process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. extern void system_call(void);
  10. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  11. struct mm_struct initial_mm = {0};
  12. struct thread_struct initial_thread =
  13. {
  14. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  15. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  16. .fs = KERNEL_DS,
  17. .gs = KERNEL_DS,
  18. .cr2 = 0,
  19. .trap_num = 0,
  20. .err_code = 0};
  21. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  22. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  23. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  24. // 为每个核心初始化初始进程的tss
  25. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  26. /**
  27. * @brief 切换进程
  28. *
  29. * @param prev 上一个进程的pcb
  30. * @param next 将要切换到的进程的pcb
  31. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  32. * 这里切换fs和gs寄存器
  33. */
  34. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  35. {
  36. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  37. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  38. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  39. __asm__ __volatile__("movq %%fs, %0 \n\t"
  40. : "=a"(prev->thread->fs));
  41. __asm__ __volatile__("movq %%gs, %0 \n\t"
  42. : "=a"(prev->thread->gs));
  43. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  44. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  45. // wrmsr(0x175, next->thread->rbp);
  46. uint color;
  47. if (proc_current_cpu_id == 0)
  48. color = WHITE;
  49. else
  50. color = YELLOW;
  51. }
  52. /**
  53. * @brief 这是一个用户态的程序
  54. *
  55. */
  56. void user_level_function()
  57. {
  58. // kinfo("Program (user_level_function) is runing...");
  59. // kinfo("Try to enter syscall id 15...");
  60. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  61. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  62. // while(1);
  63. long ret = 0;
  64. // printk_color(RED,BLACK,"user_level_function task is running\n");
  65. char string[] = "User level process.\n";
  66. /*
  67. __asm__ __volatile__("leaq sysexit_return_address(%%rip), %%rdx \n\t"
  68. "movq %%rsp, %%rcx \n\t"
  69. "sysenter \n\t"
  70. "sysexit_return_address: \n\t"
  71. : "=a"(ret)
  72. : "0"(1), "D"(string)
  73. : "memory");
  74. */
  75. long err_code=1;
  76. ul addr = (ul)string;
  77. __asm__ __volatile__(
  78. "movq %2, %%r8 \n\t"
  79. "int $0x80 \n\t"
  80. : "=a"(err_code)
  81. : "a"(SYS_PUT_STRING), "m"(addr)
  82. : "memory", "r8");
  83. if(err_code ==0)
  84. {
  85. char str[] ="errno is 0";
  86. addr = (ul)str;
  87. __asm__ __volatile__(
  88. "movq %2, %%r8 \n\t"
  89. "int $0x80 \n\t"
  90. : "=a"(err_code)
  91. : "a"(SYS_PUT_STRING), "m"(addr)
  92. : "memory", "r8");
  93. }
  94. // enter_syscall_int(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  95. // kinfo("Return from syscall id 15...");
  96. while (1)
  97. pause();
  98. }
  99. /**
  100. * @brief 使当前进程去执行新的代码
  101. *
  102. * @param regs 当前进程的寄存器
  103. * @return ul 错误码
  104. */
  105. ul do_execve(struct pt_regs *regs)
  106. {
  107. // 选择这两个寄存器是对应了sysexit指令的需要
  108. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  109. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  110. regs->cs = USER_CS | 3;
  111. regs->ds = USER_DS | 3;
  112. regs->ss = USER_DS | 0x3;
  113. regs->rflags = 0x200246;
  114. regs->rax = 1;
  115. regs->es = 0;
  116. // kdebug("do_execve is running...");
  117. // 映射起始页面
  118. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  119. uint64_t addr = 0x800000UL;
  120. /*
  121. unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
  122. unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
  123. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  124. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  125. virtual = kmalloc(PAGE_4K_SIZE, 0);
  126. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  127. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  128. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  129. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  130. flush_tlb();
  131. */
  132. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  133. if (!(current_pcb->flags & PF_KTHREAD))
  134. current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
  135. // 将程序代码拷贝到对应的内存中
  136. memcpy((void *)0x800000, user_level_function, 1024);
  137. // kdebug("program copied!");
  138. return 0;
  139. }
  140. /**
  141. * @brief 内核init进程
  142. *
  143. * @param arg
  144. * @return ul 参数
  145. */
  146. ul initial_kernel_thread(ul arg)
  147. {
  148. // kinfo("initial proc running...\targ:%#018lx", arg);
  149. struct pt_regs *regs;
  150. current_pcb->thread->rip = (ul)ret_from_system_call;
  151. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  152. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  153. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  154. regs = (struct pt_regs *)current_pcb->thread->rsp;
  155. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  156. current_pcb->flags = 0;
  157. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  158. __asm__ __volatile__("movq %1, %%rsp \n\t"
  159. "pushq %2 \n\t"
  160. "jmp do_execve \n\t" ::"D"(regs),
  161. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  162. : "memory");
  163. return 1;
  164. }
  165. /**
  166. * @brief 进程退出时执行的函数
  167. *
  168. * @param code 返回码
  169. * @return ul
  170. */
  171. ul process_thread_do_exit(ul code)
  172. {
  173. kinfo("thread_exiting..., code is %#018lx.", code);
  174. while (1)
  175. ;
  176. }
  177. /**
  178. * @brief 导出内核线程的执行引导程序
  179. * 目的是还原执行现场(在kernel_thread中伪造的)
  180. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  181. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  182. */
  183. extern void kernel_thread_func(void);
  184. __asm__(
  185. "kernel_thread_func: \n\t"
  186. " popq %r15 \n\t"
  187. " popq %r14 \n\t"
  188. " popq %r13 \n\t"
  189. " popq %r12 \n\t"
  190. " popq %r11 \n\t"
  191. " popq %r10 \n\t"
  192. " popq %r9 \n\t"
  193. " popq %r8 \n\t"
  194. " popq %rbx \n\t"
  195. " popq %rcx \n\t"
  196. " popq %rdx \n\t"
  197. " popq %rsi \n\t"
  198. " popq %rdi \n\t"
  199. " popq %rbp \n\t"
  200. " popq %rax \n\t"
  201. " movq %rax, %ds \n\t"
  202. " popq %rax \n\t"
  203. " movq %rax, %es \n\t"
  204. " popq %rax \n\t"
  205. " addq $0x38, %rsp \n\t"
  206. /////////////////////////////////
  207. " movq %rdx, %rdi \n\t"
  208. " callq *%rbx \n\t"
  209. " movq %rax, %rdi \n\t"
  210. " callq process_thread_do_exit \n\t");
  211. /**
  212. * @brief 初始化内核进程
  213. *
  214. * @param fn 目标程序的地址
  215. * @param arg 向目标程序传入的参数
  216. * @param flags
  217. * @return int
  218. */
  219. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  220. {
  221. struct pt_regs regs;
  222. memset(&regs, 0, sizeof(regs));
  223. // 在rbx寄存器中保存进程的入口地址
  224. regs.rbx = (ul)fn;
  225. // 在rdx寄存器中保存传入的参数
  226. regs.rdx = (ul)arg;
  227. regs.ds = KERNEL_DS;
  228. regs.es = KERNEL_DS;
  229. regs.cs = KERNEL_CS;
  230. regs.ss = KERNEL_DS;
  231. // 置位中断使能标志位
  232. regs.rflags = (1 << 9);
  233. // rip寄存器指向内核线程的引导程序
  234. regs.rip = (ul)kernel_thread_func;
  235. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  236. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  237. return do_fork(&regs, flags, 0, 0);
  238. }
  239. /**
  240. * @brief 初始化进程模块
  241. * ☆前置条件:已完成系统调用模块的初始化
  242. */
  243. void process_init()
  244. {
  245. kinfo("Initializing process...");
  246. initial_mm.pgd = (pml4t_t *)global_CR3;
  247. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  248. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  249. initial_mm.data_addr_start = (ul)&_data;
  250. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  251. initial_mm.rodata_addr_start = (ul)&_rodata;
  252. initial_mm.rodata_addr_end = (ul)&_erodata;
  253. initial_mm.brk_start = 0;
  254. initial_mm.brk_end = memory_management_struct.kernel_end;
  255. initial_mm.stack_start = _stack_start;
  256. /*
  257. // 向MSR寄存器组中的 IA32_SYSENTER_CS寄存器写入内核的代码段的地址
  258. wrmsr(0x174, KERNEL_CS);
  259. // 向MSR寄存器组中的 IA32_SYSENTER_ESP寄存器写入内核进程的rbp(在syscall入口中会将rsp减去相应的数值)
  260. wrmsr(0x175, current_pcb->thread->rbp);
  261. // 向MSR寄存器组中的 IA32_SYSENTER_EIP寄存器写入系统调用入口的地址。
  262. wrmsr(0x176, (ul)system_call);
  263. */
  264. // 初始化进程和tss
  265. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  266. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  267. /*
  268. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  269. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  270. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  271. */
  272. // 初始化进程的循环链表
  273. list_init(&initial_proc_union.pcb.list);
  274. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  275. initial_proc_union.pcb.state = PROC_RUNNING;
  276. initial_proc_union.pcb.preempt_count = 0;
  277. // 获取新的进程的pcb
  278. // struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  279. // kdebug("Ready to switch...");
  280. // 切换到新的内核线程
  281. // switch_proc(current_pcb, p);
  282. }
  283. /**
  284. * @brief fork当前进程
  285. *
  286. * @param regs 新的寄存器值
  287. * @param clone_flags 克隆标志
  288. * @param stack_start 堆栈开始地址
  289. * @param stack_size 堆栈大小
  290. * @return unsigned long
  291. */
  292. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  293. {
  294. struct process_control_block *tsk = NULL;
  295. // 获取一个物理页并在这个物理页内初始化pcb
  296. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  297. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  298. memset(tsk, 0, sizeof(struct process_control_block));
  299. // 将当前进程的pcb复制到新的pcb内
  300. *tsk = *current_pcb;
  301. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  302. // 将进程加入循环链表
  303. list_init(&tsk->list);
  304. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  305. tsk->priority = 2;
  306. tsk->preempt_count = 0;
  307. ++(tsk->pid);
  308. tsk->cpu_id = proc_current_cpu_id;
  309. tsk->state = PROC_UNINTERRUPTIBLE;
  310. list_init(&tsk->list);
  311. list_add(&initial_proc_union.pcb.list, &tsk->list);
  312. // 将线程结构体放置在pcb的后面
  313. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  314. memset(thd, 0, sizeof(struct thread_struct));
  315. tsk->thread = thd;
  316. // 将寄存器信息存储到进程的内核栈空间的顶部
  317. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  318. // 设置进程的内核栈
  319. thd->rbp = (ul)tsk + STACK_SIZE;
  320. thd->rip = regs->rip;
  321. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  322. thd->fs = KERNEL_DS;
  323. thd->gs = KERNEL_DS;
  324. // kdebug("do_fork() thd->rsp=%#018lx", thd->rsp);
  325. // 若进程不是内核层的进程,则跳转到ret from system call
  326. if (!(tsk->flags & PF_KTHREAD))
  327. thd->rip = regs->rip = (ul)ret_from_system_call;
  328. else
  329. kdebug("is kernel proc.");
  330. tsk->state = PROC_RUNNING;
  331. sched_cfs_enqueue(tsk);
  332. return 0;
  333. }