  92. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  93. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  94. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  95. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  96. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  97. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  98. // 初始化内存页结构
  99. // 将页结构映射于bmp之后
  100. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  101. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  102. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  103. // 将pages_struct全部清空,以备后续初始化
  104. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  105. // 初始化内存区域
  106. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  107. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  108. memory_management_struct.count_zones = 0;
  109. // zones-struct 成员变量暂时按照5个来计算
  110. memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  111. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  112. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  113. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  114. {
  115. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  116. continue;
  117. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  118. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  119. if (addr_end <= addr_start)
  120. continue;
  121. // zone init
  122. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  123. ++memory_management_struct.count_zones;
  124. z->zone_addr_start = addr_start;
  125. z->zone_addr_end = addr_end;
  126. z->zone_length = addr_end - addr_start;
  127. z->count_pages_using = 0;
  128. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  129. z->total_pages_link = 0;
  130. z->attr = 0;
  131. z->gmd_struct = &memory_management_struct;
  132. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  133. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  134. // 初始化页
  135. struct Page *p = z->pages_group;
  136. for (int j = 0; j < z->count_pages; ++j, ++p)
  137. {
  138. p->zone = z;
  139. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  140. p->attr = 0;
  141. p->ref_counts = 0;
  142. p->age = 0;
  143. // 将bmp中对应的位 复位
  144. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  145. }
  146. }
  147. // 初始化0~2MB的物理页
  148. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  149. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  150. memory_management_struct.pages_struct->addr_phys = 0UL;
  151. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  152. memory_management_struct.pages_struct->ref_counts = 1;
  153. memory_management_struct.pages_struct->age = 0;
  154. // 将第0页的标志位给置上
  155. //*(memory_management_struct.bmp) |= 1UL;
  156. // 计算zone结构体的总长度(按照64位对齐)
  157. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  158. ZONE_DMA_INDEX = 0;
  159. ZONE_NORMAL_INDEX = 0;
  160. ZONE_UNMAPPED_INDEX = 0;
  161. /*
  162. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  163. {
  164. struct Zone *z = memory_management_struct.zones_struct + i;
  165. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  166. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  167. // 1GB以上的内存空间不做映射
  168. // if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  169. // ZONE_UNMAPPED_INDEX = i;
  170. }
  171. */
  172. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  173. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  174. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  175. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  176. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  177. // 初始化内存管理单元结构所占的物理页的结构体
  178. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  179. // kdebug("mms_max_page=%ld", mms_max_page);
  180. struct Page *tmp_page = NULL;
  181. ul page_num;
  182. // 第0个page已经在上方配置
  183. for (ul j = 1; j <= mms_max_page; ++j)
  184. {
  185. tmp_page = memory_management_struct.pages_struct + j;
  186. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  187. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  188. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  189. ++tmp_page->zone->count_pages_using;
  190. --tmp_page->zone->count_pages_free;
  191. }
  192. kinfo("Memory management unit initialize complete!");
  193. flush_tlb();
  194. // 初始化slab内存池
  195. slab_init();
  196. page_table_init();
  197. // init_frame_buffer();
  198. }
  199. /**
  200. * @brief 初始化内存页
  201. *
  202. * @param page 内存页结构体
  203. * @param flags 标志位
  204. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  205. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  206. * @return unsigned long
  207. */
  208. unsigned long page_init(struct Page *page, ul flags)
  209. {
  210. page->attr |= flags;
  211. // 若页面的引用计数为0或是共享页,增加引用计数
  212. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  213. {
  214. ++page->ref_counts;
  215. ++page->zone->total_pages_link;
  216. }
  217. return 0;
  218. }
  219. /**
  220. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  221. *
  222. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  223. * @param num 需要申请的连续内存页的数量 num<64
  224. * @param flags 将页面属性设置成flag
  225. * @return struct Page*
  226. */
  227. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  228. {
  229. ul zone_start = 0, zone_end = 0;
  230. if (num >= 64 && num <= 0)
  231. {
  232. kerror("alloc_pages(): num is invalid.");
  233. return NULL;
  234. }
  235. ul attr = flags;
  236. switch (zone_select)
  237. {
  238. case ZONE_DMA:
  239. // DMA区域
  240. zone_start = 0;
  241. zone_end = ZONE_DMA_INDEX;
  242. attr |= PAGE_PGT_MAPPED;
  243. break;
  244. case ZONE_NORMAL:
  245. zone_start = ZONE_DMA_INDEX;
  246. zone_end = ZONE_NORMAL_INDEX;
  247. attr |= PAGE_PGT_MAPPED;
  248. break;
  249. case ZONE_UNMAPPED_IN_PGT:
  250. zone_start = ZONE_NORMAL_INDEX;
  251. zone_end = ZONE_UNMAPPED_INDEX;
  252. attr = 0;
  253. break;
  254. default:
  255. kerror("In alloc_pages: param: zone_select incorrect.");
  256. // 返回空
  257. return NULL;
  258. break;
  259. }
  260. for (int i = zone_start; i <= zone_end; ++i)
  261. {
  262. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  263. continue;
  264. struct Zone *z = memory_management_struct.zones_struct + i;
  265. // 区域对应的起止页号
  266. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  267. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  268. ul tmp = 64 - page_start % 64;
  269. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  270. {
  271. // 按照bmp中的每一个元素进行查找
  272. // 先将p定位到bmp的起始元素
  273. ul *p = memory_management_struct.bmp + (j >> 6);
  274. ul shift = j % 64;
  275. ul tmp_num = ((1UL << num) - 1);
  276. for (ul k = shift; k < 64; ++k)
  277. {
  278. // 寻找连续num个空页
  279. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  280. {
  281. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  282. for (ul l = 0; l < num; ++l)
  283. {
  284. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  285. // 分配页面,手动配置属性及计数器
  286. // 置位bmp
  287. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  288. ++(z->count_pages_using);
  289. --(z->count_pages_free);
  290. x->attr = attr;
  291. }
  292. // 成功分配了页面,返回第一个页面的指针
  293. // kwarn("start page num=%d\n", start_page_num);
  294. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  295. }
  296. }
  297. }
  298. }
  299. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, total_2M_pages=%d", zone_select, num, total_2M_pages);
  300. while (1)
  301. ;
  302. return NULL;
  303. }
  304. /**
  305. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  306. *
  307. * @param p 物理页结构体
  308. * @return unsigned long
  309. */
  310. unsigned long page_clean(struct Page *p)
  311. {
  312. --p->ref_counts;
  313. --p->zone->total_pages_link;
  314. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  315. if (!p->ref_counts)
  316. {
  317. p->attr &= PAGE_PGT_MAPPED;
  318. }
  319. return 0;
  320. }
  321. /**
  322. * @brief Get the page's attr
  323. *
  324. * @param page 内存页结构体
  325. * @return ul 属性
  326. */
  327. ul get_page_attr(struct Page *page)
  328. {
  329. if (page == NULL)
  330. {
  331. kBUG("get_page_attr(): page == NULL");
  332. return EPAGE_NULL;
  333. }
  334. else
  335. return page->attr;
  336. }
  337. /**
  338. * @brief Set the page's attr
  339. *
  340. * @param page 内存页结构体
  341. * @param flags 属性
  342. * @return ul 错误码
  343. */
  344. ul set_page_attr(struct Page *page, ul flags)
  345. {
  346. if (page == NULL)
  347. {
  348. kBUG("get_page_attr(): page == NULL");
  349. return EPAGE_NULL;
  350. }
  351. else
  352. {
  353. page->attr = flags;
  354. return 0;
  355. }
  356. }
  357. /**
  358. * @brief 释放连续number个内存页
  359. *
  360. * @param page 第一个要被释放的页面的结构体
  361. * @param number 要释放的内存页数量 number<64
  362. */
  363. void free_pages(struct Page *page, int number)
  364. {
  365. if (page == NULL)
  366. {
  367. kerror("free_pages() page is invalid.");
  368. return;
  369. }
  370. if (number >= 64 || number <= 0)
  371. {
  372. kerror("free_pages(): number %d is invalid.", number);
  373. return;
  374. }
  375. ul page_num;
  376. for (int i = 0; i < number; ++i, ++page)
  377. {
  378. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  379. // 复位bmp
  380. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  381. // 更新计数器
  382. --page->zone->count_pages_using;
  383. ++page->zone->count_pages_free;
  384. page->attr = 0;
  385. }
  386. return;
  387. }
  388. /**
  389. * @brief 重新初始化页表的函数
  390. * 将0~4GB的物理页映射到线性地址空间
  391. */
  392. void page_table_init()
  393. {
  394. kinfo("Re-Initializing page table...");
  395. ul *global_CR3 = get_CR3();
  396. int js = 0;
  397. ul *tmp_addr;
  398. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  399. {
  400. struct Zone *z = memory_management_struct.zones_struct + i;
  401. struct Page *p = z->pages_group;
  402. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  403. break;
  404. for (int j = 0; j < z->count_pages; ++j)
  405. {
  406. // if (p->addr_phys)
  407. // kdebug("(ul)phys_2_virt(p->addr_phys)=%#018lx",(ul)phys_2_virt(p->addr_phys));
  408. // mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
  409. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true);
  410. ++p;
  411. ++js;
  412. }
  413. }
  414. flush_tlb();
  415. kinfo("Page table Initialized. Affects:%d", js);
  416. }
  417. /**
  418. * @brief 将物理地址映射到页表的函数
  419. *
  420. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  421. * @param phys_addr_start 物理地址的起始位置
  422. * @param length 要映射的区域的长度(字节)
  423. */
  424. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  425. {
  426. uint64_t global_CR3 = (uint64_t)get_CR3();
  427. mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true);
  428. }
  429. void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  430. {
  431. uint64_t global_CR3 = (uint64_t)get_CR3();
  432. mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true);
  433. }
  434. /**
  435. * @brief 将将物理地址填写到进程的页表的函数
  436. *
  437. * @param proc_page_table_addr 页表的基地址
  438. * @param is_phys 页表的基地址是否为物理地址
  439. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  440. * @param phys_addr_start 物理地址的起始位置
  441. * @param length 要映射的区域的长度(字节)
  442. * @param user 用户态是否可访问
  443. * @param flush 是否刷新tlb
  444. */
  445. void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush)
  446. {
  447. // 计算线性地址对应的pml4页表项的地址
  448. mm_pgt_entry_num_t pgt_num;
  449. mm_calculate_entry_num(length, &pgt_num);
  450. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  451. // 已映射的内存大小
  452. uint64_t length_mapped = 0;
  453. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  454. uint64_t *pml4_ptr;
  455. if (is_phys)
  456. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  457. else
  458. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  459. // 循环填写顶层页表
  460. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  461. {
  462. // 剩余需要处理的pml4E -1
  463. --(pgt_num.num_PML4E);
  464. ul *pml4e_ptr = pml4_ptr + pml4e_id;
  465. // 创建新的二级页表
  466. if (*pml4e_ptr == 0)
  467. {
  468. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  469. memset(virt_addr, 0, PAGE_4K_SIZE);
  470. set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  471. }
  472. uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
  473. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  474. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  475. // 循环填写二级页表
  476. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  477. {
  478. --pgt_num.num_PDPTE;
  479. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  480. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  481. // 创建新的三级页表
  482. if (*pdpte_ptr == 0)
  483. {
  484. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  485. memset(virt_addr, 0, PAGE_4K_SIZE);
  486. set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  487. // kdebug("created new pdt, *pdpte_ptr=%#018lx, virt_addr=%#018lx", *pdpte_ptr, virt_addr);
  488. }
  489. uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
  490. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  491. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  492. // 循环填写三级页表,初始化2M物理页
  493. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  494. {
  495. --pgt_num.num_PDE;
  496. // 计算当前2M物理页对应的pdt的页表项的物理地址
  497. ul *pde_ptr = pd_ptr + pde_id;
  498. if (*pde_ptr != 0 && user)
  499. {
  500. // kwarn("page already mapped!");
  501. // 如果是用户态可访问的页,则释放当前新获取的物理页
  502. free_pages(Phy_to_2M_Page((ul)phys_addr_start + length_mapped), 1);
  503. length_mapped += PAGE_2M_SIZE;
  504. continue;
  505. }
  506. // 页面写穿,禁止缓存
  507. set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  508. length_mapped += PAGE_2M_SIZE;
  509. }
  510. }
  511. }
  512. if (flush)
  513. flush_tlb();
  514. }
  515. /**
  516. * @brief 从页表中获取pdt页表项的内容
  517. *
  518. * @param proc_page_table_addr 页表的地址
  519. * @param is_phys 页表地址是否为物理地址
  520. * @param virt_addr_start 要清除的虚拟地址的起始地址
  521. * @param length 要清除的区域的长度
  522. * @param clear 是否清除标志位
  523. */
  524. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  525. {
  526. ul *tmp;
  527. if (is_phys)
  528. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  529. else
  530. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  531. // pml4页表项为0
  532. if (*tmp == 0)
  533. return 0;
  534. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  535. // pdpt页表项为0
  536. if (*tmp == 0)
  537. return 0;
  538. // 读取pdt页表项
  539. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  540. if (clear) // 清除页表项的标志位
  541. return *tmp & (~0x1fff);
  542. else
  543. return *tmp;
  544. }
  545. /**
  546. * @brief 从页表中清除虚拟地址的映射
  547. *
  548. * @param proc_page_table_addr 页表的地址
  549. * @param is_phys 页表地址是否为物理地址
  550. * @param virt_addr_start 要清除的虚拟地址的起始地址
  551. * @param length 要清除的区域的长度
  552. */
  553. void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
  554. {
  555. // 计算线性地址对应的pml4页表项的地址
  556. mm_pgt_entry_num_t pgt_num;
  557. mm_calculate_entry_num(length, &pgt_num);
  558. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  559. // 已取消映射的内存大小
  560. uint64_t length_unmapped = 0;
  561. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  562. uint64_t *pml4_ptr;
  563. if (is_phys)
  564. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  565. else
  566. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  567. // 循环填写顶层页表
  568. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  569. {
  570. // 剩余需要处理的pml4E -1
  571. --(pgt_num.num_PML4E);
  572. ul *pml4e_ptr = NULL;
  573. pml4e_ptr = pml4_ptr + pml4e_id;
  574. // 二级页表不存在
  575. if (*pml4e_ptr == 0)
  576. {
  577. continue;
  578. }
  579. uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
  580. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  581. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  582. // 循环处理二级页表
  583. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  584. {
  585. --pgt_num.num_PDPTE;
  586. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  587. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  588. // 三级页表为空
  589. if (*pdpte_ptr == 0)
  590. {
  591. continue;
  592. }
  593. uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
  594. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  595. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  596. // 循环处理三级页表
  597. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  598. {
  599. --pgt_num.num_PDE;
  600. // 计算当前2M物理页对应的pdt的页表项的物理地址
  601. ul *pde_ptr = pd_ptr + pde_id;
  602. *pde_ptr = 0;
  603. length_unmapped += PAGE_2M_SIZE;
  604. }
  605. }
  606. }
  607. flush_tlb();
  608. }
  609. /**
  610. * @brief 从mms中寻找Page结构体
  611. *
  612. * @param phys_addr
  613. * @return struct Page*
  614. */
  615. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  616. {
  617. uint32_t zone_start, zone_end;
  618. switch (zone_select)
  619. {
  620. case ZONE_DMA:
  621. // DMA区域
  622. zone_start = 0;
  623. zone_end = ZONE_DMA_INDEX;
  624. break;
  625. case ZONE_NORMAL:
  626. zone_start = ZONE_DMA_INDEX;
  627. zone_end = ZONE_NORMAL_INDEX;
  628. break;
  629. case ZONE_UNMAPPED_IN_PGT:
  630. zone_start = ZONE_NORMAL_INDEX;
  631. zone_end = ZONE_UNMAPPED_INDEX;
  632. break;
  633. default:
  634. kerror("In mm_find_page: param: zone_select incorrect.");
  635. // 返回空
  636. return NULL;
  637. break;
  638. }
  639. for (int i = zone_start; i <= zone_end; ++i)
  640. {
  641. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  642. continue;
  643. struct Zone *z = memory_management_struct.zones_struct + i;
  644. // 区域对应的起止页号
  645. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  646. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  647. ul tmp = 64 - page_start % 64;
  648. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  649. {
  650. // 按照bmp中的每一个元素进行查找
  651. // 先将p定位到bmp的起始元素
  652. ul *p = memory_management_struct.bmp + (j >> 6);
  653. ul shift = j % 64;
  654. for (ul k = shift; k < 64; ++k)
  655. {
  656. if ((*p >> k) & 1) // 若当前页已分配
  657. {
  658. uint64_t page_num = j + k - shift;
  659. struct Page *x = memory_management_struct.pages_struct + page_num;
  660. if (x->addr_phys == phys_addr) // 找到对应的页
  661. return x;
  662. }
  663. }
  664. }
  665. }
  666. return NULL;
  667. }
  668. /**
  669. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  670. *
  671. * @todo 缩小堆区域
  672. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  673. * @param offset 新的地址相对于原地址的偏移量
  674. * @return uint64_t
  675. */
  676. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  677. {
  678. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  679. if (offset >= 0)
  680. {
  681. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  682. {
  683. kdebug("map [%#018lx]", i);
  684. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  685. }
  686. current_pcb->mm->brk_end = end_addr;
  687. }
  688. else
  689. {
  690. // 释放堆内存
  691. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  692. {
  693. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  694. // 找到对应的页
  695. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  696. if (p == NULL)
  697. {
  698. kerror("cannot find page addr=%#018lx", phys);
  699. return end_addr;
  700. }
  701. free_pages(p, 1);
  702. }
  703. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  704. // 在页表中取消映射
  705. }
  706. return end_addr;
  707. }
  708. /**
  709. * @brief 检测指定地址是否已经被映射
  710. *
  711. * @param page_table_phys_addr 页表的物理地址
  712. * @param virt_addr 要检测的地址
  713. * @return true 已经被映射
  714. * @return false
  715. */
  716. bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
  717. {
  718. ul *tmp;
  719. tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  720. // pml4页表项为0
  721. if (*tmp == 0)
  722. return 0;
  723. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  724. // pdpt页表项为0
  725. if (*tmp == 0)
  726. return 0;
  727. // 读取pdt页表项
  728. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  729. // todo: 增加对使用了4K页的页表的检测
  730. if (*tmp != 0)
  731. return true;
  732. else
  733. return false;
  734. }