mm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. #include "mm.h"
  2. #include "mm-types.h"
  3. #include "slab.h"
  4. #include <common/printk.h>
  5. #include <common/kprint.h>
  6. #include <driver/multiboot2/multiboot2.h>
  7. #include <process/process.h>
  8. #include <common/compiler.h>
  9. #include <common/errno.h>
  10. #include <debug/traceback/traceback.h>
  11. uint64_t mm_Total_Memory = 0;
  12. uint64_t mm_total_2M_pages = 0;
  13. struct mm_struct initial_mm = {0};
  14. struct memory_desc memory_management_struct = {{0}, 0};
  15. /**
  16. * @brief 从页表中获取pdt页表项的内容
  17. *
  18. * @param proc_page_table_addr 页表的地址
  19. * @param is_phys 页表地址是否为物理地址
  20. * @param virt_addr_start 要清除的虚拟地址的起始地址
  21. * @param length 要清除的区域的长度
  22. * @param clear 是否清除标志位
  23. */
  24. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  25. /**
  26. * @brief 检查页表是否存在不为0的页表项
  27. *
  28. * @param ptr 页表基指针
  29. * @return int8_t 存在 -> 1
  30. * 不存在 -> 0
  31. */
  32. int8_t mm_check_page_table(uint64_t *ptr)
  33. {
  34. for (int i = 0; i < 512; ++i, ++ptr)
  35. {
  36. if (*ptr != 0)
  37. return 1;
  38. }
  39. return 0;
  40. }
  41. void mm_init()
  42. {
  43. kinfo("Initializing memory management unit...");
  44. // 设置内核程序不同部分的起止地址
  45. memory_management_struct.kernel_code_start = (ul)&_text;
  46. memory_management_struct.kernel_code_end = (ul)&_etext;
  47. memory_management_struct.kernel_data_end = (ul)&_edata;
  48. memory_management_struct.rodata_end = (ul)&_erodata;
  49. memory_management_struct.start_brk = (ul)&_end;
  50. struct multiboot_mmap_entry_t mb2_mem_info[512];
  51. int count;
  52. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  53. io_mfence();
  54. for (int i = 0; i < count; ++i)
  55. {
  56. io_mfence();
  57. // 可用的内存
  58. if (mb2_mem_info->type == 1)
  59. mm_Total_Memory += mb2_mem_info->len;
  60. kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
  61. // 保存信息到mms
  62. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  63. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  64. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  65. memory_management_struct.len_e820 = i;
  66. // 脏数据
  67. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  68. break;
  69. }
  70. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", mm_Total_Memory);
  71. // 计算有效内存页数
  72. io_mfence();
  73. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  74. {
  75. if (memory_management_struct.e820[i].type != 1)
  76. continue;
  77. io_mfence();
  78. // 将内存段的起始物理地址按照2M进行对齐
  79. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  80. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  81. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  82. // 内存段不可用
  83. if (addr_end <= addr_start)
  84. continue;
  85. io_mfence();
  86. mm_total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  87. }
  88. kinfo("Total amounts of 2M pages : %ld.", mm_total_2M_pages);
  89. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  90. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  91. // 初始化mms的bitmap
  92. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  93. io_mfence();
  94. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  95. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  96. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  97. io_mfence();
  98. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  99. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  100. io_mfence();
  101. // 初始化内存页结构
  102. // 将页结构映射于bmp之后
  103. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  104. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  105. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  106. // 将pages_struct全部清空,以备后续初始化
  107. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  108. io_mfence();
  109. // 初始化内存区域
  110. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  111. io_mfence();
  112. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  113. memory_management_struct.count_zones = 0;
  114. io_mfence();
  115. // zones-struct 成员变量暂时按照5个来计算
  116. memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  117. io_mfence();
  118. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  119. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  120. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  121. {
  122. io_mfence();
  123. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  124. continue;
  125. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  126. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  127. if (addr_end <= addr_start)
  128. continue;
  129. // zone init
  130. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  131. ++memory_management_struct.count_zones;
  132. z->zone_addr_start = addr_start;
  133. z->zone_addr_end = addr_end;
  134. z->zone_length = addr_end - addr_start;
  135. z->count_pages_using = 0;
  136. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  137. z->total_pages_link = 0;
  138. z->attr = 0;
  139. z->gmd_struct = &memory_management_struct;
  140. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  141. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  142. // 初始化页
  143. struct Page *p = z->pages_group;
  144. for (int j = 0; j < z->count_pages; ++j, ++p)
  145. {
  146. p->zone = z;
  147. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  148. p->attr = 0;
  149. p->ref_counts = 0;
  150. p->age = 0;
  151. // 将bmp中对应的位 复位
  152. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  153. }
  154. }
  155. // 初始化0~2MB的物理页
  156. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  157. io_mfence();
  158. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  159. memory_management_struct.pages_struct->addr_phys = 0UL;
  160. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  161. memory_management_struct.pages_struct->ref_counts = 1;
  162. memory_management_struct.pages_struct->age = 0;
  163. // 将第0页的标志位给置上
  164. //*(memory_management_struct.bmp) |= 1UL;
  165. // 计算zone结构体的总长度(按照64位对齐)
  166. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  167. ZONE_DMA_INDEX = 0;
  168. ZONE_NORMAL_INDEX = 0;
  169. ZONE_UNMAPPED_INDEX = 0;
  170. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  171. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  172. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  173. // 初始化内存管理单元结构所占的物理页的结构体
  174. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  175. // kdebug("mms_max_page=%ld", mms_max_page);
  176. struct Page *tmp_page = NULL;
  177. ul page_num;
  178. // 第0个page已经在上方配置
  179. for (ul j = 1; j <= mms_max_page; ++j)
  180. {
  181. barrier();
  182. tmp_page = memory_management_struct.pages_struct + j;
  183. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  184. barrier();
  185. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  186. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  187. ++tmp_page->zone->count_pages_using;
  188. --tmp_page->zone->count_pages_free;
  189. }
  190. kinfo("Memory management unit initialize complete!");
  191. flush_tlb();
  192. // todo: 在这里增加代码,暂时停止视频输出,否则可能会导致图像数据写入slab的区域,从而造成异常
  193. // 初始化slab内存池
  194. slab_init();
  195. page_table_init();
  196. }
  197. /**
  198. * @brief 初始化内存页
  199. *
  200. * @param page 内存页结构体
  201. * @param flags 标志位
  202. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  203. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  204. * @return unsigned long
  205. */
  206. unsigned long page_init(struct Page *page, ul flags)
  207. {
  208. page->attr |= flags;
  209. // 若页面的引用计数为0或是共享页,增加引用计数
  210. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  211. {
  212. ++page->ref_counts;
  213. barrier();
  214. ++page->zone->total_pages_link;
  215. }
  216. page->anon_vma = NULL;
  217. spin_init(&(page->op_lock));
  218. return 0;
  219. }
  220. /**
  221. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  222. *
  223. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  224. * @param num 需要申请的连续内存页的数量 num<64
  225. * @param flags 将页面属性设置成flag
  226. * @return struct Page*
  227. */
  228. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  229. {
  230. ul zone_start = 0, zone_end = 0;
  231. if (num >= 64 && num <= 0)
  232. {
  233. kerror("alloc_pages(): num is invalid.");
  234. return NULL;
  235. }
  236. ul attr = flags;
  237. switch (zone_select)
  238. {
  239. case ZONE_DMA:
  240. // DMA区域
  241. zone_start = 0;
  242. zone_end = ZONE_DMA_INDEX;
  243. attr |= PAGE_PGT_MAPPED;
  244. break;
  245. case ZONE_NORMAL:
  246. zone_start = ZONE_DMA_INDEX;
  247. zone_end = ZONE_NORMAL_INDEX;
  248. attr |= PAGE_PGT_MAPPED;
  249. break;
  250. case ZONE_UNMAPPED_IN_PGT:
  251. zone_start = ZONE_NORMAL_INDEX;
  252. zone_end = ZONE_UNMAPPED_INDEX;
  253. attr = 0;
  254. break;
  255. default:
  256. kerror("In alloc_pages: param: zone_select incorrect.");
  257. // 返回空
  258. return NULL;
  259. break;
  260. }
  261. for (int i = zone_start; i <= zone_end; ++i)
  262. {
  263. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  264. continue;
  265. struct Zone *z = memory_management_struct.zones_struct + i;
  266. // 区域对应的起止页号
  267. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  268. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  269. ul tmp = 64 - page_start % 64;
  270. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  271. {
  272. // 按照bmp中的每一个元素进行查找
  273. // 先将p定位到bmp的起始元素
  274. ul *p = memory_management_struct.bmp + (j >> 6);
  275. ul shift = j % 64;
  276. ul tmp_num = ((1UL << num) - 1);
  277. for (ul k = shift; k < 64; ++k)
  278. {
  279. // 寻找连续num个空页
  280. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  281. {
  282. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  283. for (ul l = 0; l < num; ++l)
  284. {
  285. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  286. // 分配页面,手动配置属性及计数器
  287. // 置位bmp
  288. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  289. ++(z->count_pages_using);
  290. --(z->count_pages_free);
  291. page_init(x, attr);
  292. }
  293. // 成功分配了页面,返回第一个页面的指针
  294. // kwarn("start page num=%d\n", start_page_num);
  295. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  296. }
  297. }
  298. }
  299. }
  300. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, mm_total_2M_pages=%d", zone_select, num, mm_total_2M_pages);
  301. return NULL;
  302. }
  303. /**
  304. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  305. *
  306. * @param p 物理页结构体
  307. * @return unsigned long
  308. */
  309. unsigned long page_clean(struct Page *p)
  310. {
  311. --p->ref_counts;
  312. --p->zone->total_pages_link;
  313. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  314. if (!p->ref_counts)
  315. {
  316. p->attr &= PAGE_PGT_MAPPED;
  317. }
  318. return 0;
  319. }
  320. /**
  321. * @brief Get the page's attr
  322. *
  323. * @param page 内存页结构体
  324. * @return ul 属性
  325. */
  326. ul get_page_attr(struct Page *page)
  327. {
  328. if (page == NULL)
  329. {
  330. kBUG("get_page_attr(): page == NULL");
  331. return EPAGE_NULL;
  332. }
  333. else
  334. return page->attr;
  335. }
  336. /**
  337. * @brief Set the page's attr
  338. *
  339. * @param page 内存页结构体
  340. * @param flags 属性
  341. * @return ul 错误码
  342. */
  343. ul set_page_attr(struct Page *page, ul flags)
  344. {
  345. if (page == NULL)
  346. {
  347. kBUG("get_page_attr(): page == NULL");
  348. return EPAGE_NULL;
  349. }
  350. else
  351. {
  352. page->attr = flags;
  353. return 0;
  354. }
  355. }
  356. /**
  357. * @brief 释放连续number个内存页
  358. *
  359. * @param page 第一个要被释放的页面的结构体
  360. * @param number 要释放的内存页数量 number<64
  361. */
  362. void free_pages(struct Page *page, int number)
  363. {
  364. if (page == NULL)
  365. {
  366. kerror("free_pages() page is invalid.");
  367. return;
  368. }
  369. if (number >= 64 || number <= 0)
  370. {
  371. kerror("free_pages(): number %d is invalid.", number);
  372. return;
  373. }
  374. ul page_num;
  375. for (int i = 0; i < number; ++i, ++page)
  376. {
  377. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  378. // 复位bmp
  379. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  380. // 更新计数器
  381. --page->zone->count_pages_using;
  382. ++page->zone->count_pages_free;
  383. page->attr = 0;
  384. }
  385. return;
  386. }
  387. /**
  388. * @brief 重新初始化页表的函数
  389. * 将所有物理页映射到线性地址空间
  390. */
  391. void page_table_init()
  392. {
  393. kinfo("Re-Initializing page table...");
  394. ul *global_CR3 = get_CR3();
  395. int js = 0;
  396. ul *tmp_addr;
  397. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  398. {
  399. struct Zone *z = memory_management_struct.zones_struct + i;
  400. struct Page *p = z->pages_group;
  401. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  402. break;
  403. for (int j = 0; j < z->count_pages; ++j)
  404. {
  405. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
  406. ++p;
  407. ++js;
  408. }
  409. }
  410. flush_tlb();
  411. kinfo("Page table Initialized. Affects:%d", js);
  412. }
  413. /**
  414. * @brief 从页表中获取pdt页表项的内容
  415. *
  416. * @param proc_page_table_addr 页表的地址
  417. * @param is_phys 页表地址是否为物理地址
  418. * @param virt_addr_start 要清除的虚拟地址的起始地址
  419. * @param length 要清除的区域的长度
  420. * @param clear 是否清除标志位
  421. */
  422. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  423. {
  424. ul *tmp;
  425. if (is_phys)
  426. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  427. else
  428. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  429. // pml4页表项为0
  430. if (*tmp == 0)
  431. return 0;
  432. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  433. // pdpt页表项为0
  434. if (*tmp == 0)
  435. return 0;
  436. // 读取pdt页表项
  437. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  438. if (clear) // 清除页表项的标志位
  439. return *tmp & (~0x1fff);
  440. else
  441. return *tmp;
  442. }
  443. /**
  444. * @brief 从mms中寻找Page结构体
  445. *
  446. * @param phys_addr
  447. * @return struct Page*
  448. */
  449. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  450. {
  451. uint32_t zone_start, zone_end;
  452. switch (zone_select)
  453. {
  454. case ZONE_DMA:
  455. // DMA区域
  456. zone_start = 0;
  457. zone_end = ZONE_DMA_INDEX;
  458. break;
  459. case ZONE_NORMAL:
  460. zone_start = ZONE_DMA_INDEX;
  461. zone_end = ZONE_NORMAL_INDEX;
  462. break;
  463. case ZONE_UNMAPPED_IN_PGT:
  464. zone_start = ZONE_NORMAL_INDEX;
  465. zone_end = ZONE_UNMAPPED_INDEX;
  466. break;
  467. default:
  468. kerror("In mm_find_page: param: zone_select incorrect.");
  469. // 返回空
  470. return NULL;
  471. break;
  472. }
  473. for (int i = zone_start; i <= zone_end; ++i)
  474. {
  475. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  476. continue;
  477. struct Zone *z = memory_management_struct.zones_struct + i;
  478. // 区域对应的起止页号
  479. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  480. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  481. ul tmp = 64 - page_start % 64;
  482. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  483. {
  484. // 按照bmp中的每一个元素进行查找
  485. // 先将p定位到bmp的起始元素
  486. ul *p = memory_management_struct.bmp + (j >> 6);
  487. ul shift = j % 64;
  488. for (ul k = shift; k < 64; ++k)
  489. {
  490. if ((*p >> k) & 1) // 若当前页已分配
  491. {
  492. uint64_t page_num = j + k - shift;
  493. struct Page *x = memory_management_struct.pages_struct + page_num;
  494. if (x->addr_phys == phys_addr) // 找到对应的页
  495. return x;
  496. }
  497. }
  498. }
  499. }
  500. return NULL;
  501. }
  502. /**
  503. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  504. *
  505. * @todo 缩小堆区域
  506. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  507. * @param offset 新的地址相对于原地址的偏移量
  508. * @return uint64_t
  509. */
  510. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  511. {
  512. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  513. if (offset >= 0)
  514. {
  515. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  516. {
  517. struct vm_area_struct *vma = NULL;
  518. mm_create_vma(current_pcb->mm, i, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  519. mm_map_vma(vma, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys);
  520. }
  521. current_pcb->mm->brk_end = end_addr;
  522. }
  523. else
  524. {
  525. // 释放堆内存
  526. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  527. {
  528. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  529. // 找到对应的页
  530. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  531. if (p == NULL)
  532. {
  533. kerror("cannot find page addr=%#018lx", phys);
  534. return end_addr;
  535. }
  536. free_pages(p, 1);
  537. }
  538. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  539. // 在页表中取消映射
  540. }
  541. return end_addr;
  542. }