mm.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. #include <process/process.h>
  7. ul Total_Memory = 0;
  8. ul total_2M_pages = 0;
  9. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  10. /**
  11. * @brief 虚拟地址长度所需要的entry数量
  12. *
  13. */
  14. typedef struct
  15. {
  16. uint64_t num_PML4E;
  17. uint64_t *num_PDPTE;
  18. uint64_t *num_PDE;
  19. uint64_t num_PTE;
  20. } mm_pgt_entry_num_t;
  21. /**
  22. * @brief 计算虚拟地址长度对应的页表entry数量
  23. *
  24. * @param length 长度
  25. * @param ent 返回的entry数量结构体
  26. */
  27. static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
  28. {
  29. if (ent == NULL)
  30. return;
  31. ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
  32. ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
  33. ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
  34. ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
  35. }
  36. /**
  37. * @brief 从页表中获取pdt页表项的内容
  38. *
  39. * @param proc_page_table_addr 页表的地址
  40. * @param is_phys 页表地址是否为物理地址
  41. * @param virt_addr_start 要清除的虚拟地址的起始地址
  42. * @param length 要清除的区域的长度
  43. * @param clear 是否清除标志位
  44. */
  45. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  46. void mm_init()
  47. {
  48. kinfo("Initializing memory management unit...");
  49. // 设置内核程序不同部分的起止地址
  50. memory_management_struct.kernel_code_start = (ul)&_text;
  51. memory_management_struct.kernel_code_end = (ul)&_etext;
  52. memory_management_struct.kernel_data_end = (ul)&_edata;
  53. memory_management_struct.rodata_end = (ul)&_erodata;
  54. memory_management_struct.start_brk = (ul)&_end;
  55. struct multiboot_mmap_entry_t mb2_mem_info[512];
  56. int count;
  57. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  58. for (int i = 0; i < count; ++i)
  59. {
  60. //可用的内存
  61. if (mb2_mem_info->type == 1)
  62. Total_Memory += mb2_mem_info->len;
  63. // 保存信息到mms
  64. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  65. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  66. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  67. memory_management_struct.len_e820 = i;
  68. // 脏数据
  69. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  70. break;
  71. }
  72. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  73. // 计算有效内存页数
  74. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  75. {
  76. if (memory_management_struct.e820[i].type != 1)
  77. continue;
  78. // 将内存段的起始物理地址按照2M进行对齐
  79. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  80. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  81. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  82. // 内存段不可用
  83. if (addr_end <= addr_start)
  84. continue;
  85. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  86. }
  87. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  88. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  89. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  90. // 初始化mms的bitmap
  91. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  92. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  93. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  94. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  95. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  96. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  97. // 初始化内存页结构
  98. // 将页结构映射于bmp之后
  99. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  100. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  101. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  102. // 将pages_struct全部清空,以备后续初始化
  103. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  104. // 初始化内存区域
  105. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  106. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  107. memory_management_struct.count_zones = 0;
  108. // zones-struct 成员变量暂时按照5个来计算
  109. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  110. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  111. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  112. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  113. {
  114. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  115. continue;
  116. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  117. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  118. if (addr_end <= addr_start)
  119. continue;
  120. // zone init
  121. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  122. ++memory_management_struct.count_zones;
  123. z->zone_addr_start = addr_start;
  124. z->zone_addr_end = addr_end;
  125. z->zone_length = addr_end - addr_start;
  126. z->count_pages_using = 0;
  127. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  128. z->total_pages_link = 0;
  129. z->attr = 0;
  130. z->gmd_struct = &memory_management_struct;
  131. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  132. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  133. // 初始化页
  134. struct Page *p = z->pages_group;
  135. for (int j = 0; j < z->count_pages; ++j, ++p)
  136. {
  137. p->zone = z;
  138. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  139. p->attr = 0;
  140. p->ref_counts = 0;
  141. p->age = 0;
  142. // 将bmp中对应的位 复位
  143. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  144. }
  145. }
  146. // 初始化0~2MB的物理页
  147. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  148. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  149. memory_management_struct.pages_struct->addr_phys = 0UL;
  150. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  151. memory_management_struct.pages_struct->ref_counts = 1;
  152. memory_management_struct.pages_struct->age = 0;
  153. // 将第0页的标志位给置上
  154. //*(memory_management_struct.bmp) |= 1UL;
  155. // 计算zone结构体的总长度(按照64位对齐)
  156. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  157. ZONE_DMA_INDEX = 0;
  158. ZONE_NORMAL_INDEX = 0;
  159. ZONE_UNMAPPED_INDEX = 0;
  160. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  161. {
  162. struct Zone *z = memory_management_struct.zones_struct + i;
  163. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  164. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  165. // 1GB以上的内存空间不做映射
  166. if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  167. ZONE_UNMAPPED_INDEX = i;
  168. }
  169. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  170. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  171. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  172. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  173. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  174. // 初始化内存管理单元结构所占的物理页的结构体
  175. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  176. // kdebug("mms_max_page=%ld", mms_max_page);
  177. struct Page *tmp_page = NULL;
  178. ul page_num;
  179. // 第0个page已经在上方配置
  180. for (ul j = 1; j <= mms_max_page; ++j)
  181. {
  182. tmp_page = memory_management_struct.pages_struct + j;
  183. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  184. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  185. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  186. ++tmp_page->zone->count_pages_using;
  187. --tmp_page->zone->count_pages_free;
  188. }
  189. global_CR3 = get_CR3();
  190. // root_page_table_phys_addr = global_CR3;
  191. // kdebug("global_CR3\t:%#018lx", global_CR3);
  192. // kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff));
  193. // kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff));
  194. // kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  195. // kinfo("Cleaning page table remapping at 0x0000");
  196. kinfo("Memory management unit initialize complete!");
  197. flush_tlb();
  198. // 初始化slab内存池
  199. slab_init();
  200. page_table_init();
  201. init_frame_buffer();
  202. }
  203. /**
  204. * @brief 初始化内存页
  205. *
  206. * @param page 内存页结构体
  207. * @param flags 标志位
  208. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  209. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  210. * @return unsigned long
  211. */
  212. unsigned long page_init(struct Page *page, ul flags)
  213. {
  214. page->attr |= flags;
  215. // 若页面的引用计数为0或是共享页,增加引用计数
  216. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  217. {
  218. ++page->ref_counts;
  219. ++page->zone->total_pages_link;
  220. }
  221. return 0;
  222. }
  223. /**
  224. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  225. *
  226. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  227. * @param num 需要申请的连续内存页的数量 num<64
  228. * @param flags 将页面属性设置成flag
  229. * @return struct Page*
  230. */
  231. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  232. {
  233. ul zone_start = 0, zone_end = 0;
  234. if (num >= 64 && num <= 0)
  235. {
  236. kerror("alloc_pages(): num is invalid.");
  237. return NULL;
  238. }
  239. ul attr = flags;
  240. switch (zone_select)
  241. {
  242. case ZONE_DMA:
  243. // DMA区域
  244. zone_start = 0;
  245. zone_end = ZONE_DMA_INDEX;
  246. attr |= PAGE_PGT_MAPPED;
  247. break;
  248. case ZONE_NORMAL:
  249. zone_start = ZONE_DMA_INDEX;
  250. zone_end = ZONE_NORMAL_INDEX;
  251. attr |= PAGE_PGT_MAPPED;
  252. break;
  253. case ZONE_UNMAPPED_IN_PGT:
  254. zone_start = ZONE_NORMAL_INDEX;
  255. zone_end = ZONE_UNMAPPED_INDEX;
  256. attr = 0;
  257. break;
  258. default:
  259. kerror("In alloc_pages: param: zone_select incorrect.");
  260. // 返回空
  261. return NULL;
  262. break;
  263. }
  264. for (int i = zone_start; i <= zone_end; ++i)
  265. {
  266. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  267. continue;
  268. struct Zone *z = memory_management_struct.zones_struct + i;
  269. // 区域对应的起止页号
  270. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  271. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  272. ul tmp = 64 - page_start % 64;
  273. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  274. {
  275. // 按照bmp中的每一个元素进行查找
  276. // 先将p定位到bmp的起始元素
  277. ul *p = memory_management_struct.bmp + (j >> 6);
  278. ul shift = j % 64;
  279. ul tmp_num = ((1UL << num) - 1);
  280. for (ul k = shift; k < 64; ++k)
  281. {
  282. // 寻找连续num个空页
  283. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  284. {
  285. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  286. for (ul l = 0; l < num; ++l)
  287. {
  288. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  289. // 分配页面,手动配置属性及计数器
  290. // 置位bmp
  291. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  292. ++z->count_pages_using;
  293. --z->count_pages_free;
  294. x->attr = attr;
  295. }
  296. // 成功分配了页面,返回第一个页面的指针
  297. // printk("start page num=%d\n",start_page_num);
  298. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  299. }
  300. }
  301. }
  302. }
  303. return NULL;
  304. }
  305. /**
  306. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  307. *
  308. * @param p 物理页结构体
  309. * @return unsigned long
  310. */
  311. unsigned long page_clean(struct Page *p)
  312. {
  313. --p->ref_counts;
  314. --p->zone->total_pages_link;
  315. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  316. if (!p->ref_counts)
  317. {
  318. p->attr &= PAGE_PGT_MAPPED;
  319. }
  320. return 0;
  321. }
  322. /**
  323. * @brief Get the page's attr
  324. *
  325. * @param page 内存页结构体
  326. * @return ul 属性
  327. */
  328. ul get_page_attr(struct Page *page)
  329. {
  330. if (page == NULL)
  331. {
  332. kBUG("get_page_attr(): page == NULL");
  333. return EPAGE_NULL;
  334. }
  335. else
  336. return page->attr;
  337. }
  338. /**
  339. * @brief Set the page's attr
  340. *
  341. * @param page 内存页结构体
  342. * @param flags 属性
  343. * @return ul 错误码
  344. */
  345. ul set_page_attr(struct Page *page, ul flags)
  346. {
  347. if (page == NULL)
  348. {
  349. kBUG("get_page_attr(): page == NULL");
  350. return EPAGE_NULL;
  351. }
  352. else
  353. {
  354. page->attr = flags;
  355. return 0;
  356. }
  357. }
  358. /**
  359. * @brief 释放连续number个内存页
  360. *
  361. * @param page 第一个要被释放的页面的结构体
  362. * @param number 要释放的内存页数量 number<64
  363. */
  364. void free_pages(struct Page *page, int number)
  365. {
  366. if (page == NULL)
  367. {
  368. kerror("free_pages() page is invalid.");
  369. return;
  370. }
  371. if (number >= 64 || number <= 0)
  372. {
  373. kerror("free_pages(): number %d is invalid.", number);
  374. return;
  375. }
  376. ul page_num;
  377. for (int i = 0; i < number; ++i, ++page)
  378. {
  379. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  380. // 复位bmp
  381. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  382. // 更新计数器
  383. --page->zone->count_pages_using;
  384. ++page->zone->count_pages_free;
  385. page->attr = 0;
  386. }
  387. return;
  388. }
  389. /**
  390. * @brief 重新初始化页表的函数
  391. * 将0~4GB的物理页映射到线性地址空间
  392. */
  393. void page_table_init()
  394. {
  395. kinfo("Re-Initializing page table...");
  396. global_CR3 = get_CR3();
  397. /*
  398. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  399. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  400. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  401. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  402. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  403. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  404. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  405. */
  406. ul *tmp_addr;
  407. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  408. {
  409. struct Zone *z = memory_management_struct.zones_struct + i;
  410. struct Page *p = z->pages_group;
  411. if (i == ZONE_UNMAPPED_INDEX)
  412. break;
  413. for (int j = 0; j < z->count_pages; ++j)
  414. {
  415. mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
  416. }
  417. }
  418. flush_tlb();
  419. kinfo("Page table Initialized.");
  420. }
  421. /**
  422. * @brief VBE帧缓存区的地址重新映射
  423. * 将帧缓存区映射到地址0xffff800003000000处
  424. */
  425. void init_frame_buffer()
  426. {
  427. kinfo("Re-mapping VBE frame buffer...");
  428. global_CR3 = get_CR3();
  429. ul fb_virt_addr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
  430. ul fb_phys_addr = get_VBE_FB_phys_addr();
  431. // 计算帧缓冲区的线性地址对应的pml4页表项的地址
  432. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  433. if (*tmp == 0)
  434. {
  435. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  436. memset(virt_addr, 0, PAGE_4K_SIZE);
  437. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  438. }
  439. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  440. if (*tmp == 0)
  441. {
  442. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  443. memset(virt_addr, 0, PAGE_4K_SIZE);
  444. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  445. }
  446. ul vbe_fb_length = get_VBE_FB_length();
  447. ul *tmp1;
  448. // 初始化2M物理页
  449. for (ul i = 0; i < (vbe_fb_length << 2); i += PAGE_2M_SIZE)
  450. {
  451. // 计算当前2M物理页对应的pdt的页表项的物理地址
  452. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff));
  453. // 页面写穿,禁止缓存
  454. set_pdt(tmp1, mk_pdt((ul)fb_phys_addr + i, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD));
  455. }
  456. set_pos_VBE_FB_addr((uint *)fb_virt_addr);
  457. flush_tlb();
  458. kinfo("VBE frame buffer successfully Re-mapped!");
  459. }
  460. /**
  461. * @brief 将物理地址映射到页表的函数
  462. *
  463. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  464. * @param phys_addr_start 物理地址的起始位置
  465. * @param length 要映射的区域的长度(字节)
  466. */
  467. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  468. {
  469. global_CR3 = get_CR3();
  470. // 计算线性地址对应的pml4页表项的地址
  471. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  472. if (*tmp == 0)
  473. {
  474. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  475. memset(virt_addr, 0, PAGE_4K_SIZE);
  476. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  477. }
  478. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  479. if (*tmp == 0)
  480. {
  481. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  482. memset(virt_addr, 0, PAGE_4K_SIZE);
  483. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  484. }
  485. ul *tmp1;
  486. // 初始化2M物理页
  487. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  488. {
  489. // 计算当前2M物理页对应的pdt的页表项的物理地址
  490. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  491. // 页面写穿,禁止缓存
  492. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags));
  493. }
  494. flush_tlb();
  495. }
  496. void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  497. {
  498. global_CR3 = get_CR3();
  499. // 计算线性地址对应的pml4页表项的地址
  500. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  501. if (*tmp == 0)
  502. {
  503. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  504. memset(virt_addr, 0, PAGE_4K_SIZE);
  505. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_USER_PGT));
  506. }
  507. else
  508. kdebug("*tmp != 0!!! \t tmp = %#018lx\t *tmp = %#018lx", tmp, *tmp);
  509. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  510. if (*tmp == 0)
  511. {
  512. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  513. memset(virt_addr, 0, PAGE_4K_SIZE);
  514. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_USER_DIR));
  515. }
  516. else
  517. kdebug("*tmp != 0!!! \t tmp = %#018lx\t *tmp = %#018lx", tmp, *tmp);
  518. ul *tmp1;
  519. // 初始化2M物理页
  520. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  521. {
  522. // 计算当前2M物理页对应的pdt的页表项的物理地址
  523. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  524. // 页面写穿,禁止缓存
  525. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | PAGE_USER_PAGE));
  526. }
  527. flush_tlb();
  528. }
  529. /**
  530. * @brief 将将物理地址填写到进程的页表的函数
  531. *
  532. * @param proc_page_table_addr 页表的基地址
  533. * @param is_phys 页表的基地址是否为物理地址
  534. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  535. * @param phys_addr_start 物理地址的起始位置
  536. * @param length 要映射的区域的长度(字节)
  537. * @param user 用户态是否可访问
  538. */
  539. void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user)
  540. {
  541. // kdebug("proc_page_table_addr=%#018lx", proc_page_table_addr);
  542. // 计算线性地址对应的pml4页表项的地址
  543. mm_pgt_entry_num_t pgt_num;
  544. mm_calculate_entry_num(length, &pgt_num);
  545. kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
  546. uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  547. // 循环填写顶层页表
  548. for (int num_pml4e = 0; num_pml4e < pgt_num.num_PML4E && pml4e_id < 512; ++num_pml4e, ++pml4e_id)
  549. {
  550. ul *tmp;
  551. if (is_phys)
  552. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + pml4e_id);
  553. else
  554. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL) + pml4e_id);
  555. if (*tmp == 0)
  556. {
  557. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  558. memset(virt_addr, 0, PAGE_4K_SIZE);
  559. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  560. }
  561. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  562. if (*tmp == 0)
  563. {
  564. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  565. memset(virt_addr, 0, PAGE_4K_SIZE);
  566. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  567. }
  568. ul *tmp1;
  569. // 初始化2M物理页
  570. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  571. {
  572. // 计算当前2M物理页对应的pdt的页表项的物理地址
  573. tmp1 = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff)));
  574. // 页面写穿,禁止缓存
  575. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  576. }
  577. }
  578. flush_tlb();
  579. }
  580. /**
  581. * @brief 从页表中获取pdt页表项的内容
  582. *
  583. * @param proc_page_table_addr 页表的地址
  584. * @param is_phys 页表地址是否为物理地址
  585. * @param virt_addr_start 要清除的虚拟地址的起始地址
  586. * @param length 要清除的区域的长度
  587. * @param clear 是否清除标志位
  588. */
  589. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  590. {
  591. ul *tmp;
  592. if (is_phys)
  593. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  594. else
  595. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  596. // pml4页表项为0
  597. if (*tmp == 0)
  598. return 0;
  599. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  600. // pdpt页表项为0
  601. if (*tmp == 0)
  602. return 0;
  603. // 读取pdt页表项
  604. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  605. if (clear) // 清除页表项的标志位
  606. return *tmp & (~0x1fff);
  607. else
  608. return *tmp;
  609. }
  610. /**
  611. * @brief 从页表中清除虚拟地址的映射
  612. *
  613. * @param proc_page_table_addr 页表的地址
  614. * @param is_phys 页表地址是否为物理地址
  615. * @param virt_addr_start 要清除的虚拟地址的起始地址
  616. * @param length 要清除的区域的长度
  617. */
  618. void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
  619. {
  620. ul *tmp;
  621. if (is_phys)
  622. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  623. else
  624. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  625. // pml4页表项为0
  626. if (*tmp == 0)
  627. return;
  628. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  629. // pdpt页表项为0
  630. if (*tmp == 0)
  631. return;
  632. ul *tmp1;
  633. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  634. {
  635. // 计算当前2M物理页对应的pdt的页表项的物理地址
  636. tmp1 = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff)));
  637. // 清除映射
  638. *tmp1 = 0;
  639. }
  640. flush_tlb();
  641. }
  642. /**
  643. * @brief 从mms中寻找Page结构体
  644. *
  645. * @param phys_addr
  646. * @return struct Page*
  647. */
  648. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  649. {
  650. uint32_t zone_start, zone_end;
  651. switch (zone_select)
  652. {
  653. case ZONE_DMA:
  654. // DMA区域
  655. zone_start = 0;
  656. zone_end = ZONE_DMA_INDEX;
  657. break;
  658. case ZONE_NORMAL:
  659. zone_start = ZONE_DMA_INDEX;
  660. zone_end = ZONE_NORMAL_INDEX;
  661. break;
  662. case ZONE_UNMAPPED_IN_PGT:
  663. zone_start = ZONE_NORMAL_INDEX;
  664. zone_end = ZONE_UNMAPPED_INDEX;
  665. break;
  666. default:
  667. kerror("In mm_find_page: param: zone_select incorrect.");
  668. // 返回空
  669. return NULL;
  670. break;
  671. }
  672. for (int i = zone_start; i <= zone_end; ++i)
  673. {
  674. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  675. continue;
  676. struct Zone *z = memory_management_struct.zones_struct + i;
  677. // 区域对应的起止页号
  678. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  679. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  680. ul tmp = 64 - page_start % 64;
  681. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  682. {
  683. // 按照bmp中的每一个元素进行查找
  684. // 先将p定位到bmp的起始元素
  685. ul *p = memory_management_struct.bmp + (j >> 6);
  686. ul shift = j % 64;
  687. for (ul k = shift; k < 64; ++k)
  688. {
  689. if ((*p >> k) & 1) // 若当前页已分配
  690. {
  691. uint64_t page_num = j + k - shift;
  692. struct Page *x = memory_management_struct.pages_struct + page_num;
  693. if (x->addr_phys == phys_addr) // 找到对应的页
  694. return x;
  695. }
  696. }
  697. }
  698. }
  699. return NULL;
  700. }
  701. /**
  702. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  703. *
  704. * @todo 缩小堆区域
  705. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  706. * @param offset 新的地址相对于原地址的偏移量
  707. * @return uint64_t
  708. */
  709. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  710. {
  711. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  712. if (offset >= 0)
  713. {
  714. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  715. {
  716. kdebug("map [%#018lx]", i);
  717. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  718. }
  719. current_pcb->mm->brk_end = end_addr;
  720. }
  721. else
  722. {
  723. // 释放堆内存
  724. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  725. {
  726. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  727. // 找到对应的页
  728. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  729. if (p == NULL)
  730. {
  731. kerror("cannot find page addr=%#018lx", phys);
  732. return end_addr;
  733. }
  734. free_pages(p, 1);
  735. }
  736. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  737. // 在页表中取消映射
  738. }
  739. return end_addr;
  740. }
  741. /**
  742. * @brief 检测指定地址是否已经被映射
  743. *
  744. * @param page_table_phys_addr 页表的物理地址
  745. * @param virt_addr 要检测的地址
  746. * @return true 已经被映射
  747. * @return false
  748. */
  749. bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
  750. {
  751. ul *tmp;
  752. tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  753. // pml4页表项为0
  754. if (*tmp == 0)
  755. return 0;
  756. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  757. // pdpt页表项为0
  758. if (*tmp == 0)
  759. return 0;
  760. // 读取pdt页表项
  761. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  762. // todo: 增加对使用了4K页的页表的检测
  763. if (*tmp != 0)
  764. return true;
  765. else
  766. return false;
  767. }