process.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. void test_mm()
  6. {
  7. kinfo("Testing memory management unit...");
  8. //printk("bmp[0]:%#018x\tbmp[1]%#018lx\n", *memory_management_struct.bmp, *(memory_management_struct.bmp + 1));
  9. kinfo("Try to allocate 64 memory pages.");
  10. struct Page *page = alloc_pages(ZONE_NORMAL, 64, PAGE_PGT_MAPPED | PAGE_ACTIVE | PAGE_KERNEL);
  11. for (int i = 0; i <= 65; ++i)
  12. {
  13. printk("page%d\tattr:%#018lx\tphys_addr:%#018lx\t", i, page->attr, page->addr_phys);
  14. ++page;
  15. if (((i + 1) % 2) == 0)
  16. printk("\n");
  17. }
  18. printk("bmp[0]:%#018x\tbmp[1]%#018lx\n", *(memory_management_struct.bmp), *(memory_management_struct.bmp + 1));
  19. }
  20. /**
  21. * @brief 切换进程
  22. *
  23. * @param prev 上一个进程的pcb
  24. * @param next 将要切换到的进程的pcb
  25. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  26. * 这里切换fs和gs寄存器
  27. */
  28. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  29. {
  30. initial_tss[0].rsp0 = next->thread->rbp;
  31. set_TSS64(initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  32. initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  33. __asm__ __volatile__("movq %%fs, %0 \n\t"
  34. : "=a"(prev->thread->fs));
  35. __asm__ __volatile__("movq %%gs, %0 \n\t"
  36. : "=a"(prev->thread->gs));
  37. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  38. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  39. printk("prev->thread->rbp=%#018lx\n", prev->thread->rbp);
  40. printk("next->thread->rbp=%#018lx\n", next->thread->rbp);
  41. }
  42. /**
  43. * @brief 内核init进程
  44. *
  45. * @param arg
  46. * @return ul 参数
  47. */
  48. ul init(ul arg)
  49. {
  50. printk("initial proc running...\targ:%#018lx\n", arg);
  51. return 1;
  52. }
  53. /**
  54. * @brief 进程退出时执行的函数
  55. *
  56. * @param code 返回码
  57. * @return ul
  58. */
  59. ul do_exit(ul code)
  60. {
  61. kinfo("thread_exiting..., code is %#018lx.", code);
  62. while (1)
  63. ;
  64. }
  65. /**
  66. * @brief 导出内核线程的执行引导程序
  67. * 目的是还原执行现场(在kernel_thread中伪造的)
  68. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  69. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  70. */
  71. extern void kernel_thread_func(void);
  72. __asm__(
  73. "kernel_thread_func: \n\t"
  74. " popq %r15 \n\t"
  75. " popq %r14 \n\t"
  76. " popq %r13 \n\t"
  77. " popq %r12 \n\t"
  78. " popq %r11 \n\t"
  79. " popq %r10 \n\t"
  80. " popq %r9 \n\t"
  81. " popq %r8 \n\t"
  82. " popq %rbx \n\t" // 在kernel_thread中,将程序执行地址保存在了rbx
  83. " popq %rcx \n\t"
  84. " popq %rdx \n\t"
  85. " popq %rsi \n\t"
  86. " popq %rdi \n\t"
  87. " popq %rbp \n\t"
  88. " popq %rax \n\t"
  89. " movq %rax, %ds\n\t"
  90. " popq %rax \n\t"
  91. " movq %rax, %es\n\t"
  92. " popq %rax \n\t"
  93. " addq $0x38, %rsp \n\t"
  94. // ======================= //
  95. " movq %rdx, %rdi \n\t"
  96. " callq *%rbx \n\t"
  97. " movq %rax, %rdi \n\t"
  98. " callq do_exit \n\t");
  99. /**
  100. * @brief 初始化内核进程
  101. *
  102. * @param fn 目标程序的地址
  103. * @param arg 向目标程序传入的参数
  104. * @param flags
  105. * @return int
  106. */
  107. int kernel_thread(unsigned long (* fn)(unsigned long), unsigned long arg, unsigned long flags)
  108. {
  109. //struct Page *page = alloc_pages(ZONE_NORMAL, 2, PAGE_PGT_MAPPED | PAGE_ACTIVE | PAGE_KERNEL);
  110. struct pt_regs regs;
  111. memset(&regs, 0, sizeof(regs));
  112. // 在rbx寄存器中保存进程的入口地址
  113. regs.rbx = (ul)fn;
  114. // 在rdx寄存器中保存传入的参数
  115. regs.rdx = (ul)arg;
  116. regs.ds = KERNEL_DS;
  117. regs.es = KERNEL_DS;
  118. regs.cs = KERNEL_CS;
  119. regs.ss = KERNEL_DS;
  120. // 置位中断使能标志位
  121. regs.rflags = (1 << 9);
  122. // rip寄存器指向内核线程的引导程序
  123. regs.rip = (ul)kernel_thread_func;
  124. return (int)do_fork(&regs, flags, 0, 0);
  125. }
  126. void process_init()
  127. {
  128. initial_mm.pgd = (pml4t_t *)global_CR3;
  129. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  130. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  131. initial_mm.data_addr_start = (ul)&_data;
  132. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  133. initial_mm.rodata_addr_start = (ul)&_rodata;
  134. initial_mm.rodata_addr_end = (ul)&_erodata;
  135. initial_mm.brk_start = 0;
  136. initial_mm.brk_end = memory_management_struct.kernel_end;
  137. initial_mm.stack_start = _stack_start;
  138. // 初始化进程和tss
  139. set_TSS64(initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  140. initial_tss[0].rsp0 = initial_thread.rbp;
  141. // 初始化进程的循环链表
  142. list_init(&initial_proc_union.pcb.list);
  143. test_mm();
  144. kernel_thread(init, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  145. initial_proc_union.pcb.state = PROC_RUNNING;
  146. // 获取新的进程的pcb
  147. struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  148. switch_proc(current_pcb, p);
  149. }
  150. /**
  151. * @brief fork当前进程
  152. *
  153. * @param regs 新的寄存器值
  154. * @param clone_flags 克隆标志
  155. * @param stack_start 堆栈开始地址
  156. * @param stack_size 堆栈大小
  157. * @return unsigned long
  158. */
  159. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  160. {
  161. //printk("bmp[0]:%#018x\tbmp[1]%#018lx\n", *(memory_management_struct.bmp), *(memory_management_struct.bmp + 1));
  162. struct process_control_block *tsk = NULL;
  163. //printk("alloc_pages,bmp %#018lx\n", *(memory_management_struct.bmp));
  164. // 获取一个物理页并在这个物理页内初始化pcb
  165. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_ACTIVE | PAGE_KERNEL);
  166. printk("22\n");
  167. //kinfo("alloc_pages,bmp:%#018lx", *(memory_management_struct.bmp));
  168. tsk = (struct process_control_block *)((unsigned long)(p->addr_phys) + (0xffff800000000000UL));
  169. //printk("phys_addr\t%#018lx\n",p->addr_phys);
  170. printk("virt_addr\t%#018lx\n",(unsigned long)(p->addr_phys) + (0xffff800000000000UL));
  171. //kinfo("pcb addr:%#018lx", (ul)tsk);
  172. memset(tsk, 0, sizeof(*tsk));
  173. printk("33\n");
  174. // 将当前进程的pcb复制到新的pcb内
  175. *tsk = *current_pcb;
  176. // 将进程加入循环链表
  177. list_init(&tsk->list);
  178. printk("44\n");
  179. list_append(&initial_proc_union.pcb.list, &tsk->list);
  180. printk("5\n");
  181. ++(tsk->pid);
  182. tsk->state = PROC_UNINTERRUPTIBLE;
  183. // 将线程结构体放置在pcb的后面
  184. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  185. tsk->thread = thd;
  186. // 将寄存器信息存储到进程的内核栈空间的顶部
  187. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  188. // 设置进程的内核栈
  189. thd->rbp = (ul)tsk + STACK_SIZE;
  190. thd->rip = regs->rip;
  191. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  192. // 若进程不是内核层的进程,则跳转到ret from intr
  193. if (!(tsk->flags & PF_KTHREAD))
  194. thd->rip = regs->rip = (ul)ret_from_intr;
  195. tsk->state = PROC_RUNNING;
  196. printk("1111\n");
  197. return 0;
  198. }