mm.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. #include <process/process.h>
  7. ul Total_Memory = 0;
  8. ul total_2M_pages = 0;
  9. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  10. /**
  11. * @brief 虚拟地址长度所需要的entry数量
  12. *
  13. */
  14. typedef struct
  15. {
  16. int64_t num_PML4E;
  17. int64_t num_PDPTE;
  18. int64_t num_PDE;
  19. int64_t num_PTE;
  20. } mm_pgt_entry_num_t;
  21. /**
  22. * @brief 计算虚拟地址长度对应的页表entry数量
  23. *
  24. * @param length 长度
  25. * @param ent 返回的entry数量结构体
  26. */
  27. static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
  28. {
  29. if (ent == NULL)
  30. return;
  31. ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
  32. ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
  33. ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
  34. ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
  35. }
  36. /**
  37. * @brief 从页表中获取pdt页表项的内容
  38. *
  39. * @param proc_page_table_addr 页表的地址
  40. * @param is_phys 页表地址是否为物理地址
  41. * @param virt_addr_start 要清除的虚拟地址的起始地址
  42. * @param length 要清除的区域的长度
  43. * @param clear 是否清除标志位
  44. */
  45. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  46. void mm_init()
  47. {
  48. kinfo("Initializing memory management unit...");
  49. // 设置内核程序不同部分的起止地址
  50. memory_management_struct.kernel_code_start = (ul)&_text;
  51. memory_management_struct.kernel_code_end = (ul)&_etext;
  52. memory_management_struct.kernel_data_end = (ul)&_edata;
  53. memory_management_struct.rodata_end = (ul)&_erodata;
  54. memory_management_struct.start_brk = (ul)&_end;
  55. struct multiboot_mmap_entry_t mb2_mem_info[512];
  56. int count;
  57. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  58. for (int i = 0; i < count; ++i)
  59. {
  60. //可用的内存
  61. if (mb2_mem_info->type == 1)
  62. Total_Memory += mb2_mem_info->len;
  63. // 保存信息到mms
  64. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  65. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  66. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  67. memory_management_struct.len_e820 = i;
  68. // 脏数据
  69. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  70. break;
  71. }
  72. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  73. // 计算有效内存页数
  74. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  75. {
  76. if (memory_management_struct.e820[i].type != 1)
  77. continue;
  78. // 将内存段的起始物理地址按照2M进行对齐
  79. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  80. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  81. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  82. // 内存段不可用
  83. if (addr_end <= addr_start)
  84. continue;
  85. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  86. }
  87. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  88. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  89. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  90. // 初始化mms的bitmap
  91. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  92. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  93. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  94. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  95. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  96. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  97. // 初始化内存页结构
  98. // 将页结构映射于bmp之后
  99. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  100. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  101. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  102. // 将pages_struct全部清空,以备后续初始化
  103. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  104. // 初始化内存区域
  105. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  106. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  107. memory_management_struct.count_zones = 0;
  108. // zones-struct 成员变量暂时按照5个来计算
  109. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  110. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  111. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  112. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  113. {
  114. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  115. continue;
  116. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  117. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  118. if (addr_end <= addr_start)
  119. continue;
  120. // zone init
  121. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  122. ++memory_management_struct.count_zones;
  123. z->zone_addr_start = addr_start;
  124. z->zone_addr_end = addr_end;
  125. z->zone_length = addr_end - addr_start;
  126. z->count_pages_using = 0;
  127. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  128. z->total_pages_link = 0;
  129. z->attr = 0;
  130. z->gmd_struct = &memory_management_struct;
  131. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  132. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  133. // 初始化页
  134. struct Page *p = z->pages_group;
  135. for (int j = 0; j < z->count_pages; ++j, ++p)
  136. {
  137. p->zone = z;
  138. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  139. p->attr = 0;
  140. p->ref_counts = 0;
  141. p->age = 0;
  142. // 将bmp中对应的位 复位
  143. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  144. }
  145. }
  146. // 初始化0~2MB的物理页
  147. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  148. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  149. memory_management_struct.pages_struct->addr_phys = 0UL;
  150. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  151. memory_management_struct.pages_struct->ref_counts = 1;
  152. memory_management_struct.pages_struct->age = 0;
  153. // 将第0页的标志位给置上
  154. //*(memory_management_struct.bmp) |= 1UL;
  155. // 计算zone结构体的总长度(按照64位对齐)
  156. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  157. ZONE_DMA_INDEX = 0;
  158. ZONE_NORMAL_INDEX = 0;
  159. ZONE_UNMAPPED_INDEX = 0;
  160. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  161. {
  162. struct Zone *z = memory_management_struct.zones_struct + i;
  163. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  164. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  165. // 1GB以上的内存空间不做映射
  166. if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  167. ZONE_UNMAPPED_INDEX = i;
  168. }
  169. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  170. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  171. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  172. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  173. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  174. // 初始化内存管理单元结构所占的物理页的结构体
  175. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  176. // kdebug("mms_max_page=%ld", mms_max_page);
  177. struct Page *tmp_page = NULL;
  178. ul page_num;
  179. // 第0个page已经在上方配置
  180. for (ul j = 1; j <= mms_max_page; ++j)
  181. {
  182. tmp_page = memory_management_struct.pages_struct + j;
  183. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  184. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  185. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  186. ++tmp_page->zone->count_pages_using;
  187. --tmp_page->zone->count_pages_free;
  188. }
  189. kinfo("Memory management unit initialize complete!");
  190. flush_tlb();
  191. // 初始化slab内存池
  192. slab_init();
  193. page_table_init();
  194. init_frame_buffer();
  195. }
  196. /**
  197. * @brief 初始化内存页
  198. *
  199. * @param page 内存页结构体
  200. * @param flags 标志位
  201. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  202. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  203. * @return unsigned long
  204. */
  205. unsigned long page_init(struct Page *page, ul flags)
  206. {
  207. page->attr |= flags;
  208. // 若页面的引用计数为0或是共享页,增加引用计数
  209. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  210. {
  211. ++page->ref_counts;
  212. ++page->zone->total_pages_link;
  213. }
  214. return 0;
  215. }
  216. /**
  217. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  218. *
  219. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  220. * @param num 需要申请的连续内存页的数量 num<64
  221. * @param flags 将页面属性设置成flag
  222. * @return struct Page*
  223. */
  224. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  225. {
  226. ul zone_start = 0, zone_end = 0;
  227. if (num >= 64 && num <= 0)
  228. {
  229. kerror("alloc_pages(): num is invalid.");
  230. return NULL;
  231. }
  232. ul attr = flags;
  233. switch (zone_select)
  234. {
  235. case ZONE_DMA:
  236. // DMA区域
  237. zone_start = 0;
  238. zone_end = ZONE_DMA_INDEX;
  239. attr |= PAGE_PGT_MAPPED;
  240. break;
  241. case ZONE_NORMAL:
  242. zone_start = ZONE_DMA_INDEX;
  243. zone_end = ZONE_NORMAL_INDEX;
  244. attr |= PAGE_PGT_MAPPED;
  245. break;
  246. case ZONE_UNMAPPED_IN_PGT:
  247. zone_start = ZONE_NORMAL_INDEX;
  248. zone_end = ZONE_UNMAPPED_INDEX;
  249. attr = 0;
  250. break;
  251. default:
  252. kerror("In alloc_pages: param: zone_select incorrect.");
  253. // 返回空
  254. return NULL;
  255. break;
  256. }
  257. for (int i = zone_start; i <= zone_end; ++i)
  258. {
  259. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  260. continue;
  261. struct Zone *z = memory_management_struct.zones_struct + i;
  262. // 区域对应的起止页号
  263. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  264. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  265. ul tmp = 64 - page_start % 64;
  266. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  267. {
  268. // 按照bmp中的每一个元素进行查找
  269. // 先将p定位到bmp的起始元素
  270. ul *p = memory_management_struct.bmp + (j >> 6);
  271. ul shift = j % 64;
  272. ul tmp_num = ((1UL << num) - 1);
  273. for (ul k = shift; k < 64; ++k)
  274. {
  275. // 寻找连续num个空页
  276. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  277. {
  278. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  279. for (ul l = 0; l < num; ++l)
  280. {
  281. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  282. // 分配页面,手动配置属性及计数器
  283. // 置位bmp
  284. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  285. ++z->count_pages_using;
  286. --z->count_pages_free;
  287. x->attr = attr;
  288. }
  289. // 成功分配了页面,返回第一个页面的指针
  290. // printk("start page num=%d\n",start_page_num);
  291. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  292. }
  293. }
  294. }
  295. }
  296. return NULL;
  297. }
  298. /**
  299. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  300. *
  301. * @param p 物理页结构体
  302. * @return unsigned long
  303. */
  304. unsigned long page_clean(struct Page *p)
  305. {
  306. --p->ref_counts;
  307. --p->zone->total_pages_link;
  308. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  309. if (!p->ref_counts)
  310. {
  311. p->attr &= PAGE_PGT_MAPPED;
  312. }
  313. return 0;
  314. }
  315. /**
  316. * @brief Get the page's attr
  317. *
  318. * @param page 内存页结构体
  319. * @return ul 属性
  320. */
  321. ul get_page_attr(struct Page *page)
  322. {
  323. if (page == NULL)
  324. {
  325. kBUG("get_page_attr(): page == NULL");
  326. return EPAGE_NULL;
  327. }
  328. else
  329. return page->attr;
  330. }
  331. /**
  332. * @brief Set the page's attr
  333. *
  334. * @param page 内存页结构体
  335. * @param flags 属性
  336. * @return ul 错误码
  337. */
  338. ul set_page_attr(struct Page *page, ul flags)
  339. {
  340. if (page == NULL)
  341. {
  342. kBUG("get_page_attr(): page == NULL");
  343. return EPAGE_NULL;
  344. }
  345. else
  346. {
  347. page->attr = flags;
  348. return 0;
  349. }
  350. }
  351. /**
  352. * @brief 释放连续number个内存页
  353. *
  354. * @param page 第一个要被释放的页面的结构体
  355. * @param number 要释放的内存页数量 number<64
  356. */
  357. void free_pages(struct Page *page, int number)
  358. {
  359. if (page == NULL)
  360. {
  361. kerror("free_pages() page is invalid.");
  362. return;
  363. }
  364. if (number >= 64 || number <= 0)
  365. {
  366. kerror("free_pages(): number %d is invalid.", number);
  367. return;
  368. }
  369. ul page_num;
  370. for (int i = 0; i < number; ++i, ++page)
  371. {
  372. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  373. // 复位bmp
  374. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  375. // 更新计数器
  376. --page->zone->count_pages_using;
  377. ++page->zone->count_pages_free;
  378. page->attr = 0;
  379. }
  380. return;
  381. }
  382. /**
  383. * @brief 重新初始化页表的函数
  384. * 将0~4GB的物理页映射到线性地址空间
  385. */
  386. void page_table_init()
  387. {
  388. kinfo("Re-Initializing page table...");
  389. ul *global_CR3 = get_CR3();
  390. /*
  391. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  392. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  393. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  394. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  395. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  396. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  397. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  398. */
  399. ul *tmp_addr;
  400. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  401. {
  402. struct Zone *z = memory_management_struct.zones_struct + i;
  403. struct Page *p = z->pages_group;
  404. if (i == ZONE_UNMAPPED_INDEX)
  405. break;
  406. for (int j = 0; j < z->count_pages; ++j)
  407. {
  408. mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
  409. }
  410. }
  411. flush_tlb();
  412. kinfo("Page table Initialized.");
  413. }
  414. /**
  415. * @brief VBE帧缓存区的地址重新映射
  416. * 将帧缓存区映射到地址0xffff800003000000处
  417. */
  418. void init_frame_buffer()
  419. {
  420. kinfo("Re-mapping VBE frame buffer...");
  421. uint64_t global_CR3 = (uint64_t)get_CR3();
  422. ul fb_virt_addr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
  423. ul fb_phys_addr = get_VBE_FB_phys_addr();
  424. // mm_map_phys_addr(fb_virt_addr, fb_phys_addr, get_VBE_FB_length(), PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD);
  425. mm_map_proc_page_table(global_CR3, true, fb_virt_addr, fb_phys_addr, get_VBE_FB_length() << 2, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
  426. set_pos_VBE_FB_addr((uint *)fb_virt_addr);
  427. flush_tlb();
  428. kinfo("VBE frame buffer successfully Re-mapped!");
  429. }
  430. /**
  431. * @brief 将物理地址映射到页表的函数
  432. *
  433. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  434. * @param phys_addr_start 物理地址的起始位置
  435. * @param length 要映射的区域的长度(字节)
  436. */
  437. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  438. {
  439. uint64_t global_CR3 = (uint64_t)get_CR3();
  440. mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false);
  441. }
  442. void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  443. {
  444. uint64_t global_CR3 = (uint64_t)get_CR3();
  445. mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true);
  446. }
  447. /**
  448. * @brief 将将物理地址填写到进程的页表的函数
  449. *
  450. * @param proc_page_table_addr 页表的基地址
  451. * @param is_phys 页表的基地址是否为物理地址
  452. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  453. * @param phys_addr_start 物理地址的起始位置
  454. * @param length 要映射的区域的长度(字节)
  455. * @param user 用户态是否可访问
  456. */
  457. void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user)
  458. {
  459. // 计算线性地址对应的pml4页表项的地址
  460. mm_pgt_entry_num_t pgt_num;
  461. mm_calculate_entry_num(length, &pgt_num);
  462. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  463. // 已映射的内存大小
  464. uint64_t length_mapped = 0;
  465. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  466. uint64_t *pml4_ptr;
  467. if (is_phys)
  468. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  469. else
  470. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  471. // 循环填写顶层页表
  472. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  473. {
  474. // 剩余需要处理的pml4E -1
  475. --(pgt_num.num_PML4E);
  476. ul *pml4e_ptr = pml4_ptr + pml4e_id;
  477. // 创建新的二级页表
  478. if (*pml4e_ptr == 0)
  479. {
  480. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  481. memset(virt_addr, 0, PAGE_4K_SIZE);
  482. set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  483. }
  484. uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
  485. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  486. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  487. // 循环填写二级页表
  488. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  489. {
  490. --pgt_num.num_PDPTE;
  491. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  492. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  493. // 创建新的三级页表
  494. if (*pdpte_ptr == 0)
  495. {
  496. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  497. memset(virt_addr, 0, PAGE_4K_SIZE);
  498. set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  499. // kdebug("created new pdt, *pdpte_ptr=%#018lx, virt_addr=%#018lx", *pdpte_ptr, virt_addr);
  500. }
  501. uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
  502. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  503. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  504. // 循环填写三级页表,初始化2M物理页
  505. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  506. {
  507. --pgt_num.num_PDE;
  508. // 计算当前2M物理页对应的pdt的页表项的物理地址
  509. ul *pde_ptr = pd_ptr + pde_id;
  510. // 页面写穿,禁止缓存
  511. set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  512. length_mapped += PAGE_2M_SIZE;
  513. }
  514. }
  515. }
  516. flush_tlb();
  517. }
  518. /**
  519. * @brief 从页表中获取pdt页表项的内容
  520. *
  521. * @param proc_page_table_addr 页表的地址
  522. * @param is_phys 页表地址是否为物理地址
  523. * @param virt_addr_start 要清除的虚拟地址的起始地址
  524. * @param length 要清除的区域的长度
  525. * @param clear 是否清除标志位
  526. */
  527. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  528. {
  529. ul *tmp;
  530. if (is_phys)
  531. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  532. else
  533. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  534. // pml4页表项为0
  535. if (*tmp == 0)
  536. return 0;
  537. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  538. // pdpt页表项为0
  539. if (*tmp == 0)
  540. return 0;
  541. // 读取pdt页表项
  542. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  543. if (clear) // 清除页表项的标志位
  544. return *tmp & (~0x1fff);
  545. else
  546. return *tmp;
  547. }
  548. /**
  549. * @brief 从页表中清除虚拟地址的映射
  550. *
  551. * @param proc_page_table_addr 页表的地址
  552. * @param is_phys 页表地址是否为物理地址
  553. * @param virt_addr_start 要清除的虚拟地址的起始地址
  554. * @param length 要清除的区域的长度
  555. */
  556. void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
  557. {
  558. // 计算线性地址对应的pml4页表项的地址
  559. mm_pgt_entry_num_t pgt_num;
  560. mm_calculate_entry_num(length, &pgt_num);
  561. // kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  562. // 已取消映射的内存大小
  563. uint64_t length_unmapped = 0;
  564. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  565. uint64_t *pml4_ptr;
  566. if (is_phys)
  567. pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
  568. else
  569. pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
  570. // 循环填写顶层页表
  571. for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
  572. {
  573. // 剩余需要处理的pml4E -1
  574. --(pgt_num.num_PML4E);
  575. ul *pml4e_ptr = NULL;
  576. pml4e_ptr = pml4_ptr + pml4e_id;
  577. // 二级页表不存在
  578. if (*pml4e_ptr == 0)
  579. {
  580. continue;
  581. }
  582. uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
  583. uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
  584. // kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
  585. // 循环处理二级页表
  586. for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
  587. {
  588. --pgt_num.num_PDPTE;
  589. uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
  590. // kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
  591. // 三级页表为空
  592. if (*pdpte_ptr == 0)
  593. {
  594. continue;
  595. }
  596. uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
  597. uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
  598. // kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
  599. // 循环处理三级页表
  600. for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
  601. {
  602. --pgt_num.num_PDE;
  603. // 计算当前2M物理页对应的pdt的页表项的物理地址
  604. ul *pde_ptr = pd_ptr + pde_id;
  605. *pde_ptr = 0;
  606. length_unmapped += PAGE_2M_SIZE;
  607. }
  608. }
  609. }
  610. flush_tlb();
  611. }
  612. /**
  613. * @brief 从mms中寻找Page结构体
  614. *
  615. * @param phys_addr
  616. * @return struct Page*
  617. */
  618. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  619. {
  620. uint32_t zone_start, zone_end;
  621. switch (zone_select)
  622. {
  623. case ZONE_DMA:
  624. // DMA区域
  625. zone_start = 0;
  626. zone_end = ZONE_DMA_INDEX;
  627. break;
  628. case ZONE_NORMAL:
  629. zone_start = ZONE_DMA_INDEX;
  630. zone_end = ZONE_NORMAL_INDEX;
  631. break;
  632. case ZONE_UNMAPPED_IN_PGT:
  633. zone_start = ZONE_NORMAL_INDEX;
  634. zone_end = ZONE_UNMAPPED_INDEX;
  635. break;
  636. default:
  637. kerror("In mm_find_page: param: zone_select incorrect.");
  638. // 返回空
  639. return NULL;
  640. break;
  641. }
  642. for (int i = zone_start; i <= zone_end; ++i)
  643. {
  644. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  645. continue;
  646. struct Zone *z = memory_management_struct.zones_struct + i;
  647. // 区域对应的起止页号
  648. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  649. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  650. ul tmp = 64 - page_start % 64;
  651. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  652. {
  653. // 按照bmp中的每一个元素进行查找
  654. // 先将p定位到bmp的起始元素
  655. ul *p = memory_management_struct.bmp + (j >> 6);
  656. ul shift = j % 64;
  657. for (ul k = shift; k < 64; ++k)
  658. {
  659. if ((*p >> k) & 1) // 若当前页已分配
  660. {
  661. uint64_t page_num = j + k - shift;
  662. struct Page *x = memory_management_struct.pages_struct + page_num;
  663. if (x->addr_phys == phys_addr) // 找到对应的页
  664. return x;
  665. }
  666. }
  667. }
  668. }
  669. return NULL;
  670. }
  671. /**
  672. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  673. *
  674. * @todo 缩小堆区域
  675. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  676. * @param offset 新的地址相对于原地址的偏移量
  677. * @return uint64_t
  678. */
  679. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  680. {
  681. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  682. if (offset >= 0)
  683. {
  684. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  685. {
  686. // kdebug("map [%#018lx]", i);
  687. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  688. }
  689. current_pcb->mm->brk_end = end_addr;
  690. }
  691. else
  692. {
  693. // 释放堆内存
  694. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  695. {
  696. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  697. // 找到对应的页
  698. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  699. if (p == NULL)
  700. {
  701. kerror("cannot find page addr=%#018lx", phys);
  702. return end_addr;
  703. }
  704. free_pages(p, 1);
  705. }
  706. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  707. // 在页表中取消映射
  708. }
  709. return end_addr;
  710. }
  711. /**
  712. * @brief 检测指定地址是否已经被映射
  713. *
  714. * @param page_table_phys_addr 页表的物理地址
  715. * @param virt_addr 要检测的地址
  716. * @return true 已经被映射
  717. * @return false
  718. */
  719. bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
  720. {
  721. ul *tmp;
  722. tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  723. // pml4页表项为0
  724. if (*tmp == 0)
  725. return 0;
  726. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  727. // pdpt页表项为0
  728. if (*tmp == 0)
  729. return 0;
  730. // 读取pdt页表项
  731. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  732. // todo: 增加对使用了4K页的页表的检测
  733. if (*tmp != 0)
  734. return true;
  735. else
  736. return false;
  737. }