process.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. #include <process/spinlock.h>
  12. #include <common/libELF/elf.h>
  13. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  14. long process_global_pid = 1; // 系统中最大的pid
  15. extern void system_call(void);
  16. extern void kernel_thread_func(void);
  17. /**
  18. * @brief 将进程加入到调度器的就绪队列中
  19. *
  20. * @param pcb 进程的pcb
  21. */
  22. static inline void process_wakeup(struct process_control_block *pcb);
  23. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  24. struct mm_struct initial_mm = {0};
  25. struct thread_struct initial_thread =
  26. {
  27. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  28. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  29. .fs = KERNEL_DS,
  30. .gs = KERNEL_DS,
  31. .cr2 = 0,
  32. .trap_num = 0,
  33. .err_code = 0};
  34. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  35. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  36. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  37. // 为每个核心初始化初始进程的tss
  38. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  39. /**
  40. * @brief 拷贝当前进程的标志位
  41. *
  42. * @param clone_flags 克隆标志位
  43. * @param pcb 新的进程的pcb
  44. * @return uint64_t
  45. */
  46. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  47. /**
  48. * @brief 拷贝当前进程的文件描述符等信息
  49. *
  50. * @param clone_flags 克隆标志位
  51. * @param pcb 新的进程的pcb
  52. * @return uint64_t
  53. */
  54. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  55. /**
  56. * @brief 回收进程的所有文件描述符
  57. *
  58. * @param pcb 要被回收的进程的pcb
  59. * @return uint64_t
  60. */
  61. uint64_t process_exit_files(struct process_control_block *pcb);
  62. /**
  63. * @brief 拷贝当前进程的内存空间分布结构体信息
  64. *
  65. * @param clone_flags 克隆标志位
  66. * @param pcb 新的进程的pcb
  67. * @return uint64_t
  68. */
  69. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  70. /**
  71. * @brief 释放进程的页表
  72. *
  73. * @param pcb 要被释放页表的进程
  74. * @return uint64_t
  75. */
  76. uint64_t process_exit_mm(struct process_control_block *pcb);
  77. /**
  78. * @brief 拷贝当前进程的线程结构体
  79. *
  80. * @param clone_flags 克隆标志位
  81. * @param pcb 新的进程的pcb
  82. * @return uint64_t
  83. */
  84. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  85. void process_exit_thread(struct process_control_block *pcb);
  86. /**
  87. * @brief 切换进程
  88. *
  89. * @param prev 上一个进程的pcb
  90. * @param next 将要切换到的进程的pcb
  91. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  92. * 这里切换fs和gs寄存器
  93. */
  94. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  95. {
  96. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  97. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  98. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  99. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  100. __asm__ __volatile__("movq %%fs, %0 \n\t"
  101. : "=a"(prev->thread->fs));
  102. __asm__ __volatile__("movq %%gs, %0 \n\t"
  103. : "=a"(prev->thread->gs));
  104. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  105. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  106. // wrmsr(0x175, next->thread->rbp);
  107. }
  108. /**
  109. * @brief 这是一个用户态的程序
  110. *
  111. */
  112. void user_level_function()
  113. {
  114. // kinfo("Program (user_level_function) is runing...");
  115. // kinfo("Try to enter syscall id 15...");
  116. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  117. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  118. // while(1);
  119. long ret = 0;
  120. // printk_color(RED,BLACK,"user_level_function task is running\n");
  121. /*
  122. // 测试sys put string
  123. char string[] = "User level process.\n";
  124. long err_code = 1;
  125. ul addr = (ul)string;
  126. __asm__ __volatile__(
  127. "movq %2, %%r8 \n\t"
  128. "int $0x80 \n\t"
  129. : "=a"(err_code)
  130. : "a"(SYS_PUT_STRING), "m"(addr)
  131. : "memory", "r8");
  132. */
  133. while (1)
  134. {
  135. // 测试sys_open
  136. char string[] = "333.txt";
  137. long err_code = 1;
  138. int zero = 0;
  139. uint64_t addr = (ul)string;
  140. __asm__ __volatile__(
  141. "movq %2, %%r8 \n\t"
  142. "movq %3, %%r9 \n\t"
  143. "movq %4, %%r10 \n\t"
  144. "movq %5, %%r11 \n\t"
  145. "movq %6, %%r12 \n\t"
  146. "movq %7, %%r13 \n\t"
  147. "movq %8, %%r14 \n\t"
  148. "movq %9, %%r15 \n\t"
  149. "int $0x80 \n\t"
  150. : "=a"(err_code)
  151. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  152. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  153. int fd_num = err_code;
  154. int count = 128;
  155. // while (count)
  156. //{
  157. uchar buf[128] = {0};
  158. // Test sys_read
  159. addr = (uint64_t)&buf;
  160. __asm__ __volatile__(
  161. "movq %2, %%r8 \n\t"
  162. "movq %3, %%r9 \n\t"
  163. "movq %4, %%r10 \n\t"
  164. "movq %5, %%r11 \n\t"
  165. "movq %6, %%r12 \n\t"
  166. "movq %7, %%r13 \n\t"
  167. "movq %8, %%r14 \n\t"
  168. "movq %9, %%r15 \n\t"
  169. "int $0x80 \n\t"
  170. : "=a"(err_code)
  171. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  172. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  173. count = err_code;
  174. // 将读取到的数据打印出来
  175. addr = (ul)buf;
  176. __asm__ __volatile__(
  177. "movq %2, %%r8 \n\t"
  178. "int $0x80 \n\t"
  179. : "=a"(err_code)
  180. : "a"(SYS_PUT_STRING), "m"(addr)
  181. : "memory", "r8");
  182. // SYS_WRITE
  183. char test1[] = "GGGGHHHHHHHHh112343";
  184. addr = (uint64_t)&test1;
  185. count = 19;
  186. __asm__ __volatile__(
  187. "movq %2, %%r8 \n\t"
  188. "movq %3, %%r9 \n\t"
  189. "movq %4, %%r10 \n\t"
  190. "movq %5, %%r11 \n\t"
  191. "movq %6, %%r12 \n\t"
  192. "movq %7, %%r13 \n\t"
  193. "movq %8, %%r14 \n\t"
  194. "movq %9, %%r15 \n\t"
  195. "int $0x80 \n\t"
  196. : "=a"(err_code)
  197. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  198. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  199. addr = 1;
  200. count = SEEK_SET;
  201. fd_num = 0;
  202. // Test lseek
  203. __asm__ __volatile__(
  204. "movq %2, %%r8 \n\t"
  205. "movq %3, %%r9 \n\t"
  206. "movq %4, %%r10 \n\t"
  207. "movq %5, %%r11 \n\t"
  208. "movq %6, %%r12 \n\t"
  209. "movq %7, %%r13 \n\t"
  210. "movq %8, %%r14 \n\t"
  211. "movq %9, %%r15 \n\t"
  212. "int $0x80 \n\t"
  213. : "=a"(err_code)
  214. : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  215. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  216. // SYS_WRITE
  217. char test2[] = "K123456789K";
  218. addr = (uint64_t)&test2;
  219. count = 11;
  220. __asm__ __volatile__(
  221. "movq %2, %%r8 \n\t"
  222. "movq %3, %%r9 \n\t"
  223. "movq %4, %%r10 \n\t"
  224. "movq %5, %%r11 \n\t"
  225. "movq %6, %%r12 \n\t"
  226. "movq %7, %%r13 \n\t"
  227. "movq %8, %%r14 \n\t"
  228. "movq %9, %%r15 \n\t"
  229. "int $0x80 \n\t"
  230. : "=a"(err_code)
  231. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  232. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  233. // Test sys_close
  234. __asm__ __volatile__(
  235. "movq %2, %%r8 \n\t"
  236. "movq %3, %%r9 \n\t"
  237. "movq %4, %%r10 \n\t"
  238. "movq %5, %%r11 \n\t"
  239. "movq %6, %%r12 \n\t"
  240. "movq %7, %%r13 \n\t"
  241. "movq %8, %%r14 \n\t"
  242. "movq %9, %%r15 \n\t"
  243. "int $0x80 \n\t"
  244. : "=a"(err_code)
  245. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  246. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  247. addr = (ul)string;
  248. __asm__ __volatile__(
  249. "movq %2, %%r8 \n\t"
  250. "movq %3, %%r9 \n\t"
  251. "movq %4, %%r10 \n\t"
  252. "movq %5, %%r11 \n\t"
  253. "movq %6, %%r12 \n\t"
  254. "movq %7, %%r13 \n\t"
  255. "movq %8, %%r14 \n\t"
  256. "movq %9, %%r15 \n\t"
  257. "int $0x80 \n\t"
  258. : "=a"(err_code)
  259. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  260. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  261. fd_num = err_code;
  262. count = 128;
  263. // Test sys_read
  264. addr = (uint64_t)&buf;
  265. __asm__ __volatile__(
  266. "movq %2, %%r8 \n\t"
  267. "movq %3, %%r9 \n\t"
  268. "movq %4, %%r10 \n\t"
  269. "movq %5, %%r11 \n\t"
  270. "movq %6, %%r12 \n\t"
  271. "movq %7, %%r13 \n\t"
  272. "movq %8, %%r14 \n\t"
  273. "movq %9, %%r15 \n\t"
  274. "int $0x80 \n\t"
  275. : "=a"(err_code)
  276. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  277. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  278. count = err_code;
  279. // 将读取到的数据打印出来
  280. addr = (ul)buf;
  281. __asm__ __volatile__(
  282. "movq %2, %%r8 \n\t"
  283. "int $0x80 \n\t"
  284. : "=a"(err_code)
  285. : "a"(SYS_PUT_STRING), "m"(addr)
  286. : "memory", "r8");
  287. // Test Sys
  288. //}
  289. while (1)
  290. pause();
  291. }
  292. while (1)
  293. pause();
  294. }
  295. /**
  296. * @brief 打开要执行的程序文件
  297. *
  298. * @param path
  299. * @return struct vfs_file_t*
  300. */
  301. struct vfs_file_t *process_open_exec_file(char *path)
  302. {
  303. struct vfs_dir_entry_t *dentry = NULL;
  304. struct vfs_file_t *filp = NULL;
  305. dentry = vfs_path_walk(path, 0);
  306. if (dentry == NULL)
  307. return (void *)-ENOENT;
  308. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  309. return (void *)-ENOTDIR;
  310. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  311. if (filp == NULL)
  312. return (void *)-ENOMEM;
  313. filp->position = 0;
  314. filp->mode = 0;
  315. filp->dEntry = dentry;
  316. filp->mode = ATTR_READ_ONLY;
  317. filp->file_ops = dentry->dir_inode->file_ops;
  318. return filp;
  319. }
  320. /**
  321. * @brief 加载elf格式的程序文件到内存中,并设置regs
  322. *
  323. * @param regs 寄存器
  324. * @param path 文件路径
  325. * @return int
  326. */
  327. static int process_load_elf_file(struct pt_regs *regs, char *path)
  328. {
  329. int retval = 0;
  330. struct vfs_file_t *filp = process_open_exec_file(path);
  331. if ((unsigned long)filp <= 0)
  332. {
  333. kdebug("(unsigned long)filp=%d", (long)filp);
  334. return (unsigned long)filp;
  335. }
  336. void *buf = kmalloc(sizeof(PAGE_4K_SIZE), 0);
  337. uint64_t pos = 0;
  338. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  339. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  340. retval = 0;
  341. if (!elf_check(buf))
  342. {
  343. kerror("Not an ELF file: %s", path);
  344. retval = -ENOTSUP;
  345. goto load_elf_failed;
  346. }
  347. #if ARCH(X86_64)
  348. // 暂时只支持64位的文件
  349. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  350. {
  351. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  352. retval = -EUNSUPPORTED;
  353. goto load_elf_failed;
  354. }
  355. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  356. // 暂时只支持AMD64架构
  357. if (ehdr.e_machine != EM_AMD64)
  358. {
  359. kerror("e_machine=%d", ehdr.e_machine);
  360. retval = -EUNSUPPORTED;
  361. goto load_elf_failed;
  362. }
  363. #else
  364. #error Unsupported architecture!
  365. #endif
  366. if (ehdr.e_type != ET_EXEC)
  367. {
  368. kdebug("ehdr->e_type=%d", ehdr.e_type);
  369. retval = -EUNSUPPORTED;
  370. goto load_elf_failed;
  371. }
  372. kdebug("e_entry=%#018lx", ehdr.e_entry);
  373. regs->rip = ehdr.e_entry;
  374. current_pcb->mm->code_addr_start = ehdr.e_entry;
  375. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  376. // 将指针移动到program header处
  377. pos = ehdr.e_phoff;
  378. // 读取所有的phdr
  379. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  380. filp->file_ops->read(filp, (char *)buf, ehdr.e_phentsize * ehdr.e_phnum, &pos);
  381. if ((unsigned long)filp <= 0)
  382. {
  383. kdebug("(unsigned long)filp=%d", (long)filp);
  384. return (unsigned long)filp;
  385. }
  386. Elf64_Phdr *phdr = buf;
  387. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  388. {
  389. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  390. // 不是可加载的段
  391. if (phdr->p_type != PT_LOAD)
  392. continue;
  393. int64_t remain_mem_size = phdr->p_memsz;
  394. int64_t remain_file_size = phdr->p_filesz;
  395. pos = phdr->p_offset;
  396. uint64_t virt_base = phdr->p_vaddr;
  397. while (remain_mem_size > 0)
  398. {
  399. // todo: 改用slab分配4K大小内存块并映射到4K页
  400. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  401. {
  402. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  403. }
  404. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  405. int64_t val = 0;
  406. if (remain_file_size != 0)
  407. {
  408. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  409. val = filp->file_ops->read(filp, (char*)virt_base, to_trans, &pos);
  410. }
  411. if (val < 0)
  412. goto load_elf_failed;
  413. remain_mem_size -= PAGE_2M_SIZE;
  414. remain_file_size -= val;
  415. virt_base += PAGE_2M_SIZE;
  416. }
  417. }
  418. // 分配2MB的栈内存空间
  419. regs->rsp = current_pcb->mm->stack_start;
  420. regs->rbp = current_pcb->mm->stack_start;
  421. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  422. load_elf_failed:;
  423. if (buf != NULL)
  424. kfree(buf);
  425. return retval;
  426. }
  427. /**
  428. * @brief 使当前进程去执行新的代码
  429. *
  430. * @param regs 当前进程的寄存器
  431. * @param path 可执行程序的路径
  432. * @return ul 错误码
  433. */
  434. ul do_execve(struct pt_regs *regs, char *path)
  435. {
  436. // 选择这两个寄存器是对应了sysexit指令的需要
  437. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  438. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  439. regs->cs = USER_CS | 3;
  440. regs->ds = USER_DS | 3;
  441. regs->ss = USER_DS | 0x3;
  442. regs->rflags = 0x200246;
  443. regs->rax = 1;
  444. regs->es = 0;
  445. kdebug("do_execve is running...");
  446. // 当前进程正在与父进程共享地址空间,需要创建
  447. // 独立的地址空间才能使新程序正常运行
  448. if (current_pcb->flags & PF_VFORK)
  449. {
  450. kdebug("proc:%d creating new mem space", current_pcb->pid);
  451. // 分配新的内存空间分布结构体
  452. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  453. memset(new_mms, 0, sizeof(struct mm_struct));
  454. current_pcb->mm = new_mms;
  455. // 分配顶层页表, 并设置顶层页表的物理地址
  456. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  457. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  458. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  459. // 拷贝内核空间的页表指针
  460. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  461. }
  462. /**
  463. * @todo: 加载elf文件并映射对应的页
  464. *
  465. */
  466. // 映射1个2MB的物理页
  467. unsigned long stack_start_addr = 0x6fffffc00000;
  468. uint64_t brk_start_addr = 0x6fffffc00000;
  469. process_switch_mm(current_pcb);
  470. // 为用户态程序设置地址边界
  471. if (!(current_pcb->flags & PF_KTHREAD))
  472. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  473. current_pcb->mm->code_addr_end = 0;
  474. current_pcb->mm->data_addr_start = 0;
  475. current_pcb->mm->data_addr_end = 0;
  476. current_pcb->mm->rodata_addr_start = 0;
  477. current_pcb->mm->rodata_addr_end = 0;
  478. current_pcb->mm->bss_start = 0;
  479. current_pcb->mm->bss_end = 0;
  480. current_pcb->mm->brk_start = brk_start_addr;
  481. current_pcb->mm->brk_end = brk_start_addr;
  482. current_pcb->mm->stack_start = stack_start_addr;
  483. // 关闭之前的文件描述符
  484. process_exit_files(current_pcb);
  485. // 清除进程的vfork标志位
  486. current_pcb->flags &= ~PF_VFORK;
  487. process_load_elf_file(regs, path);
  488. kdebug("execve ok");
  489. return 0;
  490. }
  491. /**
  492. * @brief 内核init进程
  493. *
  494. * @param arg
  495. * @return ul 参数
  496. */
  497. ul initial_kernel_thread(ul arg)
  498. {
  499. // kinfo("initial proc running...\targ:%#018lx", arg);
  500. fat32_init();
  501. struct pt_regs *regs;
  502. current_pcb->thread->rip = (ul)ret_from_system_call;
  503. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  504. current_pcb->thread->fs = USER_DS | 0x3;
  505. current_pcb->thread->gs = USER_DS | 0x3;
  506. // 主动放弃内核线程身份
  507. current_pcb->flags &= (~PF_KTHREAD);
  508. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  509. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  510. regs = (struct pt_regs *)current_pcb->thread->rsp;
  511. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  512. current_pcb->flags = 0;
  513. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  514. // 加载用户态程序:init.bin
  515. char init_path[] = "/init.bin";
  516. uint64_t addr = (uint64_t)&init_path;
  517. __asm__ __volatile__("movq %1, %%rsp \n\t"
  518. "pushq %2 \n\t"
  519. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  520. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/init.bin")
  521. : "memory");
  522. return 1;
  523. }
  524. /**
  525. * @brief 进程退出时执行的函数
  526. *
  527. * @param code 返回码
  528. * @return ul
  529. */
  530. ul process_thread_do_exit(ul code)
  531. {
  532. kinfo("thread_exiting..., code is %#018lx.", code);
  533. while (1)
  534. ;
  535. }
  536. /**
  537. * @brief 初始化内核进程
  538. *
  539. * @param fn 目标程序的地址
  540. * @param arg 向目标程序传入的参数
  541. * @param flags
  542. * @return int
  543. */
  544. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  545. {
  546. struct pt_regs regs;
  547. memset(&regs, 0, sizeof(regs));
  548. // 在rbx寄存器中保存进程的入口地址
  549. regs.rbx = (ul)fn;
  550. // 在rdx寄存器中保存传入的参数
  551. regs.rdx = (ul)arg;
  552. regs.ds = KERNEL_DS;
  553. regs.es = KERNEL_DS;
  554. regs.cs = KERNEL_CS;
  555. regs.ss = KERNEL_DS;
  556. // 置位中断使能标志位
  557. regs.rflags = (1 << 9);
  558. // rip寄存器指向内核线程的引导程序
  559. regs.rip = (ul)kernel_thread_func;
  560. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  561. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  562. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  563. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  564. }
  565. /**
  566. * @brief 初始化进程模块
  567. * ☆前置条件:已完成系统调用模块的初始化
  568. */
  569. void process_init()
  570. {
  571. kinfo("Initializing process...");
  572. initial_mm.pgd = (pml4t_t *)global_CR3;
  573. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  574. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  575. initial_mm.data_addr_start = (ul)&_data;
  576. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  577. initial_mm.rodata_addr_start = (ul)&_rodata;
  578. initial_mm.rodata_addr_end = (ul)&_erodata;
  579. initial_mm.bss_start = (uint64_t)&_bss;
  580. initial_mm.bss_end = (uint64_t)&_ebss;
  581. initial_mm.brk_start = memory_management_struct.start_brk;
  582. initial_mm.brk_end = current_pcb->addr_limit;
  583. initial_mm.stack_start = _stack_start;
  584. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  585. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  586. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  587. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  588. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  589. for (int i = 256; i < 512; ++i)
  590. {
  591. uint64_t *tmp = idle_pml4t_vaddr + i;
  592. if (*tmp == 0)
  593. {
  594. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  595. memset(pdpt, 0, PAGE_4K_SIZE);
  596. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  597. }
  598. }
  599. /*
  600. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  601. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  602. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  603. */
  604. // 初始化pid的写锁
  605. spin_init(&process_global_pid_write_lock);
  606. // 初始化进程的循环链表
  607. list_init(&initial_proc_union.pcb.list);
  608. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  609. initial_proc_union.pcb.state = PROC_RUNNING;
  610. initial_proc_union.pcb.preempt_count = 0;
  611. initial_proc_union.pcb.cpu_id = 0;
  612. }
  613. /**
  614. * @brief fork当前进程
  615. *
  616. * @param regs 新的寄存器值
  617. * @param clone_flags 克隆标志
  618. * @param stack_start 堆栈开始地址
  619. * @param stack_size 堆栈大小
  620. * @return unsigned long
  621. */
  622. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  623. {
  624. int retval = 0;
  625. struct process_control_block *tsk = NULL;
  626. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  627. // 为新的进程分配栈空间,并将pcb放置在底部
  628. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  629. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  630. if (tsk == NULL)
  631. {
  632. retval = -ENOMEM;
  633. return retval;
  634. }
  635. memset(tsk, 0, sizeof(struct process_control_block));
  636. // 将当前进程的pcb复制到新的pcb内
  637. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  638. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  639. // 将进程加入循环链表
  640. list_init(&tsk->list);
  641. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  642. tsk->priority = 2;
  643. tsk->preempt_count = 0;
  644. // 增加全局的pid并赋值给新进程的pid
  645. spin_lock(&process_global_pid_write_lock);
  646. tsk->pid = process_global_pid++;
  647. // 加入到进程链表中
  648. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  649. initial_proc_union.pcb.next_pcb = tsk;
  650. tsk->parent_pcb = current_pcb;
  651. spin_unlock(&process_global_pid_write_lock);
  652. tsk->cpu_id = proc_current_cpu_id;
  653. tsk->state = PROC_UNINTERRUPTIBLE;
  654. list_init(&tsk->list);
  655. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  656. retval = -ENOMEM;
  657. // 拷贝标志位
  658. if (process_copy_flags(clone_flags, tsk))
  659. goto copy_flags_failed;
  660. // 拷贝内存空间分布结构体
  661. if (process_copy_mm(clone_flags, tsk))
  662. goto copy_mm_failed;
  663. // 拷贝文件
  664. if (process_copy_files(clone_flags, tsk))
  665. goto copy_files_failed;
  666. // 拷贝线程结构体
  667. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  668. goto copy_thread_failed;
  669. // 拷贝成功
  670. retval = tsk->pid;
  671. // 唤醒进程
  672. process_wakeup(tsk);
  673. return retval;
  674. copy_thread_failed:;
  675. // 回收线程
  676. process_exit_thread(tsk);
  677. copy_files_failed:;
  678. // 回收文件
  679. process_exit_files(tsk);
  680. copy_mm_failed:;
  681. // 回收内存空间分布结构体
  682. process_exit_mm(tsk);
  683. copy_flags_failed:;
  684. kfree(tsk);
  685. return retval;
  686. return 0;
  687. }
  688. /**
  689. * @brief 根据pid获取进程的pcb
  690. *
  691. * @param pid
  692. * @return struct process_control_block*
  693. */
  694. struct process_control_block *process_get_pcb(long pid)
  695. {
  696. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  697. // 使用蛮力法搜索指定pid的pcb
  698. // todo: 使用哈希表来管理pcb
  699. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  700. {
  701. if (pcb->pid == pid)
  702. return pcb;
  703. }
  704. return NULL;
  705. }
  706. /**
  707. * @brief 将进程加入到调度器的就绪队列中
  708. *
  709. * @param pcb 进程的pcb
  710. */
  711. static inline void process_wakeup(struct process_control_block *pcb)
  712. {
  713. pcb->state = PROC_RUNNING;
  714. sched_cfs_enqueue(pcb);
  715. }
  716. /**
  717. * @brief 拷贝当前进程的标志位
  718. *
  719. * @param clone_flags 克隆标志位
  720. * @param pcb 新的进程的pcb
  721. * @return uint64_t
  722. */
  723. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  724. {
  725. if (clone_flags & CLONE_VM)
  726. pcb->flags |= PF_VFORK;
  727. return 0;
  728. }
  729. /**
  730. * @brief 拷贝当前进程的文件描述符等信息
  731. *
  732. * @param clone_flags 克隆标志位
  733. * @param pcb 新的进程的pcb
  734. * @return uint64_t
  735. */
  736. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  737. {
  738. int retval = 0;
  739. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  740. // 文件描述符已经在复制pcb时被拷贝
  741. if (clone_flags & CLONE_FS)
  742. return retval;
  743. // 为新进程拷贝新的文件描述符
  744. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  745. {
  746. if (current_pcb->fds[i] == NULL)
  747. continue;
  748. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  749. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  750. }
  751. return retval;
  752. }
  753. /**
  754. * @brief 回收进程的所有文件描述符
  755. *
  756. * @param pcb 要被回收的进程的pcb
  757. * @return uint64_t
  758. */
  759. uint64_t process_exit_files(struct process_control_block *pcb)
  760. {
  761. // 不与父进程共享文件描述符
  762. if (!(pcb->flags & PF_VFORK))
  763. {
  764. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  765. {
  766. if (pcb->fds[i] == NULL)
  767. continue;
  768. kfree(pcb->fds[i]);
  769. }
  770. }
  771. // 清空当前进程的文件描述符列表
  772. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  773. }
  774. /**
  775. * @brief 拷贝当前进程的内存空间分布结构体信息
  776. *
  777. * @param clone_flags 克隆标志位
  778. * @param pcb 新的进程的pcb
  779. * @return uint64_t
  780. */
  781. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  782. {
  783. int retval = 0;
  784. // 与父进程共享内存空间
  785. if (clone_flags & CLONE_VM)
  786. {
  787. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  788. pcb->mm = current_pcb->mm;
  789. return retval;
  790. }
  791. // 分配新的内存空间分布结构体
  792. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  793. memset(new_mms, 0, sizeof(struct mm_struct));
  794. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  795. pcb->mm = new_mms;
  796. // 分配顶层页表, 并设置顶层页表的物理地址
  797. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  798. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  799. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  800. // 拷贝内核空间的页表指针
  801. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  802. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  803. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  804. // 迭代地拷贝用户空间
  805. for (int i = 0; i <= 255; ++i)
  806. {
  807. // 当前页表项为空
  808. if ((*(uint64_t *)(current_pgd + i)) == 0)
  809. continue;
  810. // 分配新的二级页表
  811. pdpt_t *new_pdpt = (pdpt_t *)kmalloc(PAGE_4K_SIZE, 0);
  812. memset(new_pdpt, 0, PAGE_4K_SIZE);
  813. // 在新的一级页表中设置新的二级页表表项
  814. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  815. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt(*(uint64_t *)(current_pgd + i) & (~0xfffUL));
  816. // kdebug("current pdpt=%#018lx \t (current_pgd + i)->pml4t=%#018lx", current_pdpt, *(uint64_t *)(current_pgd+i));
  817. // 设置二级页表
  818. for (int j = 0; j < 512; ++j)
  819. {
  820. if (*(uint64_t *)(current_pdpt + j) == 0)
  821. continue;
  822. // 分配新的三级页表
  823. pdt_t *new_pdt = (pdt_t *)kmalloc(PAGE_4K_SIZE, 0);
  824. memset(new_pdt, 0, PAGE_4K_SIZE);
  825. // 在新的二级页表中设置三级页表的表项
  826. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(uint64_t *)(current_pdpt + j)) & 0xfffUL));
  827. pdt_t *current_pdt = (pdt_t *)phys_2_virt((*(uint64_t *)(current_pdpt + j)) & (~0xfffUL));
  828. // 拷贝内存页
  829. for (int k = 0; k < 512; ++k)
  830. {
  831. if ((current_pdt + k)->pdt == 0)
  832. continue;
  833. // 获取一个新页
  834. struct Page *pg = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  835. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pg->addr_phys, (current_pdt + k)->pdt & 0x1fffUL));
  836. // 拷贝数据
  837. memcpy(phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL)), PAGE_2M_SIZE);
  838. }
  839. }
  840. }
  841. return retval;
  842. }
  843. /**
  844. * @brief 释放进程的页表
  845. *
  846. * @param pcb 要被释放页表的进程
  847. * @return uint64_t
  848. */
  849. uint64_t process_exit_mm(struct process_control_block *pcb)
  850. {
  851. if (pcb->flags & CLONE_VM)
  852. return 0;
  853. if (pcb->mm == NULL)
  854. {
  855. kdebug("pcb->mm==NULL");
  856. return 0;
  857. }
  858. if (pcb->mm->pgd == NULL)
  859. {
  860. kdebug("pcb->mm->pgd==NULL");
  861. return 0;
  862. }
  863. // 获取顶层页表
  864. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  865. // 迭代地释放用户空间
  866. for (int i = 0; i <= 255; ++i)
  867. {
  868. // 当前页表项为空
  869. if ((current_pgd + i)->pml4t == 0)
  870. continue;
  871. // 二级页表entry
  872. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  873. // 遍历二级页表
  874. for (int j = 0; j < 512; ++j)
  875. {
  876. if ((current_pdpt + j)->pdpt == 0)
  877. continue;
  878. // 三级页表的entry
  879. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  880. // 释放三级页表的内存页
  881. for (int k = 0; k < 512; ++k)
  882. {
  883. if ((current_pdt + k)->pdt == 0)
  884. continue;
  885. // 释放内存页
  886. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  887. }
  888. // 释放三级页表
  889. kfree(current_pdt);
  890. }
  891. // 释放二级页表
  892. kfree(current_pdpt);
  893. }
  894. // 释放顶层页表
  895. kfree(current_pgd);
  896. // 释放内存空间分布结构体
  897. kfree(pcb->mm);
  898. return 0;
  899. }
  900. /**
  901. * @brief 拷贝当前进程的线程结构体
  902. *
  903. * @param clone_flags 克隆标志位
  904. * @param pcb 新的进程的pcb
  905. * @return uint64_t
  906. */
  907. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  908. {
  909. // 将线程结构体放置在pcb后方
  910. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  911. memset(thd, 0, sizeof(struct thread_struct));
  912. pcb->thread = thd;
  913. // 拷贝栈空间
  914. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  915. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  916. // 设置子进程的返回值为0
  917. child_regs->rax = 0;
  918. child_regs->rsp = stack_start;
  919. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  920. thd->rsp = (uint64_t)child_regs;
  921. thd->fs = current_pcb->thread->fs;
  922. thd->gs = current_pcb->thread->gs;
  923. // 根据是否为内核线程,设置进程的开始执行的地址
  924. if (pcb->flags & PF_KTHREAD)
  925. thd->rip = (uint64_t)kernel_thread_func;
  926. else
  927. thd->rip = (uint64_t)ret_from_system_call;
  928. kdebug("new proc's ret addr = %#018lx\tchild_regs->rsp = %#018lx", child_regs->rbx, child_regs->rsp);
  929. return 0;
  930. }
  931. /**
  932. * @brief todo: 回收线程结构体
  933. *
  934. * @param pcb
  935. */
  936. void process_exit_thread(struct process_control_block *pcb)
  937. {
  938. }