mod.rs 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345
  1. use core::{
  2. hash::{Hash, Hasher},
  3. hint::spin_loop,
  4. intrinsics::{likely, unlikely},
  5. mem::ManuallyDrop,
  6. sync::atomic::{compiler_fence, AtomicBool, AtomicI32, AtomicIsize, AtomicUsize, Ordering},
  7. };
  8. use alloc::{
  9. string::{String, ToString},
  10. sync::{Arc, Weak},
  11. vec::Vec,
  12. };
  13. use hashbrown::HashMap;
  14. use system_error::SystemError;
  15. use crate::{
  16. arch::{
  17. ipc::signal::{AtomicSignal, SigSet, Signal},
  18. process::ArchPCBInfo,
  19. sched::sched,
  20. CurrentIrqArch,
  21. },
  22. exception::InterruptArch,
  23. filesystem::{
  24. procfs::procfs_unregister_pid,
  25. vfs::{file::FileDescriptorVec, FileType},
  26. },
  27. ipc::signal_types::{SigInfo, SigPending, SignalStruct},
  28. kdebug, kinfo,
  29. libs::{
  30. align::AlignedBox,
  31. casting::DowncastArc,
  32. futex::{
  33. constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
  34. futex::Futex,
  35. },
  36. lock_free_flags::LockFreeFlags,
  37. rwlock::{RwLock, RwLockReadGuard, RwLockUpgradableGuard, RwLockWriteGuard},
  38. spinlock::{SpinLock, SpinLockGuard},
  39. wait_queue::WaitQueue,
  40. },
  41. mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr},
  42. net::socket::SocketInode,
  43. sched::{
  44. completion::Completion,
  45. core::{sched_enqueue, CPU_EXECUTING},
  46. SchedPolicy, SchedPriority,
  47. },
  48. smp::kick_cpu,
  49. syscall::{user_access::clear_user, Syscall},
  50. };
  51. use self::kthread::WorkerPrivate;
  52. pub mod abi;
  53. pub mod c_adapter;
  54. pub mod exec;
  55. pub mod exit;
  56. pub mod fork;
  57. pub mod idle;
  58. pub mod kthread;
  59. pub mod pid;
  60. pub mod process;
  61. pub mod resource;
  62. pub mod syscall;
  63. /// 系统中所有进程的pcb
  64. static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
  65. pub static mut SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
  66. /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
  67. static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
  68. #[derive(Debug)]
  69. pub struct SwitchResult {
  70. pub prev_pcb: Option<Arc<ProcessControlBlock>>,
  71. pub next_pcb: Option<Arc<ProcessControlBlock>>,
  72. }
  73. impl SwitchResult {
  74. pub fn new() -> Self {
  75. Self {
  76. prev_pcb: None,
  77. next_pcb: None,
  78. }
  79. }
  80. }
  81. #[derive(Debug)]
  82. pub struct ProcessManager;
  83. impl ProcessManager {
  84. #[inline(never)]
  85. fn init() {
  86. static INIT_FLAG: AtomicBool = AtomicBool::new(false);
  87. if INIT_FLAG
  88. .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
  89. .is_err()
  90. {
  91. panic!("ProcessManager has been initialized!");
  92. }
  93. unsafe {
  94. compiler_fence(Ordering::SeqCst);
  95. kdebug!("To create address space for INIT process.");
  96. // test_buddy();
  97. set_INITIAL_PROCESS_ADDRESS_SPACE(
  98. AddressSpace::new(true).expect("Failed to create address space for INIT process."),
  99. );
  100. kdebug!("INIT process address space created.");
  101. compiler_fence(Ordering::SeqCst);
  102. };
  103. ALL_PROCESS.lock_irqsave().replace(HashMap::new());
  104. Self::arch_init();
  105. kdebug!("process arch init done.");
  106. Self::init_idle();
  107. kdebug!("process idle init done.");
  108. unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true };
  109. kinfo!("Process Manager initialized.");
  110. }
  111. /// 判断进程管理器是否已经初始化完成
  112. pub fn initialized() -> bool {
  113. unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
  114. }
  115. /// 获取当前进程的pcb
  116. pub fn current_pcb() -> Arc<ProcessControlBlock> {
  117. if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
  118. kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
  119. loop {
  120. spin_loop();
  121. }
  122. }
  123. return ProcessControlBlock::arch_current_pcb();
  124. }
  125. /// 增加当前进程的锁持有计数
  126. #[inline(always)]
  127. pub fn preempt_disable() {
  128. if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
  129. ProcessManager::current_pcb().preempt_disable();
  130. }
  131. }
  132. /// 减少当前进程的锁持有计数
  133. #[inline(always)]
  134. pub fn preempt_enable() {
  135. if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
  136. ProcessManager::current_pcb().preempt_enable();
  137. }
  138. }
  139. /// 根据pid获取进程的pcb
  140. ///
  141. /// ## 参数
  142. ///
  143. /// - `pid` : 进程的pid
  144. ///
  145. /// ## 返回值
  146. ///
  147. /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
  148. pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
  149. return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned();
  150. }
  151. /// 向系统中添加一个进程的pcb
  152. ///
  153. /// ## 参数
  154. ///
  155. /// - `pcb` : 进程的pcb
  156. ///
  157. /// ## 返回值
  158. ///
  159. /// 无
  160. pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
  161. ALL_PROCESS
  162. .lock_irqsave()
  163. .as_mut()
  164. .unwrap()
  165. .insert(pcb.pid(), pcb.clone());
  166. }
  167. /// 唤醒一个进程
  168. pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
  169. let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
  170. let state = pcb.sched_info().inner_lock_read_irqsave().state();
  171. if state.is_blocked() {
  172. let mut writer = pcb.sched_info().inner_lock_write_irqsave();
  173. let state = writer.state();
  174. if state.is_blocked() {
  175. writer.set_state(ProcessState::Runnable);
  176. // avoid deadlock
  177. drop(writer);
  178. sched_enqueue(pcb.clone(), true);
  179. return Ok(());
  180. } else if state.is_exited() {
  181. return Err(SystemError::EINVAL);
  182. } else {
  183. return Ok(());
  184. }
  185. } else if state.is_exited() {
  186. return Err(SystemError::EINVAL);
  187. } else {
  188. return Ok(());
  189. }
  190. }
  191. /// 唤醒暂停的进程
  192. pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
  193. let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
  194. let state = pcb.sched_info().inner_lock_read_irqsave().state();
  195. if let ProcessState::Stopped = state {
  196. let mut writer = pcb.sched_info().inner_lock_write_irqsave();
  197. let state = writer.state();
  198. if let ProcessState::Stopped = state {
  199. writer.set_state(ProcessState::Runnable);
  200. // avoid deadlock
  201. drop(writer);
  202. sched_enqueue(pcb.clone(), true);
  203. return Ok(());
  204. } else if state.is_runnable() {
  205. return Ok(());
  206. } else {
  207. return Err(SystemError::EINVAL);
  208. }
  209. } else if state.is_runnable() {
  210. return Ok(());
  211. } else {
  212. return Err(SystemError::EINVAL);
  213. }
  214. }
  215. /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
  216. ///
  217. /// ## 注意
  218. ///
  219. /// - 进入当前函数之前,不能持有sched_info的锁
  220. /// - 进入当前函数之前,必须关闭中断
  221. /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
  222. pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
  223. assert_eq!(
  224. CurrentIrqArch::is_irq_enabled(),
  225. false,
  226. "interrupt must be disabled before enter ProcessManager::mark_sleep()"
  227. );
  228. let pcb = ProcessManager::current_pcb();
  229. let mut writer = pcb.sched_info().inner_lock_write_irqsave();
  230. if !matches!(writer.state(), ProcessState::Exited(_)) {
  231. writer.set_state(ProcessState::Blocked(interruptable));
  232. pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
  233. drop(writer);
  234. return Ok(());
  235. }
  236. return Err(SystemError::EINTR);
  237. }
  238. /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
  239. ///
  240. /// ## 注意
  241. ///
  242. /// - 进入当前函数之前,不能持有sched_info的锁
  243. /// - 进入当前函数之前,必须关闭中断
  244. pub fn mark_stop() -> Result<(), SystemError> {
  245. assert_eq!(
  246. CurrentIrqArch::is_irq_enabled(),
  247. false,
  248. "interrupt must be disabled before enter ProcessManager::mark_stop()"
  249. );
  250. let pcb = ProcessManager::current_pcb();
  251. let mut writer = pcb.sched_info().inner_lock_write_irqsave();
  252. if !matches!(writer.state(), ProcessState::Exited(_)) {
  253. writer.set_state(ProcessState::Stopped);
  254. pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
  255. drop(writer);
  256. return Ok(());
  257. }
  258. return Err(SystemError::EINTR);
  259. }
  260. /// 当子进程退出后向父进程发送通知
  261. fn exit_notify() {
  262. let current = ProcessManager::current_pcb();
  263. // 让INIT进程收养所有子进程
  264. if current.pid() != Pid(1) {
  265. unsafe {
  266. current
  267. .adopt_childen()
  268. .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
  269. };
  270. let r = current.parent_pcb.read().upgrade();
  271. if r.is_none() {
  272. return;
  273. }
  274. let parent_pcb = r.unwrap();
  275. let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32);
  276. if r.is_err() {
  277. kwarn!(
  278. "failed to send kill signal to {:?}'s parent pcb {:?}",
  279. current.pid(),
  280. parent_pcb.pid()
  281. );
  282. }
  283. // todo: 这里需要向父进程发送SIGCHLD信号
  284. // todo: 这里还需要根据线程组的信息,决定信号的发送
  285. }
  286. }
  287. /// 退出当前进程
  288. ///
  289. /// ## 参数
  290. ///
  291. /// - `exit_code` : 进程的退出码
  292. pub fn exit(exit_code: usize) -> ! {
  293. // 关中断
  294. unsafe { CurrentIrqArch::interrupt_disable() };
  295. let pcb = ProcessManager::current_pcb();
  296. pcb.sched_info
  297. .inner_lock_write_irqsave()
  298. .set_state(ProcessState::Exited(exit_code));
  299. pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true)));
  300. // 进行进程退出后的工作
  301. let thread = pcb.thread.write();
  302. if let Some(addr) = thread.set_child_tid {
  303. unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
  304. }
  305. if let Some(addr) = thread.clear_child_tid {
  306. if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
  307. let _ =
  308. Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY);
  309. }
  310. unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
  311. }
  312. // 如果是vfork出来的进程,则需要处理completion
  313. if thread.vfork_done.is_some() {
  314. thread.vfork_done.as_ref().unwrap().complete_all();
  315. }
  316. drop(thread);
  317. unsafe { pcb.basic_mut().set_user_vm(None) };
  318. drop(pcb);
  319. ProcessManager::exit_notify();
  320. unsafe { CurrentIrqArch::interrupt_enable() };
  321. sched();
  322. loop {}
  323. }
  324. pub unsafe fn release(pid: Pid) {
  325. let pcb = ProcessManager::find(pid);
  326. if !pcb.is_none() {
  327. // let pcb = pcb.unwrap();
  328. // 判断该pcb是否在全局没有任何引用
  329. // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
  330. // 因此目前暂时注释掉,使得能跑
  331. // if Arc::strong_count(&pcb) <= 2 {
  332. // drop(pcb);
  333. // ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
  334. // } else {
  335. // // 如果不为1就panic
  336. // let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(), Arc::strong_count(&pcb));
  337. // kerror!("{}", msg);
  338. // panic!()
  339. // }
  340. ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid);
  341. }
  342. }
  343. /// 上下文切换完成后的钩子函数
  344. unsafe fn switch_finish_hook() {
  345. // kdebug!("switch_finish_hook");
  346. let prev_pcb = SWITCH_RESULT
  347. .as_mut()
  348. .unwrap()
  349. .get_mut()
  350. .prev_pcb
  351. .take()
  352. .expect("prev_pcb is None");
  353. let next_pcb = SWITCH_RESULT
  354. .as_mut()
  355. .unwrap()
  356. .get_mut()
  357. .next_pcb
  358. .take()
  359. .expect("next_pcb is None");
  360. // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
  361. prev_pcb.arch_info.force_unlock();
  362. next_pcb.arch_info.force_unlock();
  363. }
  364. /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
  365. ///
  366. /// ## 参数
  367. ///
  368. /// - `pcb` : 进程的pcb
  369. #[allow(dead_code)]
  370. pub fn kick(pcb: &Arc<ProcessControlBlock>) {
  371. ProcessManager::current_pcb().preempt_disable();
  372. let cpu_id = pcb.sched_info().on_cpu();
  373. if let Some(cpu_id) = cpu_id {
  374. let cpu_id = cpu_id;
  375. if pcb.pid() == CPU_EXECUTING.get(cpu_id) {
  376. kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
  377. }
  378. }
  379. ProcessManager::current_pcb().preempt_enable();
  380. }
  381. }
  382. /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
  383. #[cfg(target_arch = "x86_64")]
  384. pub unsafe extern "sysv64" fn switch_finish_hook() {
  385. ProcessManager::switch_finish_hook();
  386. }
  387. #[cfg(target_arch = "riscv64")]
  388. pub unsafe extern "C" fn switch_finish_hook() {
  389. ProcessManager::switch_finish_hook();
  390. }
  391. int_like!(Pid, AtomicPid, usize, AtomicUsize);
  392. impl Hash for Pid {
  393. fn hash<H: Hasher>(&self, state: &mut H) {
  394. self.0.hash(state);
  395. }
  396. }
  397. impl Pid {
  398. pub fn to_string(&self) -> String {
  399. self.0.to_string()
  400. }
  401. }
  402. #[derive(Debug, Clone, Copy, PartialEq, Eq)]
  403. pub enum ProcessState {
  404. /// The process is running on a CPU or in a run queue.
  405. Runnable,
  406. /// The process is waiting for an event to occur.
  407. /// 其中的bool表示该等待过程是否可以被打断。
  408. /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
  409. /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
  410. Blocked(bool),
  411. /// 进程被信号终止
  412. Stopped,
  413. /// 进程已经退出,usize表示进程的退出码
  414. Exited(usize),
  415. }
  416. #[allow(dead_code)]
  417. impl ProcessState {
  418. #[inline(always)]
  419. pub fn is_runnable(&self) -> bool {
  420. return matches!(self, ProcessState::Runnable);
  421. }
  422. #[inline(always)]
  423. pub fn is_blocked(&self) -> bool {
  424. return matches!(self, ProcessState::Blocked(_));
  425. }
  426. #[inline(always)]
  427. pub fn is_blocked_interruptable(&self) -> bool {
  428. return matches!(self, ProcessState::Blocked(true));
  429. }
  430. /// Returns `true` if the process state is [`Exited`].
  431. #[inline(always)]
  432. pub fn is_exited(&self) -> bool {
  433. return matches!(self, ProcessState::Exited(_));
  434. }
  435. /// Returns `true` if the process state is [`Stopped`].
  436. ///
  437. /// [`Stopped`]: ProcessState::Stopped
  438. #[inline(always)]
  439. pub fn is_stopped(&self) -> bool {
  440. matches!(self, ProcessState::Stopped)
  441. }
  442. /// Returns exit code if the process state is [`Exited`].
  443. #[inline(always)]
  444. pub fn exit_code(&self) -> Option<usize> {
  445. match self {
  446. ProcessState::Exited(code) => Some(*code),
  447. _ => None,
  448. }
  449. }
  450. }
  451. bitflags! {
  452. /// pcb的标志位
  453. pub struct ProcessFlags: usize {
  454. /// 当前pcb表示一个内核线程
  455. const KTHREAD = 1 << 0;
  456. /// 当前进程需要被调度
  457. const NEED_SCHEDULE = 1 << 1;
  458. /// 进程由于vfork而与父进程存在资源共享
  459. const VFORK = 1 << 2;
  460. /// 进程不可被冻结
  461. const NOFREEZE = 1 << 3;
  462. /// 进程正在退出
  463. const EXITING = 1 << 4;
  464. /// 进程由于接收到终止信号唤醒
  465. const WAKEKILL = 1 << 5;
  466. /// 进程由于接收到信号而退出.(Killed by a signal)
  467. const SIGNALED = 1 << 6;
  468. /// 进程需要迁移到其他cpu上
  469. const NEED_MIGRATE = 1 << 7;
  470. /// 随机化的虚拟地址空间,主要用于动态链接器的加载
  471. const RANDOMIZE = 1 << 8;
  472. }
  473. }
  474. #[derive(Debug)]
  475. pub struct ProcessControlBlock {
  476. /// 当前进程的pid
  477. pid: Pid,
  478. /// 当前进程的线程组id(这个值在同一个线程组内永远不变)
  479. tgid: Pid,
  480. basic: RwLock<ProcessBasicInfo>,
  481. /// 当前进程的自旋锁持有计数
  482. preempt_count: AtomicUsize,
  483. flags: LockFreeFlags<ProcessFlags>,
  484. worker_private: SpinLock<Option<WorkerPrivate>>,
  485. /// 进程的内核栈
  486. kernel_stack: RwLock<KernelStack>,
  487. /// 系统调用栈
  488. syscall_stack: RwLock<KernelStack>,
  489. /// 与调度相关的信息
  490. sched_info: ProcessSchedulerInfo,
  491. /// 与处理器架构相关的信息
  492. arch_info: SpinLock<ArchPCBInfo>,
  493. /// 与信号处理相关的信息(似乎可以是无锁的)
  494. sig_info: RwLock<ProcessSignalInfo>,
  495. /// 信号处理结构体
  496. sig_struct: SpinLock<SignalStruct>,
  497. /// 退出信号S
  498. exit_signal: AtomicSignal,
  499. /// 父进程指针
  500. parent_pcb: RwLock<Weak<ProcessControlBlock>>,
  501. /// 真实父进程指针
  502. real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
  503. /// 子进程链表
  504. children: RwLock<Vec<Pid>>,
  505. /// 等待队列
  506. wait_queue: WaitQueue,
  507. /// 线程信息
  508. thread: RwLock<ThreadInfo>,
  509. }
  510. impl ProcessControlBlock {
  511. /// Generate a new pcb.
  512. ///
  513. /// ## 参数
  514. ///
  515. /// - `name` : 进程的名字
  516. /// - `kstack` : 进程的内核栈
  517. ///
  518. /// ## 返回值
  519. ///
  520. /// 返回一个新的pcb
  521. pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
  522. return Self::do_create_pcb(name, kstack, false);
  523. }
  524. /// 创建一个新的idle进程
  525. ///
  526. /// 请注意,这个函数只能在进程管理初始化的时候调用。
  527. pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
  528. let name = format!("idle-{}", cpu_id);
  529. return Self::do_create_pcb(name, kstack, true);
  530. }
  531. #[inline(never)]
  532. fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
  533. let (pid, ppid, cwd) = if is_idle {
  534. (Pid(0), Pid(0), "/".to_string())
  535. } else {
  536. let ppid = ProcessManager::current_pcb().pid();
  537. let cwd = ProcessManager::current_pcb().basic().cwd();
  538. (Self::generate_pid(), ppid, cwd)
  539. };
  540. let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None);
  541. let preempt_count = AtomicUsize::new(0);
  542. let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
  543. let sched_info = ProcessSchedulerInfo::new(None);
  544. let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
  545. let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
  546. .map(|p| Arc::downgrade(&p))
  547. .unwrap_or_else(|| Weak::new());
  548. let pcb = Self {
  549. pid,
  550. tgid: pid,
  551. basic: basic_info,
  552. preempt_count,
  553. flags,
  554. kernel_stack: RwLock::new(kstack),
  555. syscall_stack: RwLock::new(KernelStack::new().unwrap()),
  556. worker_private: SpinLock::new(None),
  557. sched_info,
  558. arch_info,
  559. sig_info: RwLock::new(ProcessSignalInfo::default()),
  560. sig_struct: SpinLock::new(SignalStruct::new()),
  561. exit_signal: AtomicSignal::new(Signal::SIGCHLD),
  562. parent_pcb: RwLock::new(ppcb.clone()),
  563. real_parent_pcb: RwLock::new(ppcb),
  564. children: RwLock::new(Vec::new()),
  565. wait_queue: WaitQueue::INIT,
  566. thread: RwLock::new(ThreadInfo::new()),
  567. };
  568. // 初始化系统调用栈
  569. #[cfg(target_arch = "x86_64")]
  570. pcb.arch_info
  571. .lock()
  572. .init_syscall_stack(&pcb.syscall_stack.read());
  573. let pcb = Arc::new(pcb);
  574. // 设置进程的arc指针到内核栈和系统调用栈的最低地址处
  575. unsafe {
  576. pcb.kernel_stack
  577. .write()
  578. .set_pcb(Arc::downgrade(&pcb))
  579. .unwrap();
  580. pcb.syscall_stack
  581. .write()
  582. .set_pcb(Arc::downgrade(&pcb))
  583. .unwrap()
  584. };
  585. // 将当前pcb加入父进程的子进程哈希表中
  586. if pcb.pid() > Pid(1) {
  587. if let Some(ppcb_arc) = pcb.parent_pcb.read().upgrade() {
  588. let mut children = ppcb_arc.children.write_irqsave();
  589. children.push(pcb.pid());
  590. } else {
  591. panic!("parent pcb is None");
  592. }
  593. }
  594. return pcb;
  595. }
  596. /// 生成一个新的pid
  597. #[inline(always)]
  598. fn generate_pid() -> Pid {
  599. static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
  600. return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
  601. }
  602. /// 返回当前进程的锁持有计数
  603. #[inline(always)]
  604. pub fn preempt_count(&self) -> usize {
  605. return self.preempt_count.load(Ordering::SeqCst);
  606. }
  607. /// 增加当前进程的锁持有计数
  608. #[inline(always)]
  609. pub fn preempt_disable(&self) {
  610. self.preempt_count.fetch_add(1, Ordering::SeqCst);
  611. }
  612. /// 减少当前进程的锁持有计数
  613. #[inline(always)]
  614. pub fn preempt_enable(&self) {
  615. self.preempt_count.fetch_sub(1, Ordering::SeqCst);
  616. }
  617. #[inline(always)]
  618. pub unsafe fn set_preempt_count(&self, count: usize) {
  619. self.preempt_count.store(count, Ordering::SeqCst);
  620. }
  621. #[inline(always)]
  622. pub fn flags(&self) -> &mut ProcessFlags {
  623. return self.flags.get_mut();
  624. }
  625. /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改
  626. /// 否则会导致死锁
  627. #[inline(always)]
  628. pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
  629. return self.basic.read();
  630. }
  631. #[inline(always)]
  632. pub fn set_name(&self, name: String) {
  633. self.basic.write().set_name(name);
  634. }
  635. #[inline(always)]
  636. pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
  637. return self.basic.write_irqsave();
  638. }
  639. /// # 获取arch info的锁,同时关闭中断
  640. #[inline(always)]
  641. pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
  642. return self.arch_info.lock_irqsave();
  643. }
  644. /// # 获取arch info的锁,但是不关闭中断
  645. ///
  646. /// 由于arch info在进程切换的时候会使用到,
  647. /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的.
  648. ///
  649. /// 只能在以下情况下使用这个函数:
  650. /// - 在中断上下文中(中断已经禁用),获取arch info的锁。
  651. /// - 刚刚创建新的pcb
  652. #[inline(always)]
  653. pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
  654. return self.arch_info.lock();
  655. }
  656. #[inline(always)]
  657. pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
  658. return self.kernel_stack.read();
  659. }
  660. #[inline(always)]
  661. #[allow(dead_code)]
  662. pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
  663. return self.kernel_stack.write();
  664. }
  665. #[inline(always)]
  666. pub fn sched_info(&self) -> &ProcessSchedulerInfo {
  667. return &self.sched_info;
  668. }
  669. #[inline(always)]
  670. pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
  671. return self.worker_private.lock();
  672. }
  673. #[inline(always)]
  674. pub fn pid(&self) -> Pid {
  675. return self.pid;
  676. }
  677. #[inline(always)]
  678. pub fn tgid(&self) -> Pid {
  679. return self.tgid;
  680. }
  681. /// 获取文件描述符表的Arc指针
  682. #[inline(always)]
  683. pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
  684. return self.basic.read().fd_table().unwrap();
  685. }
  686. /// 根据文件描述符序号,获取socket对象的Arc指针
  687. ///
  688. /// ## 参数
  689. ///
  690. /// - `fd` 文件描述符序号
  691. ///
  692. /// ## 返回值
  693. ///
  694. /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
  695. pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
  696. let binding = ProcessManager::current_pcb().fd_table();
  697. let fd_table_guard = binding.read();
  698. let f = fd_table_guard.get_file_by_fd(fd)?;
  699. drop(fd_table_guard);
  700. let guard = f.lock();
  701. if guard.file_type() != FileType::Socket {
  702. return None;
  703. }
  704. let socket: Arc<SocketInode> = guard
  705. .inode()
  706. .downcast_arc::<SocketInode>()
  707. .expect("Not a socket inode");
  708. return Some(socket);
  709. }
  710. /// 当前进程退出时,让初始进程收养所有子进程
  711. unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
  712. match ProcessManager::find(Pid(1)) {
  713. Some(init_pcb) => {
  714. let childen_guard = self.children.write();
  715. let mut init_childen_guard = init_pcb.children.write();
  716. childen_guard.iter().for_each(|pid| {
  717. init_childen_guard.push(*pid);
  718. });
  719. return Ok(());
  720. }
  721. _ => Err(SystemError::ECHILD),
  722. }
  723. }
  724. /// 生成进程的名字
  725. pub fn generate_name(program_path: &str, args: &Vec<String>) -> String {
  726. let mut name = program_path.to_string();
  727. for arg in args {
  728. name.push(' ');
  729. name.push_str(arg);
  730. }
  731. return name;
  732. }
  733. pub fn sig_info(&self) -> RwLockReadGuard<ProcessSignalInfo> {
  734. self.sig_info.read()
  735. }
  736. pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
  737. self.sig_info.read_irqsave()
  738. }
  739. pub fn try_siginfo(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
  740. for _ in 0..times {
  741. if let Some(r) = self.sig_info.try_read() {
  742. return Some(r);
  743. }
  744. }
  745. return None;
  746. }
  747. pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
  748. self.sig_info.write_irqsave()
  749. }
  750. pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
  751. for _ in 0..times {
  752. if let Some(r) = self.sig_info.try_write() {
  753. return Some(r);
  754. }
  755. }
  756. return None;
  757. }
  758. pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
  759. self.sig_struct.lock()
  760. }
  761. pub fn try_sig_struct_irq(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
  762. for _ in 0..times {
  763. if let Ok(r) = self.sig_struct.try_lock_irqsave() {
  764. return Some(r);
  765. }
  766. }
  767. return None;
  768. }
  769. pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> {
  770. self.sig_struct.lock_irqsave()
  771. }
  772. }
  773. impl Drop for ProcessControlBlock {
  774. fn drop(&mut self) {
  775. // 在ProcFS中,解除进程的注册
  776. procfs_unregister_pid(self.pid())
  777. .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
  778. if let Some(ppcb) = self.parent_pcb.read().upgrade() {
  779. ppcb.children.write().retain(|pid| *pid != self.pid());
  780. }
  781. }
  782. }
  783. /// 线程信息
  784. #[derive(Debug)]
  785. pub struct ThreadInfo {
  786. // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
  787. clear_child_tid: Option<VirtAddr>,
  788. set_child_tid: Option<VirtAddr>,
  789. vfork_done: Option<Arc<Completion>>,
  790. /// 线程组的组长
  791. group_leader: Weak<ProcessControlBlock>,
  792. }
  793. impl ThreadInfo {
  794. pub fn new() -> Self {
  795. Self {
  796. clear_child_tid: None,
  797. set_child_tid: None,
  798. vfork_done: None,
  799. group_leader: Weak::default(),
  800. }
  801. }
  802. pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
  803. return self.group_leader.upgrade();
  804. }
  805. }
  806. /// 进程的基本信息
  807. ///
  808. /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
  809. #[derive(Debug)]
  810. pub struct ProcessBasicInfo {
  811. /// 当前进程的进程组id
  812. pgid: Pid,
  813. /// 当前进程的父进程的pid
  814. ppid: Pid,
  815. /// 进程的名字
  816. name: String,
  817. /// 当前进程的工作目录
  818. cwd: String,
  819. /// 用户地址空间
  820. user_vm: Option<Arc<AddressSpace>>,
  821. /// 文件描述符表
  822. fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
  823. }
  824. impl ProcessBasicInfo {
  825. #[inline(never)]
  826. pub fn new(
  827. pgid: Pid,
  828. ppid: Pid,
  829. name: String,
  830. cwd: String,
  831. user_vm: Option<Arc<AddressSpace>>,
  832. ) -> RwLock<Self> {
  833. let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
  834. return RwLock::new(Self {
  835. pgid,
  836. ppid,
  837. name,
  838. cwd,
  839. user_vm,
  840. fd_table: Some(fd_table),
  841. });
  842. }
  843. pub fn pgid(&self) -> Pid {
  844. return self.pgid;
  845. }
  846. pub fn ppid(&self) -> Pid {
  847. return self.ppid;
  848. }
  849. pub fn name(&self) -> &str {
  850. return &self.name;
  851. }
  852. pub fn set_name(&mut self, name: String) {
  853. self.name = name;
  854. }
  855. pub fn cwd(&self) -> String {
  856. return self.cwd.clone();
  857. }
  858. pub fn set_cwd(&mut self, path: String) {
  859. return self.cwd = path;
  860. }
  861. pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
  862. return self.user_vm.clone();
  863. }
  864. pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
  865. self.user_vm = user_vm;
  866. }
  867. pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
  868. return self.fd_table.clone();
  869. }
  870. pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
  871. self.fd_table = fd_table;
  872. }
  873. }
  874. #[derive(Debug)]
  875. pub struct ProcessSchedulerInfo {
  876. /// 当前进程所在的cpu
  877. on_cpu: AtomicI32,
  878. /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
  879. /// 该字段存储要被迁移到的目标处理器核心号
  880. migrate_to: AtomicI32,
  881. inner_locked: RwLock<InnerSchedInfo>,
  882. /// 进程的调度优先级
  883. priority: SchedPriority,
  884. /// 当前进程的虚拟运行时间
  885. virtual_runtime: AtomicIsize,
  886. /// 由实时调度器管理的时间片
  887. rt_time_slice: AtomicIsize,
  888. }
  889. #[derive(Debug)]
  890. pub struct InnerSchedInfo {
  891. /// 当前进程的状态
  892. state: ProcessState,
  893. /// 进程的调度策略
  894. sched_policy: SchedPolicy,
  895. }
  896. impl InnerSchedInfo {
  897. pub fn state(&self) -> ProcessState {
  898. return self.state;
  899. }
  900. pub fn set_state(&mut self, state: ProcessState) {
  901. self.state = state;
  902. }
  903. pub fn policy(&self) -> SchedPolicy {
  904. return self.sched_policy;
  905. }
  906. }
  907. impl ProcessSchedulerInfo {
  908. #[inline(never)]
  909. pub fn new(on_cpu: Option<u32>) -> Self {
  910. let cpu_id = match on_cpu {
  911. Some(cpu_id) => cpu_id as i32,
  912. None => -1,
  913. };
  914. return Self {
  915. on_cpu: AtomicI32::new(cpu_id),
  916. migrate_to: AtomicI32::new(-1),
  917. inner_locked: RwLock::new(InnerSchedInfo {
  918. state: ProcessState::Blocked(false),
  919. sched_policy: SchedPolicy::CFS,
  920. }),
  921. virtual_runtime: AtomicIsize::new(0),
  922. rt_time_slice: AtomicIsize::new(0),
  923. priority: SchedPriority::new(100).unwrap(),
  924. };
  925. }
  926. pub fn on_cpu(&self) -> Option<u32> {
  927. let on_cpu = self.on_cpu.load(Ordering::SeqCst);
  928. if on_cpu == -1 {
  929. return None;
  930. } else {
  931. return Some(on_cpu as u32);
  932. }
  933. }
  934. pub fn set_on_cpu(&self, on_cpu: Option<u32>) {
  935. if let Some(cpu_id) = on_cpu {
  936. self.on_cpu.store(cpu_id as i32, Ordering::SeqCst);
  937. } else {
  938. self.on_cpu.store(-1, Ordering::SeqCst);
  939. }
  940. }
  941. pub fn migrate_to(&self) -> Option<u32> {
  942. let migrate_to = self.migrate_to.load(Ordering::SeqCst);
  943. if migrate_to == -1 {
  944. return None;
  945. } else {
  946. return Some(migrate_to as u32);
  947. }
  948. }
  949. pub fn set_migrate_to(&self, migrate_to: Option<u32>) {
  950. if let Some(data) = migrate_to {
  951. self.migrate_to.store(data as i32, Ordering::SeqCst);
  952. } else {
  953. self.migrate_to.store(-1, Ordering::SeqCst)
  954. }
  955. }
  956. pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> {
  957. return self.inner_locked.write_irqsave();
  958. }
  959. pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> {
  960. return self.inner_locked.read_irqsave();
  961. }
  962. pub fn inner_lock_try_read_irqsave(
  963. &self,
  964. times: u8,
  965. ) -> Option<RwLockReadGuard<InnerSchedInfo>> {
  966. for _ in 0..times {
  967. if let Some(r) = self.inner_locked.try_read_irqsave() {
  968. return Some(r);
  969. }
  970. }
  971. return None;
  972. }
  973. pub fn inner_lock_try_upgradable_read_irqsave(
  974. &self,
  975. times: u8,
  976. ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> {
  977. for _ in 0..times {
  978. if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() {
  979. return Some(r);
  980. }
  981. }
  982. return None;
  983. }
  984. pub fn virtual_runtime(&self) -> isize {
  985. return self.virtual_runtime.load(Ordering::SeqCst);
  986. }
  987. pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
  988. self.virtual_runtime
  989. .store(virtual_runtime, Ordering::SeqCst);
  990. }
  991. pub fn increase_virtual_runtime(&self, delta: isize) {
  992. self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
  993. }
  994. pub fn rt_time_slice(&self) -> isize {
  995. return self.rt_time_slice.load(Ordering::SeqCst);
  996. }
  997. pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
  998. self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
  999. }
  1000. pub fn increase_rt_time_slice(&self, delta: isize) {
  1001. self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
  1002. }
  1003. pub fn priority(&self) -> SchedPriority {
  1004. return self.priority;
  1005. }
  1006. }
  1007. #[derive(Debug, Clone)]
  1008. pub struct KernelStack {
  1009. stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
  1010. /// 标记该内核栈是否可以被释放
  1011. can_be_freed: bool,
  1012. }
  1013. impl KernelStack {
  1014. pub const SIZE: usize = 0x4000;
  1015. pub const ALIGN: usize = 0x4000;
  1016. pub fn new() -> Result<Self, SystemError> {
  1017. return Ok(Self {
  1018. stack: Some(
  1019. AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
  1020. ),
  1021. can_be_freed: true,
  1022. });
  1023. }
  1024. /// 根据已有的空间,构造一个内核栈结构体
  1025. ///
  1026. /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
  1027. pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
  1028. if base.is_null() || base.check_aligned(Self::ALIGN) == false {
  1029. return Err(SystemError::EFAULT);
  1030. }
  1031. return Ok(Self {
  1032. stack: Some(
  1033. AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
  1034. base.data() as *mut [u8; KernelStack::SIZE],
  1035. ),
  1036. ),
  1037. can_be_freed: false,
  1038. });
  1039. }
  1040. /// 返回内核栈的起始虚拟地址(低地址)
  1041. pub fn start_address(&self) -> VirtAddr {
  1042. return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
  1043. }
  1044. /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
  1045. pub fn stack_max_address(&self) -> VirtAddr {
  1046. return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
  1047. }
  1048. pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
  1049. // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
  1050. let p: *const ProcessControlBlock = Weak::into_raw(pcb);
  1051. let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
  1052. // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
  1053. if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
  1054. kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
  1055. return Err(SystemError::EPERM);
  1056. }
  1057. // 将pcb的地址放到内核栈的最低地址处
  1058. unsafe {
  1059. *stack_bottom_ptr = p;
  1060. }
  1061. return Ok(());
  1062. }
  1063. /// 清除内核栈的pcb指针
  1064. ///
  1065. /// ## 参数
  1066. ///
  1067. /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
  1068. pub unsafe fn clear_pcb(&mut self, force: bool) {
  1069. let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
  1070. if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
  1071. return;
  1072. }
  1073. if !force {
  1074. let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
  1075. drop(pcb_ptr);
  1076. }
  1077. *stack_bottom_ptr = core::ptr::null();
  1078. }
  1079. /// 返回指向当前内核栈pcb的Arc指针
  1080. #[allow(dead_code)]
  1081. pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
  1082. // 从内核栈的最低地址处取出pcb的地址
  1083. let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
  1084. if unlikely(unsafe { (*p).is_null() }) {
  1085. return None;
  1086. }
  1087. // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
  1088. let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
  1089. ManuallyDrop::new(Weak::from_raw(*p));
  1090. let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
  1091. return Some(new_arc);
  1092. }
  1093. }
  1094. impl Drop for KernelStack {
  1095. fn drop(&mut self) {
  1096. if !self.stack.is_none() {
  1097. let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
  1098. if unsafe { !(*ptr).is_null() } {
  1099. let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) };
  1100. drop(pcb_ptr);
  1101. }
  1102. }
  1103. // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
  1104. if !self.can_be_freed {
  1105. let bx = self.stack.take();
  1106. core::mem::forget(bx);
  1107. }
  1108. }
  1109. }
  1110. pub fn process_init() {
  1111. ProcessManager::init();
  1112. }
  1113. #[derive(Debug)]
  1114. pub struct ProcessSignalInfo {
  1115. // 当前进程
  1116. sig_block: SigSet,
  1117. // sig_pending 中存储当前线程要处理的信号
  1118. sig_pending: SigPending,
  1119. // sig_shared_pending 中存储当前线程所属进程要处理的信号
  1120. sig_shared_pending: SigPending,
  1121. }
  1122. impl ProcessSignalInfo {
  1123. pub fn sig_block(&self) -> &SigSet {
  1124. &self.sig_block
  1125. }
  1126. pub fn sig_pending(&self) -> &SigPending {
  1127. &self.sig_pending
  1128. }
  1129. pub fn sig_pending_mut(&mut self) -> &mut SigPending {
  1130. &mut self.sig_pending
  1131. }
  1132. pub fn sig_block_mut(&mut self) -> &mut SigSet {
  1133. &mut self.sig_block
  1134. }
  1135. pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
  1136. &mut self.sig_shared_pending
  1137. }
  1138. pub fn sig_shared_pending(&self) -> &SigPending {
  1139. &self.sig_shared_pending
  1140. }
  1141. /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
  1142. ///
  1143. /// ## 参数
  1144. ///
  1145. /// - `sig_mask` 被忽略掉的信号
  1146. ///
  1147. pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) {
  1148. let res = self.sig_pending.dequeue_signal(sig_mask);
  1149. if res.0 != Signal::INVALID {
  1150. return res;
  1151. } else {
  1152. return self.sig_shared_pending.dequeue_signal(sig_mask);
  1153. }
  1154. }
  1155. }
  1156. impl Default for ProcessSignalInfo {
  1157. fn default() -> Self {
  1158. Self {
  1159. sig_block: SigSet::empty(),
  1160. sig_pending: SigPending::default(),
  1161. sig_shared_pending: SigPending::default(),
  1162. }
  1163. }
  1164. }