process.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. #include <common/libELF/elf.h>
  13. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  14. long process_global_pid = 1; // 系统中最大的pid
  15. uint64_t pid_one_map_offset = 0x0000020000000000;
  16. int pid_one_map_count = 0;
  17. extern void system_call(void);
  18. extern void kernel_thread_func(void);
  19. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  20. struct mm_struct initial_mm = {0};
  21. struct thread_struct initial_thread =
  22. {
  23. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  24. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  25. .fs = KERNEL_DS,
  26. .gs = KERNEL_DS,
  27. .cr2 = 0,
  28. .trap_num = 0,
  29. .err_code = 0};
  30. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  31. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  32. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  33. // 为每个核心初始化初始进程的tss
  34. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  35. /**
  36. * @brief 拷贝当前进程的标志位
  37. *
  38. * @param clone_flags 克隆标志位
  39. * @param pcb 新的进程的pcb
  40. * @return uint64_t
  41. */
  42. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  43. /**
  44. * @brief 拷贝当前进程的文件描述符等信息
  45. *
  46. * @param clone_flags 克隆标志位
  47. * @param pcb 新的进程的pcb
  48. * @return uint64_t
  49. */
  50. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  51. /**
  52. * @brief 回收进程的所有文件描述符
  53. *
  54. * @param pcb 要被回收的进程的pcb
  55. * @return uint64_t
  56. */
  57. uint64_t process_exit_files(struct process_control_block *pcb);
  58. /**
  59. * @brief 拷贝当前进程的内存空间分布结构体信息
  60. *
  61. * @param clone_flags 克隆标志位
  62. * @param pcb 新的进程的pcb
  63. * @return uint64_t
  64. */
  65. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  66. /**
  67. * @brief 释放进程的页表
  68. *
  69. * @param pcb 要被释放页表的进程
  70. * @return uint64_t
  71. */
  72. uint64_t process_exit_mm(struct process_control_block *pcb);
  73. /**
  74. * @brief 拷贝当前进程的线程结构体
  75. *
  76. * @param clone_flags 克隆标志位
  77. * @param pcb 新的进程的pcb
  78. * @return uint64_t
  79. */
  80. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  81. void process_exit_thread(struct process_control_block *pcb);
  82. /**
  83. * @brief 切换进程
  84. *
  85. * @param prev 上一个进程的pcb
  86. * @param next 将要切换到的进程的pcb
  87. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  88. * 这里切换fs和gs寄存器
  89. */
  90. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  91. {
  92. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  93. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  94. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  95. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  96. __asm__ __volatile__("movq %%fs, %0 \n\t"
  97. : "=a"(prev->thread->fs));
  98. __asm__ __volatile__("movq %%gs, %0 \n\t"
  99. : "=a"(prev->thread->gs));
  100. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  101. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  102. // wrmsr(0x175, next->thread->rbp);
  103. }
  104. /**
  105. * @brief 打开要执行的程序文件
  106. *
  107. * @param path
  108. * @return struct vfs_file_t*
  109. */
  110. struct vfs_file_t *process_open_exec_file(char *path)
  111. {
  112. struct vfs_dir_entry_t *dentry = NULL;
  113. struct vfs_file_t *filp = NULL;
  114. dentry = vfs_path_walk(path, 0);
  115. if (dentry == NULL)
  116. return (void *)-ENOENT;
  117. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  118. return (void *)-ENOTDIR;
  119. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  120. if (filp == NULL)
  121. return (void *)-ENOMEM;
  122. filp->position = 0;
  123. filp->mode = 0;
  124. filp->dEntry = dentry;
  125. filp->mode = ATTR_READ_ONLY;
  126. filp->file_ops = dentry->dir_inode->file_ops;
  127. return filp;
  128. }
  129. /**
  130. * @brief 加载elf格式的程序文件到内存中,并设置regs
  131. *
  132. * @param regs 寄存器
  133. * @param path 文件路径
  134. * @return int
  135. */
  136. static int process_load_elf_file(struct pt_regs *regs, char *path)
  137. {
  138. int retval = 0;
  139. struct vfs_file_t *filp = process_open_exec_file(path);
  140. if ((unsigned long)filp <= 0)
  141. {
  142. kdebug("(unsigned long)filp=%d", (long)filp);
  143. return (unsigned long)filp;
  144. }
  145. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  146. memset(buf, 0, PAGE_4K_SIZE);
  147. uint64_t pos = 0;
  148. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  149. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  150. retval = 0;
  151. if (!elf_check(buf))
  152. {
  153. kerror("Not an ELF file: %s", path);
  154. retval = -ENOTSUP;
  155. goto load_elf_failed;
  156. }
  157. #if ARCH(X86_64)
  158. // 暂时只支持64位的文件
  159. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  160. {
  161. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  162. retval = -EUNSUPPORTED;
  163. goto load_elf_failed;
  164. }
  165. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  166. // 暂时只支持AMD64架构
  167. if (ehdr.e_machine != EM_AMD64)
  168. {
  169. kerror("e_machine=%d", ehdr.e_machine);
  170. retval = -EUNSUPPORTED;
  171. goto load_elf_failed;
  172. }
  173. #else
  174. #error Unsupported architecture!
  175. #endif
  176. if (ehdr.e_type != ET_EXEC)
  177. {
  178. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  179. retval = -EUNSUPPORTED;
  180. goto load_elf_failed;
  181. }
  182. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  183. regs->rip = ehdr.e_entry;
  184. current_pcb->mm->code_addr_start = ehdr.e_entry;
  185. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  186. // 将指针移动到program header处
  187. pos = ehdr.e_phoff;
  188. // 读取所有的phdr
  189. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  190. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  191. if ((unsigned long)filp <= 0)
  192. {
  193. kdebug("(unsigned long)filp=%d", (long)filp);
  194. retval = -ENOEXEC;
  195. goto load_elf_failed;
  196. }
  197. Elf64_Phdr *phdr = buf;
  198. // 将程序加载到内存中
  199. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  200. {
  201. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  202. // 不是可加载的段
  203. if (phdr->p_type != PT_LOAD)
  204. continue;
  205. int64_t remain_mem_size = phdr->p_memsz;
  206. int64_t remain_file_size = phdr->p_filesz;
  207. pos = phdr->p_offset;
  208. uint64_t virt_base = phdr->p_vaddr;
  209. // kdebug("virt_base = %#018lx, &memory_management_struct=%#018lx", virt_base, &memory_management_struct);
  210. while (remain_mem_size > 0)
  211. {
  212. // todo: 改用slab分配4K大小内存块并映射到4K页
  213. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  214. {
  215. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  216. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  217. }
  218. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  219. int64_t val = 0;
  220. if (remain_file_size != 0)
  221. {
  222. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  223. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  224. }
  225. if (val < 0)
  226. goto load_elf_failed;
  227. remain_mem_size -= PAGE_2M_SIZE;
  228. remain_file_size -= val;
  229. virt_base += PAGE_2M_SIZE;
  230. }
  231. }
  232. // 分配2MB的栈内存空间
  233. regs->rsp = current_pcb->mm->stack_start;
  234. regs->rbp = current_pcb->mm->stack_start;
  235. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  236. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
  237. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, 1 * PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  238. // 清空栈空间
  239. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  240. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE * 2, alloc_pages(ZONE_NORMAL, 2, PAGE_PGT_MAPPED)->addr_phys, 2 * PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  241. // // 清空栈空间
  242. // memset((void *)(current_pcb->mm->stack_start - 2 * PAGE_2M_SIZE), 0, 2 * PAGE_2M_SIZE);
  243. // if (current_pcb->pid == 1 && pid_one_map_count < 2)
  244. // {
  245. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, pid_one_map_offset, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  246. // memset(pid_one_map_offset, 0, PAGE_2M_SIZE);
  247. // pid_one_map_count++;
  248. // pid_one_map_offset += PAGE_2M_SIZE;
  249. // }
  250. load_elf_failed:;
  251. if (buf != NULL)
  252. kfree(buf);
  253. return retval;
  254. }
  255. /**
  256. * @brief 使当前进程去执行新的代码
  257. *
  258. * @param regs 当前进程的寄存器
  259. * @param path 可执行程序的路径
  260. * @param argv 参数列表
  261. * @param envp 环境变量
  262. * @return ul 错误码
  263. */
  264. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  265. {
  266. // kdebug("do_execve is running...");
  267. // 当前进程正在与父进程共享地址空间,需要创建
  268. // 独立的地址空间才能使新程序正常运行
  269. if (current_pcb->flags & PF_VFORK)
  270. {
  271. kdebug("proc:%d creating new mem space", current_pcb->pid);
  272. // 分配新的内存空间分布结构体
  273. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  274. memset(new_mms, 0, sizeof(struct mm_struct));
  275. current_pcb->mm = new_mms;
  276. // 分配顶层页表, 并设置顶层页表的物理地址
  277. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  278. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  279. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  280. // 拷贝内核空间的页表指针
  281. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  282. }
  283. // 设置用户栈和用户堆的基地址
  284. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  285. const uint64_t brk_start_addr = 0x700000000000UL;
  286. process_switch_mm(current_pcb);
  287. // 为用户态程序设置地址边界
  288. if (!(current_pcb->flags & PF_KTHREAD))
  289. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  290. current_pcb->mm->code_addr_end = 0;
  291. current_pcb->mm->data_addr_start = 0;
  292. current_pcb->mm->data_addr_end = 0;
  293. current_pcb->mm->rodata_addr_start = 0;
  294. current_pcb->mm->rodata_addr_end = 0;
  295. current_pcb->mm->bss_start = 0;
  296. current_pcb->mm->bss_end = 0;
  297. current_pcb->mm->brk_start = brk_start_addr;
  298. current_pcb->mm->brk_end = brk_start_addr;
  299. current_pcb->mm->stack_start = stack_start_addr;
  300. // 关闭之前的文件描述符
  301. process_exit_files(current_pcb);
  302. // 清除进程的vfork标志位
  303. current_pcb->flags &= ~PF_VFORK;
  304. // 加载elf格式的可执行文件
  305. int tmp = process_load_elf_file(regs, path);
  306. if (tmp < 0)
  307. return tmp;
  308. // 拷贝参数列表
  309. if (argv != NULL)
  310. {
  311. int argc = 0;
  312. // 目标程序的argv基地址指针,最大8个参数
  313. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  314. uint64_t str_addr = (uint64_t)dst_argv;
  315. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  316. {
  317. if (*argv[argc] == NULL)
  318. break;
  319. // 测量参数的长度(最大1023)
  320. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  321. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  322. str_addr -= argv_len;
  323. dst_argv[argc] = (char *)str_addr;
  324. //字符串加上结尾字符
  325. ((char *)str_addr)[argv_len] = '\0';
  326. }
  327. // 重新设定栈基址,并预留空间防止越界
  328. stack_start_addr = str_addr - 8;
  329. current_pcb->mm->stack_start = stack_start_addr;
  330. regs->rsp = regs->rbp = stack_start_addr;
  331. // 传递参数
  332. regs->rdi = argc;
  333. regs->rsi = (uint64_t)dst_argv;
  334. }
  335. // kdebug("execve ok");
  336. regs->cs = USER_CS | 3;
  337. regs->ds = USER_DS | 3;
  338. regs->ss = USER_DS | 0x3;
  339. regs->rflags = 0x200246;
  340. regs->rax = 1;
  341. regs->es = 0;
  342. return 0;
  343. }
  344. /**
  345. * @brief 内核init进程
  346. *
  347. * @param arg
  348. * @return ul 参数
  349. */
  350. ul initial_kernel_thread(ul arg)
  351. {
  352. // kinfo("initial proc running...\targ:%#018lx", arg);
  353. fat32_init();
  354. struct pt_regs *regs;
  355. current_pcb->thread->rip = (ul)ret_from_system_call;
  356. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  357. current_pcb->thread->fs = USER_DS | 0x3;
  358. current_pcb->thread->gs = USER_DS | 0x3;
  359. // 主动放弃内核线程身份
  360. current_pcb->flags &= (~PF_KTHREAD);
  361. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  362. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  363. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  364. regs = (struct pt_regs *)current_pcb->thread->rsp;
  365. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  366. current_pcb->flags = 0;
  367. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  368. // 加载用户态程序:shell.elf
  369. char init_path[] = "/shell.elf";
  370. uint64_t addr = (uint64_t)&init_path;
  371. __asm__ __volatile__("movq %1, %%rsp \n\t"
  372. "pushq %2 \n\t"
  373. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  374. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  375. : "memory");
  376. return 1;
  377. }
  378. /**
  379. * @brief 当子进程退出后向父进程发送通知
  380. *
  381. */
  382. void process_exit_notify()
  383. {
  384. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  385. }
  386. /**
  387. * @brief 进程退出时执行的函数
  388. *
  389. * @param code 返回码
  390. * @return ul
  391. */
  392. ul process_do_exit(ul code)
  393. {
  394. kinfo("process exiting..., code is %#018lx.", code);
  395. cli();
  396. struct process_control_block *pcb = current_pcb;
  397. // 进程退出时释放资源
  398. process_exit_files(pcb);
  399. process_exit_thread(pcb);
  400. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  401. pcb->state = PROC_ZOMBIE;
  402. pcb->exit_code = code;
  403. sti();
  404. process_exit_notify();
  405. sched_cfs();
  406. while (1)
  407. hlt();
  408. }
  409. /**
  410. * @brief 初始化内核进程
  411. *
  412. * @param fn 目标程序的地址
  413. * @param arg 向目标程序传入的参数
  414. * @param flags
  415. * @return int
  416. */
  417. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  418. {
  419. struct pt_regs regs;
  420. memset(&regs, 0, sizeof(regs));
  421. // 在rbx寄存器中保存进程的入口地址
  422. regs.rbx = (ul)fn;
  423. // 在rdx寄存器中保存传入的参数
  424. regs.rdx = (ul)arg;
  425. regs.ds = KERNEL_DS;
  426. regs.es = KERNEL_DS;
  427. regs.cs = KERNEL_CS;
  428. regs.ss = KERNEL_DS;
  429. // 置位中断使能标志位
  430. regs.rflags = (1 << 9);
  431. // rip寄存器指向内核线程的引导程序
  432. regs.rip = (ul)kernel_thread_func;
  433. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  434. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  435. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  436. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  437. }
  438. /**
  439. * @brief 初始化进程模块
  440. * ☆前置条件:已完成系统调用模块的初始化
  441. */
  442. void process_init()
  443. {
  444. kinfo("Initializing process...");
  445. initial_mm.pgd = (pml4t_t *)get_CR3();
  446. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  447. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  448. initial_mm.data_addr_start = (ul)&_data;
  449. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  450. initial_mm.rodata_addr_start = (ul)&_rodata;
  451. initial_mm.rodata_addr_end = (ul)&_erodata;
  452. initial_mm.bss_start = (uint64_t)&_bss;
  453. initial_mm.bss_end = (uint64_t)&_ebss;
  454. initial_mm.brk_start = memory_management_struct.start_brk;
  455. initial_mm.brk_end = current_pcb->addr_limit;
  456. initial_mm.stack_start = _stack_start;
  457. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  458. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  459. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  460. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  461. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  462. for (int i = 256; i < 512; ++i)
  463. {
  464. uint64_t *tmp = idle_pml4t_vaddr + i;
  465. if (*tmp == 0)
  466. {
  467. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  468. memset(pdpt, 0, PAGE_4K_SIZE);
  469. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  470. }
  471. }
  472. /*
  473. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  474. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  475. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  476. */
  477. // 初始化pid的写锁
  478. spin_init(&process_global_pid_write_lock);
  479. // 初始化进程的循环链表
  480. list_init(&initial_proc_union.pcb.list);
  481. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  482. initial_proc_union.pcb.state = PROC_RUNNING;
  483. initial_proc_union.pcb.preempt_count = 0;
  484. initial_proc_union.pcb.cpu_id = 0;
  485. }
  486. /**
  487. * @brief fork当前进程
  488. *
  489. * @param regs 新的寄存器值
  490. * @param clone_flags 克隆标志
  491. * @param stack_start 堆栈开始地址
  492. * @param stack_size 堆栈大小
  493. * @return unsigned long
  494. */
  495. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  496. {
  497. int retval = 0;
  498. struct process_control_block *tsk = NULL;
  499. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  500. // 为新的进程分配栈空间,并将pcb放置在底部
  501. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  502. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  503. if (tsk == NULL)
  504. {
  505. retval = -ENOMEM;
  506. return retval;
  507. }
  508. memset(tsk, 0, sizeof(struct process_control_block));
  509. // 将当前进程的pcb复制到新的pcb内
  510. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  511. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  512. // 将进程加入循环链表
  513. list_init(&tsk->list);
  514. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  515. tsk->priority = 2;
  516. tsk->preempt_count = 0;
  517. // 增加全局的pid并赋值给新进程的pid
  518. spin_lock(&process_global_pid_write_lock);
  519. tsk->pid = process_global_pid++;
  520. // 加入到进程链表中
  521. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  522. initial_proc_union.pcb.next_pcb = tsk;
  523. tsk->parent_pcb = current_pcb;
  524. spin_unlock(&process_global_pid_write_lock);
  525. tsk->cpu_id = proc_current_cpu_id;
  526. tsk->state = PROC_UNINTERRUPTIBLE;
  527. tsk->parent_pcb = current_pcb;
  528. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  529. list_init(&tsk->list);
  530. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  531. retval = -ENOMEM;
  532. // 拷贝标志位
  533. if (process_copy_flags(clone_flags, tsk))
  534. goto copy_flags_failed;
  535. // 拷贝内存空间分布结构体
  536. if (process_copy_mm(clone_flags, tsk))
  537. goto copy_mm_failed;
  538. // 拷贝文件
  539. if (process_copy_files(clone_flags, tsk))
  540. goto copy_files_failed;
  541. // 拷贝线程结构体
  542. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  543. goto copy_thread_failed;
  544. // 拷贝成功
  545. retval = tsk->pid;
  546. // kdebug("fork done: tsk->pid=%d", tsk->pid);
  547. // kdebug("current_pcb->mm->brk_end=%#018lx", current_pcb->mm->brk_end);
  548. // mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, 0x0000500000000000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  549. // 唤醒进程
  550. process_wakeup(tsk);
  551. return retval;
  552. copy_thread_failed:;
  553. // 回收线程
  554. process_exit_thread(tsk);
  555. copy_files_failed:;
  556. // 回收文件
  557. process_exit_files(tsk);
  558. copy_mm_failed:;
  559. // 回收内存空间分布结构体
  560. process_exit_mm(tsk);
  561. copy_flags_failed:;
  562. kfree(tsk);
  563. return retval;
  564. return 0;
  565. }
  566. /**
  567. * @brief 根据pid获取进程的pcb
  568. *
  569. * @param pid
  570. * @return struct process_control_block*
  571. */
  572. struct process_control_block *process_get_pcb(long pid)
  573. {
  574. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  575. // 使用蛮力法搜索指定pid的pcb
  576. // todo: 使用哈希表来管理pcb
  577. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  578. {
  579. if (pcb->pid == pid)
  580. return pcb;
  581. }
  582. return NULL;
  583. }
  584. /**
  585. * @brief 将进程加入到调度器的就绪队列中
  586. *
  587. * @param pcb 进程的pcb
  588. */
  589. void process_wakeup(struct process_control_block *pcb)
  590. {
  591. pcb->state = PROC_RUNNING;
  592. sched_cfs_enqueue(pcb);
  593. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  594. current_pcb->flags |= PF_NEED_SCHED;
  595. }
  596. /**
  597. * @brief 拷贝当前进程的标志位
  598. *
  599. * @param clone_flags 克隆标志位
  600. * @param pcb 新的进程的pcb
  601. * @return uint64_t
  602. */
  603. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  604. {
  605. if (clone_flags & CLONE_VM)
  606. pcb->flags |= PF_VFORK;
  607. return 0;
  608. }
  609. /**
  610. * @brief 拷贝当前进程的文件描述符等信息
  611. *
  612. * @param clone_flags 克隆标志位
  613. * @param pcb 新的进程的pcb
  614. * @return uint64_t
  615. */
  616. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  617. {
  618. int retval = 0;
  619. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  620. // 文件描述符已经在复制pcb时被拷贝
  621. if (clone_flags & CLONE_FS)
  622. return retval;
  623. // 为新进程拷贝新的文件描述符
  624. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  625. {
  626. if (current_pcb->fds[i] == NULL)
  627. continue;
  628. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  629. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  630. }
  631. return retval;
  632. }
  633. /**
  634. * @brief 回收进程的所有文件描述符
  635. *
  636. * @param pcb 要被回收的进程的pcb
  637. * @return uint64_t
  638. */
  639. uint64_t process_exit_files(struct process_control_block *pcb)
  640. {
  641. // 不与父进程共享文件描述符
  642. if (!(pcb->flags & PF_VFORK))
  643. {
  644. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  645. {
  646. if (pcb->fds[i] == NULL)
  647. continue;
  648. kfree(pcb->fds[i]);
  649. }
  650. }
  651. // 清空当前进程的文件描述符列表
  652. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  653. }
  654. /**
  655. * @brief 拷贝当前进程的内存空间分布结构体信息
  656. *
  657. * @param clone_flags 克隆标志位
  658. * @param pcb 新的进程的pcb
  659. * @return uint64_t
  660. */
  661. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  662. {
  663. int retval = 0;
  664. // 与父进程共享内存空间
  665. if (clone_flags & CLONE_VM)
  666. {
  667. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  668. pcb->mm = current_pcb->mm;
  669. return retval;
  670. }
  671. // 分配新的内存空间分布结构体
  672. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  673. memset(new_mms, 0, sizeof(struct mm_struct));
  674. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  675. pcb->mm = new_mms;
  676. // 分配顶层页表, 并设置顶层页表的物理地址
  677. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  678. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  679. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  680. // 拷贝内核空间的页表指针
  681. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  682. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  683. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  684. // 迭代地拷贝用户空间
  685. for (int i = 0; i <= 255; ++i)
  686. {
  687. // 当前页表项为空
  688. if ((*(uint64_t *)(current_pgd + i)) == 0)
  689. continue;
  690. // 分配新的二级页表
  691. uint64_t *new_pdpt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  692. memset(new_pdpt, 0, PAGE_4K_SIZE);
  693. // 在新的一级页表中设置新的二级页表表项
  694. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  695. uint64_t *current_pdpt = (uint64_t *)phys_2_virt((*(uint64_t *)(current_pgd + i)) & (~0xfffUL));
  696. // kdebug("current_pdpt=%#018lx, current_pid=%d", current_pdpt, current_pcb->pid);
  697. for (int j = 0; j < 512; ++j)
  698. {
  699. if (*(current_pdpt + j) == 0)
  700. continue;
  701. // 分配新的三级页表
  702. uint64_t *new_pdt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  703. memset(new_pdt, 0, PAGE_4K_SIZE);
  704. // 在二级页表中填写新的三级页表
  705. // 在新的二级页表中设置三级页表的表项
  706. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(current_pdpt + j)) & 0xfffUL));
  707. uint64_t *current_pdt = (uint64_t *)phys_2_virt((*(current_pdpt + j)) & (~0xfffUL));
  708. // kdebug("current_pdt=%#018lx", current_pdt);
  709. // 循环拷贝三级页表
  710. for (int k = 0; k < 512; ++k)
  711. {
  712. if (*(current_pdt + k) == 0)
  713. continue;
  714. // 获取新的物理页
  715. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  716. memset((void *)phys_2_virt(pa), 0, PAGE_2M_SIZE);
  717. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pa, *(current_pdt + k) & 0x1ffUL));
  718. // 拷贝数据
  719. memcpy(phys_2_virt(pa), phys_2_virt((*(current_pdt + k)) & (~0x1ffUL)), PAGE_2M_SIZE);
  720. }
  721. }
  722. }
  723. return retval;
  724. }
  725. /**
  726. * @brief 释放进程的页表
  727. *
  728. * @param pcb 要被释放页表的进程
  729. * @return uint64_t
  730. */
  731. uint64_t process_exit_mm(struct process_control_block *pcb)
  732. {
  733. if (pcb->flags & CLONE_VM)
  734. return 0;
  735. if (pcb->mm == NULL)
  736. {
  737. kdebug("pcb->mm==NULL");
  738. return 0;
  739. }
  740. if (pcb->mm->pgd == NULL)
  741. {
  742. kdebug("pcb->mm->pgd==NULL");
  743. return 0;
  744. }
  745. // 获取顶层页表
  746. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  747. // 迭代地释放用户空间
  748. for (int i = 0; i <= 255; ++i)
  749. {
  750. // 当前页表项为空
  751. if ((current_pgd + i)->pml4t == 0)
  752. continue;
  753. // 二级页表entry
  754. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  755. // 遍历二级页表
  756. for (int j = 0; j < 512; ++j)
  757. {
  758. if ((current_pdpt + j)->pdpt == 0)
  759. continue;
  760. // 三级页表的entry
  761. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  762. // 释放三级页表的内存页
  763. for (int k = 0; k < 512; ++k)
  764. {
  765. if ((current_pdt + k)->pdt == 0)
  766. continue;
  767. // 释放内存页
  768. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  769. }
  770. // 释放三级页表
  771. kfree(current_pdt);
  772. }
  773. // 释放二级页表
  774. kfree(current_pdpt);
  775. }
  776. // 释放顶层页表
  777. kfree(current_pgd);
  778. // 释放内存空间分布结构体
  779. kfree(pcb->mm);
  780. return 0;
  781. }
  782. /**
  783. * @brief 拷贝当前进程的线程结构体
  784. *
  785. * @param clone_flags 克隆标志位
  786. * @param pcb 新的进程的pcb
  787. * @return uint64_t
  788. */
  789. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  790. {
  791. // 将线程结构体放置在pcb后方
  792. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  793. memset(thd, 0, sizeof(struct thread_struct));
  794. pcb->thread = thd;
  795. // 拷贝栈空间
  796. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  797. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  798. // 设置子进程的返回值为0
  799. child_regs->rax = 0;
  800. child_regs->rsp = stack_start;
  801. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  802. thd->rsp = (uint64_t)child_regs;
  803. thd->fs = current_pcb->thread->fs;
  804. thd->gs = current_pcb->thread->gs;
  805. // kdebug("pcb->flags=%ld", pcb->flags);
  806. // 根据是否为内核线程,设置进程的开始执行的地址
  807. if (pcb->flags & PF_KTHREAD)
  808. thd->rip = (uint64_t)kernel_thread_func;
  809. else
  810. thd->rip = (uint64_t)ret_from_system_call;
  811. // kdebug("new proc's ret addr = %#018lx\tthd->rip=%#018lx stack_start=%#018lx child_regs->rsp = %#018lx, new_rip=%#018lx)", child_regs->rbx, thd->rip, stack_start, child_regs->rsp, child_regs->rip);
  812. return 0;
  813. }
  814. /**
  815. * @brief todo: 回收线程结构体
  816. *
  817. * @param pcb
  818. */
  819. void process_exit_thread(struct process_control_block *pcb)
  820. {
  821. }