process.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <mm/slab.h>
  15. #include <common/spinlock.h>
  16. #include <syscall/syscall.h>
  17. #include <syscall/syscall_num.h>
  18. #include <sched/sched.h>
  19. #include <common/unistd.h>
  20. #include <debug/traceback/traceback.h>
  21. #include <ktest/ktest.h>
  22. // #pragma GCC push_options
  23. // #pragma GCC optimize("O0")
  24. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  25. long process_global_pid = 1; // 系统中最大的pid
  26. extern void system_call(void);
  27. extern void kernel_thread_func(void);
  28. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  29. struct mm_struct initial_mm = {0};
  30. struct thread_struct initial_thread =
  31. {
  32. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  33. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  34. .fs = KERNEL_DS,
  35. .gs = KERNEL_DS,
  36. .cr2 = 0,
  37. .trap_num = 0,
  38. .err_code = 0};
  39. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  40. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  41. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  42. // 为每个核心初始化初始进程的tss
  43. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  44. /**
  45. * @brief 拷贝当前进程的标志位
  46. *
  47. * @param clone_flags 克隆标志位
  48. * @param pcb 新的进程的pcb
  49. * @return uint64_t
  50. */
  51. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  52. /**
  53. * @brief 拷贝当前进程的文件描述符等信息
  54. *
  55. * @param clone_flags 克隆标志位
  56. * @param pcb 新的进程的pcb
  57. * @return uint64_t
  58. */
  59. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  60. /**
  61. * @brief 回收进程的所有文件描述符
  62. *
  63. * @param pcb 要被回收的进程的pcb
  64. * @return uint64_t
  65. */
  66. uint64_t process_exit_files(struct process_control_block *pcb);
  67. /**
  68. * @brief 拷贝当前进程的内存空间分布结构体信息
  69. *
  70. * @param clone_flags 克隆标志位
  71. * @param pcb 新的进程的pcb
  72. * @return uint64_t
  73. */
  74. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  75. /**
  76. * @brief 释放进程的页表
  77. *
  78. * @param pcb 要被释放页表的进程
  79. * @return uint64_t
  80. */
  81. uint64_t process_exit_mm(struct process_control_block *pcb);
  82. /**
  83. * @brief 拷贝当前进程的线程结构体
  84. *
  85. * @param clone_flags 克隆标志位
  86. * @param pcb 新的进程的pcb
  87. * @return uint64_t
  88. */
  89. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  90. void process_exit_thread(struct process_control_block *pcb);
  91. /**
  92. * @brief 切换进程
  93. *
  94. * @param prev 上一个进程的pcb
  95. * @param next 将要切换到的进程的pcb
  96. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  97. * 这里切换fs和gs寄存器
  98. */
  99. #pragma GCC push_options
  100. #pragma GCC optimize("O0")
  101. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  102. {
  103. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  104. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  105. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  106. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  107. __asm__ __volatile__("movq %%fs, %0 \n\t"
  108. : "=a"(prev->thread->fs));
  109. __asm__ __volatile__("movq %%gs, %0 \n\t"
  110. : "=a"(prev->thread->gs));
  111. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  112. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  113. }
  114. #pragma GCC pop_options
  115. /**
  116. * @brief 打开要执行的程序文件
  117. *
  118. * @param path
  119. * @return struct vfs_file_t*
  120. */
  121. struct vfs_file_t *process_open_exec_file(char *path)
  122. {
  123. struct vfs_dir_entry_t *dentry = NULL;
  124. struct vfs_file_t *filp = NULL;
  125. dentry = vfs_path_walk(path, 0);
  126. if (dentry == NULL)
  127. return (void *)-ENOENT;
  128. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  129. return (void *)-ENOTDIR;
  130. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  131. if (filp == NULL)
  132. return (void *)-ENOMEM;
  133. filp->position = 0;
  134. filp->mode = 0;
  135. filp->dEntry = dentry;
  136. filp->mode = ATTR_READ_ONLY;
  137. filp->file_ops = dentry->dir_inode->file_ops;
  138. return filp;
  139. }
  140. /**
  141. * @brief 加载elf格式的程序文件到内存中,并设置regs
  142. *
  143. * @param regs 寄存器
  144. * @param path 文件路径
  145. * @return int
  146. */
  147. static int process_load_elf_file(struct pt_regs *regs, char *path)
  148. {
  149. int retval = 0;
  150. struct vfs_file_t *filp = process_open_exec_file(path);
  151. if ((long)filp <= 0 && (long)filp >= -255)
  152. {
  153. // kdebug("(long)filp=%ld", (long)filp);
  154. return (unsigned long)filp;
  155. }
  156. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  157. memset(buf, 0, PAGE_4K_SIZE);
  158. uint64_t pos = 0;
  159. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  160. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  161. retval = 0;
  162. if (!elf_check(buf))
  163. {
  164. kerror("Not an ELF file: %s", path);
  165. retval = -ENOTSUP;
  166. goto load_elf_failed;
  167. }
  168. #if ARCH(X86_64)
  169. // 暂时只支持64位的文件
  170. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  171. {
  172. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  173. retval = -EUNSUPPORTED;
  174. goto load_elf_failed;
  175. }
  176. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  177. // 暂时只支持AMD64架构
  178. if (ehdr.e_machine != EM_AMD64)
  179. {
  180. kerror("e_machine=%d", ehdr.e_machine);
  181. retval = -EUNSUPPORTED;
  182. goto load_elf_failed;
  183. }
  184. #else
  185. #error Unsupported architecture!
  186. #endif
  187. if (ehdr.e_type != ET_EXEC)
  188. {
  189. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  190. retval = -EUNSUPPORTED;
  191. goto load_elf_failed;
  192. }
  193. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  194. regs->rip = ehdr.e_entry;
  195. current_pcb->mm->code_addr_start = ehdr.e_entry;
  196. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  197. // 将指针移动到program header处
  198. pos = ehdr.e_phoff;
  199. // 读取所有的phdr
  200. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  201. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  202. if ((unsigned long)filp <= 0)
  203. {
  204. kdebug("(unsigned long)filp=%d", (long)filp);
  205. retval = -ENOEXEC;
  206. goto load_elf_failed;
  207. }
  208. Elf64_Phdr *phdr = buf;
  209. // 将程序加载到内存中
  210. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  211. {
  212. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  213. // 不是可加载的段
  214. if (phdr->p_type != PT_LOAD)
  215. continue;
  216. int64_t remain_mem_size = phdr->p_memsz;
  217. int64_t remain_file_size = phdr->p_filesz;
  218. pos = phdr->p_offset;
  219. uint64_t virt_base = phdr->p_vaddr;
  220. while (remain_mem_size > 0)
  221. {
  222. // kdebug("loading...");
  223. int64_t map_size = 0;
  224. if (remain_mem_size > PAGE_2M_SIZE / 2)
  225. {
  226. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  227. int ret = mm_map_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa, VM_USER | VM_ACCESS_FLAGS, NULL);
  228. // 防止内存泄露
  229. if (ret == -EEXIST)
  230. free_pages(Phy_to_2M_Page(pa), 1);
  231. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  232. map_size = PAGE_2M_SIZE;
  233. }
  234. else
  235. {
  236. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  237. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  238. // 循环分配4K大小内存块
  239. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  240. {
  241. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  242. int val = mm_map_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr, VM_USER | VM_ACCESS_FLAGS, NULL);
  243. if (val == -EEXIST)
  244. kfree(phys_2_virt(paddr));
  245. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  246. }
  247. }
  248. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  249. int64_t val = 0;
  250. if (remain_file_size != 0)
  251. {
  252. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  253. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  254. }
  255. if (val < 0)
  256. goto load_elf_failed;
  257. remain_mem_size -= map_size;
  258. remain_file_size -= val;
  259. virt_base += map_size;
  260. }
  261. }
  262. // 分配2MB的栈内存空间
  263. regs->rsp = current_pcb->mm->stack_start;
  264. regs->rbp = current_pcb->mm->stack_start;
  265. {
  266. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  267. int val = mm_map_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, pa, VM_USER | VM_ACCESS_FLAGS, NULL);
  268. if (val == -EEXIST)
  269. free_pages(Phy_to_2M_Page(pa), 1);
  270. }
  271. // 清空栈空间
  272. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  273. load_elf_failed:;
  274. if (buf != NULL)
  275. kfree(buf);
  276. return retval;
  277. }
  278. /**
  279. * @brief 使当前进程去执行新的代码
  280. *
  281. * @param regs 当前进程的寄存器
  282. * @param path 可执行程序的路径
  283. * @param argv 参数列表
  284. * @param envp 环境变量
  285. * @return ul 错误码
  286. */
  287. #pragma GCC push_options
  288. #pragma GCC optimize("O0")
  289. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  290. {
  291. // kdebug("do_execve is running...");
  292. // 当前进程正在与父进程共享地址空间,需要创建
  293. // 独立的地址空间才能使新程序正常运行
  294. if (current_pcb->flags & PF_VFORK)
  295. {
  296. kdebug("proc:%d creating new mem space", current_pcb->pid);
  297. // 分配新的内存空间分布结构体
  298. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  299. memset(new_mms, 0, sizeof(struct mm_struct));
  300. current_pcb->mm = new_mms;
  301. // 分配顶层页表, 并设置顶层页表的物理地址
  302. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  303. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  304. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  305. // 拷贝内核空间的页表指针
  306. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  307. }
  308. // 设置用户栈和用户堆的基地址
  309. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  310. const uint64_t brk_start_addr = 0x700000000000UL;
  311. process_switch_mm(current_pcb);
  312. // 为用户态程序设置地址边界
  313. if (!(current_pcb->flags & PF_KTHREAD))
  314. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  315. current_pcb->mm->code_addr_end = 0;
  316. current_pcb->mm->data_addr_start = 0;
  317. current_pcb->mm->data_addr_end = 0;
  318. current_pcb->mm->rodata_addr_start = 0;
  319. current_pcb->mm->rodata_addr_end = 0;
  320. current_pcb->mm->bss_start = 0;
  321. current_pcb->mm->bss_end = 0;
  322. current_pcb->mm->brk_start = brk_start_addr;
  323. current_pcb->mm->brk_end = brk_start_addr;
  324. current_pcb->mm->stack_start = stack_start_addr;
  325. // 关闭之前的文件描述符
  326. process_exit_files(current_pcb);
  327. // 清除进程的vfork标志位
  328. current_pcb->flags &= ~PF_VFORK;
  329. // 加载elf格式的可执行文件
  330. int tmp = process_load_elf_file(regs, path);
  331. if (tmp < 0)
  332. goto exec_failed;
  333. // 拷贝参数列表
  334. if (argv != NULL)
  335. {
  336. int argc = 0;
  337. // 目标程序的argv基地址指针,最大8个参数
  338. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  339. uint64_t str_addr = (uint64_t)dst_argv;
  340. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  341. {
  342. if (*argv[argc] == NULL)
  343. break;
  344. // 测量参数的长度(最大1023)
  345. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  346. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  347. str_addr -= argv_len;
  348. dst_argv[argc] = (char *)str_addr;
  349. // 字符串加上结尾字符
  350. ((char *)str_addr)[argv_len] = '\0';
  351. }
  352. // 重新设定栈基址,并预留空间防止越界
  353. stack_start_addr = str_addr - 8;
  354. current_pcb->mm->stack_start = stack_start_addr;
  355. regs->rsp = regs->rbp = stack_start_addr;
  356. // 传递参数
  357. regs->rdi = argc;
  358. regs->rsi = (uint64_t)dst_argv;
  359. }
  360. // kdebug("execve ok");
  361. regs->cs = USER_CS | 3;
  362. regs->ds = USER_DS | 3;
  363. regs->ss = USER_DS | 0x3;
  364. regs->rflags = 0x200246;
  365. regs->rax = 1;
  366. regs->es = 0;
  367. return 0;
  368. exec_failed:;
  369. process_do_exit(tmp);
  370. }
  371. #pragma GCC pop_options
  372. /**
  373. * @brief 内核init进程
  374. *
  375. * @param arg
  376. * @return ul 参数
  377. */
  378. #pragma GCC push_options
  379. #pragma GCC optimize("O0")
  380. ul initial_kernel_thread(ul arg)
  381. {
  382. // kinfo("initial proc running...\targ:%#018lx", arg);
  383. fat32_init();
  384. usb_init();
  385. // 对一些组件进行单元测试
  386. uint64_t tpid[] = {
  387. ktest_start(ktest_test_bitree, 0),
  388. ktest_start(ktest_test_kfifo, 0),
  389. ktest_start(ktest_test_mutex, 0),
  390. };
  391. kinfo("Waiting test thread exit...");
  392. // 等待测试进程退出
  393. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  394. waitpid(tpid[i], NULL, NULL);
  395. kinfo("All test done.");
  396. // pid_t p = fork();
  397. // if (p == 0)
  398. // {
  399. // kdebug("in subproc, rflags=%#018lx", get_rflags());
  400. // while (1)
  401. // usleep(1000);
  402. // }
  403. // kdebug("subprocess pid=%d", p);
  404. // 准备切换到用户态
  405. struct pt_regs *regs;
  406. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  407. cli();
  408. current_pcb->thread->rip = (ul)ret_from_system_call;
  409. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  410. current_pcb->thread->fs = USER_DS | 0x3;
  411. barrier();
  412. current_pcb->thread->gs = USER_DS | 0x3;
  413. // 主动放弃内核线程身份
  414. current_pcb->flags &= (~PF_KTHREAD);
  415. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  416. regs = (struct pt_regs *)current_pcb->thread->rsp;
  417. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  418. current_pcb->flags = 0;
  419. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  420. // 加载用户态程序:shell.elf
  421. char init_path[] = "/shell.elf";
  422. uint64_t addr = (uint64_t)&init_path;
  423. __asm__ __volatile__("movq %1, %%rsp \n\t"
  424. "pushq %2 \n\t"
  425. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  426. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  427. : "memory");
  428. return 1;
  429. }
  430. #pragma GCC pop_options
  431. /**
  432. * @brief 当子进程退出后向父进程发送通知
  433. *
  434. */
  435. void process_exit_notify()
  436. {
  437. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  438. }
  439. /**
  440. * @brief 进程退出时执行的函数
  441. *
  442. * @param code 返回码
  443. * @return ul
  444. */
  445. ul process_do_exit(ul code)
  446. {
  447. // kinfo("process exiting..., code is %ld.", (long)code);
  448. cli();
  449. struct process_control_block *pcb = current_pcb;
  450. // 进程退出时释放资源
  451. process_exit_files(pcb);
  452. process_exit_thread(pcb);
  453. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  454. pcb->state = PROC_ZOMBIE;
  455. pcb->exit_code = code;
  456. sti();
  457. process_exit_notify();
  458. sched_cfs();
  459. while (1)
  460. pause();
  461. }
  462. /**
  463. * @brief 初始化内核进程
  464. *
  465. * @param fn 目标程序的地址
  466. * @param arg 向目标程序传入的参数
  467. * @param flags
  468. * @return int
  469. */
  470. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  471. {
  472. struct pt_regs regs;
  473. barrier();
  474. memset(&regs, 0, sizeof(regs));
  475. barrier();
  476. // 在rbx寄存器中保存进程的入口地址
  477. regs.rbx = (ul)fn;
  478. // 在rdx寄存器中保存传入的参数
  479. regs.rdx = (ul)arg;
  480. barrier();
  481. regs.ds = KERNEL_DS;
  482. barrier();
  483. regs.es = KERNEL_DS;
  484. barrier();
  485. regs.cs = KERNEL_CS;
  486. barrier();
  487. regs.ss = KERNEL_DS;
  488. barrier();
  489. // 置位中断使能标志位
  490. regs.rflags = (1 << 9);
  491. barrier();
  492. // rip寄存器指向内核线程的引导程序
  493. regs.rip = (ul)kernel_thread_func;
  494. barrier();
  495. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  496. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  497. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  498. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  499. }
  500. /**
  501. * @brief 初始化进程模块
  502. * ☆前置条件:已完成系统调用模块的初始化
  503. */
  504. void process_init()
  505. {
  506. kinfo("Initializing process...");
  507. initial_mm.pgd = (pml4t_t *)get_CR3();
  508. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  509. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  510. initial_mm.data_addr_start = (ul)&_data;
  511. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  512. initial_mm.rodata_addr_start = (ul)&_rodata;
  513. initial_mm.rodata_addr_end = (ul)&_erodata;
  514. initial_mm.bss_start = (uint64_t)&_bss;
  515. initial_mm.bss_end = (uint64_t)&_ebss;
  516. initial_mm.brk_start = memory_management_struct.start_brk;
  517. initial_mm.brk_end = current_pcb->addr_limit;
  518. initial_mm.stack_start = _stack_start;
  519. initial_mm.vmas = NULL;
  520. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  521. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  522. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  523. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  524. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  525. for (int i = 256; i < 512; ++i)
  526. {
  527. uint64_t *tmp = idle_pml4t_vaddr + i;
  528. barrier();
  529. if (*tmp == 0)
  530. {
  531. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  532. barrier();
  533. memset(pdpt, 0, PAGE_4K_SIZE);
  534. barrier();
  535. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  536. }
  537. }
  538. barrier();
  539. flush_tlb();
  540. /*
  541. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  542. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  543. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  544. */
  545. // 初始化pid的写锁
  546. spin_init(&process_global_pid_write_lock);
  547. // 初始化进程的循环链表
  548. list_init(&initial_proc_union.pcb.list);
  549. barrier();
  550. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  551. barrier();
  552. initial_proc_union.pcb.state = PROC_RUNNING;
  553. initial_proc_union.pcb.preempt_count = 0;
  554. initial_proc_union.pcb.cpu_id = 0;
  555. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  556. current_pcb->virtual_runtime = (1UL << 60);
  557. }
  558. /**
  559. * @brief fork当前进程
  560. *
  561. * @param regs 新的寄存器值
  562. * @param clone_flags 克隆标志
  563. * @param stack_start 堆栈开始地址
  564. * @param stack_size 堆栈大小
  565. * @return unsigned long
  566. */
  567. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  568. {
  569. int retval = 0;
  570. struct process_control_block *tsk = NULL;
  571. // 为新的进程分配栈空间,并将pcb放置在底部
  572. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  573. barrier();
  574. if (tsk == NULL)
  575. {
  576. retval = -ENOMEM;
  577. return retval;
  578. }
  579. barrier();
  580. memset(tsk, 0, sizeof(struct process_control_block));
  581. io_mfence();
  582. // 将当前进程的pcb复制到新的pcb内
  583. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  584. io_mfence();
  585. // 初始化进程的循环链表结点
  586. list_init(&tsk->list);
  587. io_mfence();
  588. // 判断是否为内核态调用fork
  589. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  590. tsk->flags |= PF_KFORK;
  591. tsk->priority = 2;
  592. tsk->preempt_count = 0;
  593. // 增加全局的pid并赋值给新进程的pid
  594. spin_lock(&process_global_pid_write_lock);
  595. tsk->pid = process_global_pid++;
  596. barrier();
  597. // 加入到进程链表中
  598. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  599. barrier();
  600. initial_proc_union.pcb.next_pcb = tsk;
  601. barrier();
  602. tsk->parent_pcb = current_pcb;
  603. barrier();
  604. spin_unlock(&process_global_pid_write_lock);
  605. tsk->cpu_id = proc_current_cpu_id;
  606. tsk->state = PROC_UNINTERRUPTIBLE;
  607. tsk->parent_pcb = current_pcb;
  608. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  609. barrier();
  610. list_init(&tsk->list);
  611. retval = -ENOMEM;
  612. // 拷贝标志位
  613. if (process_copy_flags(clone_flags, tsk))
  614. goto copy_flags_failed;
  615. // 拷贝内存空间分布结构体
  616. if (process_copy_mm(clone_flags, tsk))
  617. goto copy_mm_failed;
  618. // 拷贝文件
  619. if (process_copy_files(clone_flags, tsk))
  620. goto copy_files_failed;
  621. // 拷贝线程结构体
  622. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  623. goto copy_thread_failed;
  624. // 拷贝成功
  625. retval = tsk->pid;
  626. tsk->flags &= ~PF_KFORK;
  627. // 唤醒进程
  628. process_wakeup(tsk);
  629. return retval;
  630. copy_thread_failed:;
  631. // 回收线程
  632. process_exit_thread(tsk);
  633. copy_files_failed:;
  634. // 回收文件
  635. process_exit_files(tsk);
  636. copy_mm_failed:;
  637. // 回收内存空间分布结构体
  638. process_exit_mm(tsk);
  639. copy_flags_failed:;
  640. kfree(tsk);
  641. return retval;
  642. return 0;
  643. }
  644. /**
  645. * @brief 根据pid获取进程的pcb
  646. *
  647. * @param pid
  648. * @return struct process_control_block*
  649. */
  650. struct process_control_block *process_get_pcb(long pid)
  651. {
  652. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  653. // 使用蛮力法搜索指定pid的pcb
  654. // todo: 使用哈希表来管理pcb
  655. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  656. {
  657. if (pcb->pid == pid)
  658. return pcb;
  659. }
  660. return NULL;
  661. }
  662. /**
  663. * @brief 将进程加入到调度器的就绪队列中
  664. *
  665. * @param pcb 进程的pcb
  666. */
  667. void process_wakeup(struct process_control_block *pcb)
  668. {
  669. pcb->state = PROC_RUNNING;
  670. sched_cfs_enqueue(pcb);
  671. }
  672. /**
  673. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  674. *
  675. * @param pcb 进程的pcb
  676. */
  677. void process_wakeup_immediately(struct process_control_block *pcb)
  678. {
  679. pcb->state = PROC_RUNNING;
  680. sched_cfs_enqueue(pcb);
  681. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  682. current_pcb->flags |= PF_NEED_SCHED;
  683. }
  684. /**
  685. * @brief 拷贝当前进程的标志位
  686. *
  687. * @param clone_flags 克隆标志位
  688. * @param pcb 新的进程的pcb
  689. * @return uint64_t
  690. */
  691. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  692. {
  693. if (clone_flags & CLONE_VM)
  694. pcb->flags |= PF_VFORK;
  695. return 0;
  696. }
  697. /**
  698. * @brief 拷贝当前进程的文件描述符等信息
  699. *
  700. * @param clone_flags 克隆标志位
  701. * @param pcb 新的进程的pcb
  702. * @return uint64_t
  703. */
  704. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  705. {
  706. int retval = 0;
  707. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  708. // 文件描述符已经在复制pcb时被拷贝
  709. if (clone_flags & CLONE_FS)
  710. return retval;
  711. // 为新进程拷贝新的文件描述符
  712. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  713. {
  714. if (current_pcb->fds[i] == NULL)
  715. continue;
  716. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  717. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  718. }
  719. return retval;
  720. }
  721. /**
  722. * @brief 回收进程的所有文件描述符
  723. *
  724. * @param pcb 要被回收的进程的pcb
  725. * @return uint64_t
  726. */
  727. uint64_t process_exit_files(struct process_control_block *pcb)
  728. {
  729. // 不与父进程共享文件描述符
  730. if (!(pcb->flags & PF_VFORK))
  731. {
  732. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  733. {
  734. if (pcb->fds[i] == NULL)
  735. continue;
  736. kfree(pcb->fds[i]);
  737. }
  738. }
  739. // 清空当前进程的文件描述符列表
  740. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  741. }
  742. /**
  743. * @brief 拷贝当前进程的内存空间分布结构体信息
  744. *
  745. * @param clone_flags 克隆标志位
  746. * @param pcb 新的进程的pcb
  747. * @return uint64_t
  748. */
  749. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  750. {
  751. int retval = 0;
  752. // 与父进程共享内存空间
  753. if (clone_flags & CLONE_VM)
  754. {
  755. pcb->mm = current_pcb->mm;
  756. return retval;
  757. }
  758. // 分配新的内存空间分布结构体
  759. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  760. memset(new_mms, 0, sizeof(struct mm_struct));
  761. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  762. new_mms->vmas = NULL;
  763. pcb->mm = new_mms;
  764. // 分配顶层页表, 并设置顶层页表的物理地址
  765. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  766. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  767. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  768. // 拷贝内核空间的页表指针
  769. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  770. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  771. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  772. // 拷贝用户空间的vma
  773. struct vm_area_struct *vma = current_pcb->mm->vmas;
  774. while (vma != NULL)
  775. {
  776. if (vma->vm_end > USER_MAX_LINEAR_ADDR)
  777. {
  778. vma = vma->vm_next;
  779. continue;
  780. }
  781. int64_t vma_size = vma->vm_end - vma->vm_start;
  782. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  783. if (vma_size > PAGE_2M_SIZE / 2)
  784. {
  785. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  786. for (int i = 0; i < page_to_alloc; ++i)
  787. {
  788. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  789. mm_map_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, pa, vma->vm_flags, vma->vm_ops);
  790. // kdebug("phys_2_virt(pa)=%#018lx, vaddr=%#018lx", phys_2_virt(pa), vma->vm_start + i * PAGE_2M_SIZE);
  791. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  792. vma_size -= PAGE_2M_SIZE;
  793. }
  794. }
  795. else
  796. {
  797. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  798. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  799. mm_map_vma(new_mms, vma->vm_start, map_size, virt_2_phys(va), vma->vm_flags, vma->vm_ops);
  800. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  801. }
  802. vma = vma->vm_next;
  803. }
  804. return retval;
  805. }
  806. /**
  807. * @brief 释放进程的页表
  808. *
  809. * @param pcb 要被释放页表的进程
  810. * @return uint64_t
  811. */
  812. uint64_t process_exit_mm(struct process_control_block *pcb)
  813. {
  814. if (pcb->flags & CLONE_VM)
  815. return 0;
  816. if (pcb->mm == NULL)
  817. {
  818. kdebug("pcb->mm==NULL");
  819. return 0;
  820. }
  821. if (pcb->mm->pgd == NULL)
  822. {
  823. kdebug("pcb->mm->pgd==NULL");
  824. return 0;
  825. }
  826. // // 获取顶层页表
  827. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  828. // 循环释放VMA中的内存
  829. struct vm_area_struct *vma = pcb->mm->vmas;
  830. while (vma != NULL)
  831. {
  832. struct vm_area_struct *cur_vma = vma;
  833. vma = cur_vma->vm_next;
  834. uint64_t pa;
  835. mm_umap_vma(pcb->mm, cur_vma, &pa);
  836. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  837. // 释放内存
  838. switch (size)
  839. {
  840. case PAGE_2M_SIZE:
  841. free_pages(Phy_to_2M_Page(pa), 1);
  842. break;
  843. case PAGE_4K_SIZE:
  844. kfree(phys_2_virt(pa));
  845. break;
  846. default:
  847. break;
  848. }
  849. vm_area_del(cur_vma);
  850. kfree(cur_vma);
  851. }
  852. // 释放顶层页表
  853. kfree(current_pgd);
  854. if (unlikely(pcb->mm->vmas != NULL))
  855. {
  856. kwarn("pcb.mm.vmas!=NULL");
  857. }
  858. // 释放内存空间分布结构体
  859. kfree(pcb->mm);
  860. return 0;
  861. }
  862. /**
  863. * @brief 重写内核栈中的rbp地址
  864. *
  865. * @param new_regs 子进程的reg
  866. * @param new_pcb 子进程的pcb
  867. * @return int
  868. */
  869. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  870. {
  871. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  872. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  873. uint64_t *rbp = &new_regs->rbp;
  874. uint64_t *tmp = rbp;
  875. // 超出内核栈范围
  876. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  877. return 0;
  878. while (1)
  879. {
  880. // 计算delta
  881. uint64_t delta = old_top - *rbp;
  882. // 计算新的rbp值
  883. uint64_t newVal = new_top - delta;
  884. // 新的值不合法
  885. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  886. break;
  887. // 将新的值写入对应位置
  888. *rbp = newVal;
  889. // 跳转栈帧
  890. rbp = (uint64_t *)*rbp;
  891. }
  892. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  893. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  894. return 0;
  895. }
  896. /**
  897. * @brief 拷贝当前进程的线程结构体
  898. *
  899. * @param clone_flags 克隆标志位
  900. * @param pcb 新的进程的pcb
  901. * @return uint64_t
  902. */
  903. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  904. {
  905. // 将线程结构体放置在pcb后方
  906. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  907. memset(thd, 0, sizeof(struct thread_struct));
  908. pcb->thread = thd;
  909. struct pt_regs *child_regs = NULL;
  910. // 拷贝栈空间
  911. if (pcb->flags & PF_KFORK) // 内核态下的fork
  912. {
  913. // 内核态下则拷贝整个内核栈
  914. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  915. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  916. memcpy(child_regs, (void *)current_regs, size);
  917. barrier();
  918. // 然后重写新的栈中,每个栈帧的rbp值
  919. process_rewrite_rbp(child_regs, pcb);
  920. }
  921. else
  922. {
  923. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  924. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  925. barrier();
  926. child_regs->rsp = stack_start;
  927. }
  928. // 设置子进程的返回值为0
  929. child_regs->rax = 0;
  930. if (pcb->flags & PF_KFORK)
  931. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  932. else
  933. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  934. // 设置新的内核线程开始执行的时候的rsp
  935. thd->rsp = (uint64_t)child_regs;
  936. thd->fs = current_pcb->thread->fs;
  937. thd->gs = current_pcb->thread->gs;
  938. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  939. if (pcb->flags & PF_KFORK)
  940. thd->rip = (uint64_t)ret_from_system_call;
  941. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  942. thd->rip = (uint64_t)kernel_thread_func;
  943. else
  944. thd->rip = (uint64_t)ret_from_system_call;
  945. return 0;
  946. }
  947. /**
  948. * @brief todo: 回收线程结构体
  949. *
  950. * @param pcb
  951. */
  952. void process_exit_thread(struct process_control_block *pcb)
  953. {
  954. }
  955. // #pragma GCC pop_options