process.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <mm/slab.h>
  15. #include <common/spinlock.h>
  16. #include <syscall/syscall.h>
  17. #include <syscall/syscall_num.h>
  18. #include <sched/sched.h>
  19. #include <common/unistd.h>
  20. #include <debug/traceback/traceback.h>
  21. #include <ktest/ktest.h>
  22. // #pragma GCC push_options
  23. // #pragma GCC optimize("O0")
  24. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  25. long process_global_pid = 1; // 系统中最大的pid
  26. extern void system_call(void);
  27. extern void kernel_thread_func(void);
  28. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  29. extern struct mm_struct initial_mm;
  30. struct thread_struct initial_thread =
  31. {
  32. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  33. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  34. .fs = KERNEL_DS,
  35. .gs = KERNEL_DS,
  36. .cr2 = 0,
  37. .trap_num = 0,
  38. .err_code = 0};
  39. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  40. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  41. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  42. // 为每个核心初始化初始进程的tss
  43. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  44. /**
  45. * @brief 拷贝当前进程的标志位
  46. *
  47. * @param clone_flags 克隆标志位
  48. * @param pcb 新的进程的pcb
  49. * @return uint64_t
  50. */
  51. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  52. /**
  53. * @brief 拷贝当前进程的文件描述符等信息
  54. *
  55. * @param clone_flags 克隆标志位
  56. * @param pcb 新的进程的pcb
  57. * @return uint64_t
  58. */
  59. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  60. /**
  61. * @brief 回收进程的所有文件描述符
  62. *
  63. * @param pcb 要被回收的进程的pcb
  64. * @return uint64_t
  65. */
  66. uint64_t process_exit_files(struct process_control_block *pcb);
  67. /**
  68. * @brief 拷贝当前进程的内存空间分布结构体信息
  69. *
  70. * @param clone_flags 克隆标志位
  71. * @param pcb 新的进程的pcb
  72. * @return uint64_t
  73. */
  74. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  75. /**
  76. * @brief 释放进程的页表
  77. *
  78. * @param pcb 要被释放页表的进程
  79. * @return uint64_t
  80. */
  81. uint64_t process_exit_mm(struct process_control_block *pcb);
  82. /**
  83. * @brief 拷贝当前进程的线程结构体
  84. *
  85. * @param clone_flags 克隆标志位
  86. * @param pcb 新的进程的pcb
  87. * @return uint64_t
  88. */
  89. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  90. void process_exit_thread(struct process_control_block *pcb);
  91. /**
  92. * @brief 切换进程
  93. *
  94. * @param prev 上一个进程的pcb
  95. * @param next 将要切换到的进程的pcb
  96. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  97. * 这里切换fs和gs寄存器
  98. */
  99. #pragma GCC push_options
  100. #pragma GCC optimize("O0")
  101. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  102. {
  103. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  104. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  105. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  106. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  107. __asm__ __volatile__("movq %%fs, %0 \n\t"
  108. : "=a"(prev->thread->fs));
  109. __asm__ __volatile__("movq %%gs, %0 \n\t"
  110. : "=a"(prev->thread->gs));
  111. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  112. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  113. }
  114. #pragma GCC pop_options
  115. /**
  116. * @brief 打开要执行的程序文件
  117. *
  118. * @param path
  119. * @return struct vfs_file_t*
  120. */
  121. struct vfs_file_t *process_open_exec_file(char *path)
  122. {
  123. struct vfs_dir_entry_t *dentry = NULL;
  124. struct vfs_file_t *filp = NULL;
  125. dentry = vfs_path_walk(path, 0);
  126. if (dentry == NULL)
  127. return (void *)-ENOENT;
  128. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  129. return (void *)-ENOTDIR;
  130. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  131. if (filp == NULL)
  132. return (void *)-ENOMEM;
  133. filp->position = 0;
  134. filp->mode = 0;
  135. filp->dEntry = dentry;
  136. filp->mode = ATTR_READ_ONLY;
  137. filp->file_ops = dentry->dir_inode->file_ops;
  138. return filp;
  139. }
  140. /**
  141. * @brief 加载elf格式的程序文件到内存中,并设置regs
  142. *
  143. * @param regs 寄存器
  144. * @param path 文件路径
  145. * @return int
  146. */
  147. static int process_load_elf_file(struct pt_regs *regs, char *path)
  148. {
  149. int retval = 0;
  150. struct vfs_file_t *filp = process_open_exec_file(path);
  151. if ((long)filp <= 0 && (long)filp >= -255)
  152. {
  153. // kdebug("(long)filp=%ld", (long)filp);
  154. return (unsigned long)filp;
  155. }
  156. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  157. memset(buf, 0, PAGE_4K_SIZE);
  158. uint64_t pos = 0;
  159. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  160. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  161. retval = 0;
  162. if (!elf_check(buf))
  163. {
  164. kerror("Not an ELF file: %s", path);
  165. retval = -ENOTSUP;
  166. goto load_elf_failed;
  167. }
  168. #if ARCH(X86_64)
  169. // 暂时只支持64位的文件
  170. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  171. {
  172. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  173. retval = -EUNSUPPORTED;
  174. goto load_elf_failed;
  175. }
  176. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  177. // 暂时只支持AMD64架构
  178. if (ehdr.e_machine != EM_AMD64)
  179. {
  180. kerror("e_machine=%d", ehdr.e_machine);
  181. retval = -EUNSUPPORTED;
  182. goto load_elf_failed;
  183. }
  184. #else
  185. #error Unsupported architecture!
  186. #endif
  187. if (ehdr.e_type != ET_EXEC)
  188. {
  189. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  190. retval = -EUNSUPPORTED;
  191. goto load_elf_failed;
  192. }
  193. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  194. regs->rip = ehdr.e_entry;
  195. current_pcb->mm->code_addr_start = ehdr.e_entry;
  196. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  197. // 将指针移动到program header处
  198. pos = ehdr.e_phoff;
  199. // 读取所有的phdr
  200. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  201. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  202. if ((unsigned long)filp <= 0)
  203. {
  204. kdebug("(unsigned long)filp=%d", (long)filp);
  205. retval = -ENOEXEC;
  206. goto load_elf_failed;
  207. }
  208. Elf64_Phdr *phdr = buf;
  209. // 将程序加载到内存中
  210. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  211. {
  212. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  213. // 不是可加载的段
  214. if (phdr->p_type != PT_LOAD)
  215. continue;
  216. int64_t remain_mem_size = phdr->p_memsz;
  217. int64_t remain_file_size = phdr->p_filesz;
  218. pos = phdr->p_offset;
  219. uint64_t virt_base = phdr->p_vaddr;
  220. while (remain_mem_size > 0)
  221. {
  222. // kdebug("loading...");
  223. int64_t map_size = 0;
  224. if (remain_mem_size > PAGE_2M_SIZE / 2)
  225. {
  226. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  227. struct vm_area_struct *vma = NULL;
  228. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  229. // 防止内存泄露
  230. if (ret == -EEXIST)
  231. free_pages(Phy_to_2M_Page(pa), 1);
  232. else
  233. mm_map_vma(vma, pa);
  234. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  235. map_size = PAGE_2M_SIZE;
  236. }
  237. else
  238. {
  239. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  240. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  241. // 循环分配4K大小内存块
  242. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  243. {
  244. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  245. struct vm_area_struct *vma = NULL;
  246. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  247. if (val == -EEXIST)
  248. kfree(phys_2_virt(paddr));
  249. else
  250. mm_map_vma(vma, paddr);
  251. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  252. }
  253. }
  254. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  255. int64_t val = 0;
  256. if (remain_file_size != 0)
  257. {
  258. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  259. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  260. }
  261. if (val < 0)
  262. goto load_elf_failed;
  263. remain_mem_size -= map_size;
  264. remain_file_size -= val;
  265. virt_base += map_size;
  266. }
  267. }
  268. // 分配2MB的栈内存空间
  269. regs->rsp = current_pcb->mm->stack_start;
  270. regs->rbp = current_pcb->mm->stack_start;
  271. {
  272. struct vm_area_struct *vma = NULL;
  273. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  274. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  275. if (val == -EEXIST)
  276. free_pages(Phy_to_2M_Page(pa), 1);
  277. else
  278. mm_map_vma(vma, pa);
  279. }
  280. // 清空栈空间
  281. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  282. load_elf_failed:;
  283. if (buf != NULL)
  284. kfree(buf);
  285. return retval;
  286. }
  287. /**
  288. * @brief 使当前进程去执行新的代码
  289. *
  290. * @param regs 当前进程的寄存器
  291. * @param path 可执行程序的路径
  292. * @param argv 参数列表
  293. * @param envp 环境变量
  294. * @return ul 错误码
  295. */
  296. #pragma GCC push_options
  297. #pragma GCC optimize("O0")
  298. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  299. {
  300. // kdebug("do_execve is running...");
  301. // 当前进程正在与父进程共享地址空间,需要创建
  302. // 独立的地址空间才能使新程序正常运行
  303. if (current_pcb->flags & PF_VFORK)
  304. {
  305. kdebug("proc:%d creating new mem space", current_pcb->pid);
  306. // 分配新的内存空间分布结构体
  307. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  308. memset(new_mms, 0, sizeof(struct mm_struct));
  309. current_pcb->mm = new_mms;
  310. // 分配顶层页表, 并设置顶层页表的物理地址
  311. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  312. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  313. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  314. // 拷贝内核空间的页表指针
  315. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  316. }
  317. // 设置用户栈和用户堆的基地址
  318. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  319. const uint64_t brk_start_addr = 0x700000000000UL;
  320. process_switch_mm(current_pcb);
  321. // 为用户态程序设置地址边界
  322. if (!(current_pcb->flags & PF_KTHREAD))
  323. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  324. current_pcb->mm->code_addr_end = 0;
  325. current_pcb->mm->data_addr_start = 0;
  326. current_pcb->mm->data_addr_end = 0;
  327. current_pcb->mm->rodata_addr_start = 0;
  328. current_pcb->mm->rodata_addr_end = 0;
  329. current_pcb->mm->bss_start = 0;
  330. current_pcb->mm->bss_end = 0;
  331. current_pcb->mm->brk_start = brk_start_addr;
  332. current_pcb->mm->brk_end = brk_start_addr;
  333. current_pcb->mm->stack_start = stack_start_addr;
  334. // 关闭之前的文件描述符
  335. process_exit_files(current_pcb);
  336. // 清除进程的vfork标志位
  337. current_pcb->flags &= ~PF_VFORK;
  338. // 加载elf格式的可执行文件
  339. int tmp = process_load_elf_file(regs, path);
  340. if (tmp < 0)
  341. goto exec_failed;
  342. // 拷贝参数列表
  343. if (argv != NULL)
  344. {
  345. int argc = 0;
  346. // 目标程序的argv基地址指针,最大8个参数
  347. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  348. uint64_t str_addr = (uint64_t)dst_argv;
  349. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  350. {
  351. if (*argv[argc] == NULL)
  352. break;
  353. // 测量参数的长度(最大1023)
  354. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  355. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  356. str_addr -= argv_len;
  357. dst_argv[argc] = (char *)str_addr;
  358. // 字符串加上结尾字符
  359. ((char *)str_addr)[argv_len] = '\0';
  360. }
  361. // 重新设定栈基址,并预留空间防止越界
  362. stack_start_addr = str_addr - 8;
  363. current_pcb->mm->stack_start = stack_start_addr;
  364. regs->rsp = regs->rbp = stack_start_addr;
  365. // 传递参数
  366. regs->rdi = argc;
  367. regs->rsi = (uint64_t)dst_argv;
  368. }
  369. // kdebug("execve ok");
  370. regs->cs = USER_CS | 3;
  371. regs->ds = USER_DS | 3;
  372. regs->ss = USER_DS | 0x3;
  373. regs->rflags = 0x200246;
  374. regs->rax = 1;
  375. regs->es = 0;
  376. return 0;
  377. exec_failed:;
  378. process_do_exit(tmp);
  379. }
  380. #pragma GCC pop_options
  381. /**
  382. * @brief 内核init进程
  383. *
  384. * @param arg
  385. * @return ul 参数
  386. */
  387. #pragma GCC push_options
  388. #pragma GCC optimize("O0")
  389. ul initial_kernel_thread(ul arg)
  390. {
  391. // kinfo("initial proc running...\targ:%#018lx", arg);
  392. fat32_init();
  393. usb_init();
  394. // 对一些组件进行单元测试
  395. uint64_t tpid[] = {
  396. ktest_start(ktest_test_bitree, 0),
  397. ktest_start(ktest_test_kfifo, 0),
  398. ktest_start(ktest_test_mutex, 0),
  399. };
  400. kinfo("Waiting test thread exit...");
  401. // 等待测试进程退出
  402. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  403. waitpid(tpid[i], NULL, NULL);
  404. kinfo("All test done.");
  405. // pid_t p = fork();
  406. // if (p == 0)
  407. // {
  408. // kdebug("in subproc, rflags=%#018lx", get_rflags());
  409. // while (1)
  410. // usleep(1000);
  411. // }
  412. // kdebug("subprocess pid=%d", p);
  413. // 准备切换到用户态
  414. struct pt_regs *regs;
  415. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  416. cli();
  417. current_pcb->thread->rip = (ul)ret_from_system_call;
  418. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  419. current_pcb->thread->fs = USER_DS | 0x3;
  420. barrier();
  421. current_pcb->thread->gs = USER_DS | 0x3;
  422. // 主动放弃内核线程身份
  423. current_pcb->flags &= (~PF_KTHREAD);
  424. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  425. regs = (struct pt_regs *)current_pcb->thread->rsp;
  426. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  427. current_pcb->flags = 0;
  428. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  429. // 加载用户态程序:shell.elf
  430. char init_path[] = "/shell.elf";
  431. uint64_t addr = (uint64_t)&init_path;
  432. __asm__ __volatile__("movq %1, %%rsp \n\t"
  433. "pushq %2 \n\t"
  434. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  435. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  436. : "memory");
  437. return 1;
  438. }
  439. #pragma GCC pop_options
  440. /**
  441. * @brief 当子进程退出后向父进程发送通知
  442. *
  443. */
  444. void process_exit_notify()
  445. {
  446. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  447. }
  448. /**
  449. * @brief 进程退出时执行的函数
  450. *
  451. * @param code 返回码
  452. * @return ul
  453. */
  454. ul process_do_exit(ul code)
  455. {
  456. // kinfo("process exiting..., code is %ld.", (long)code);
  457. cli();
  458. struct process_control_block *pcb = current_pcb;
  459. // 进程退出时释放资源
  460. process_exit_files(pcb);
  461. process_exit_thread(pcb);
  462. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  463. pcb->state = PROC_ZOMBIE;
  464. pcb->exit_code = code;
  465. sti();
  466. process_exit_notify();
  467. sched_cfs();
  468. while (1)
  469. pause();
  470. }
  471. /**
  472. * @brief 初始化内核进程
  473. *
  474. * @param fn 目标程序的地址
  475. * @param arg 向目标程序传入的参数
  476. * @param flags
  477. * @return int
  478. */
  479. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  480. {
  481. struct pt_regs regs;
  482. barrier();
  483. memset(&regs, 0, sizeof(regs));
  484. barrier();
  485. // 在rbx寄存器中保存进程的入口地址
  486. regs.rbx = (ul)fn;
  487. // 在rdx寄存器中保存传入的参数
  488. regs.rdx = (ul)arg;
  489. barrier();
  490. regs.ds = KERNEL_DS;
  491. barrier();
  492. regs.es = KERNEL_DS;
  493. barrier();
  494. regs.cs = KERNEL_CS;
  495. barrier();
  496. regs.ss = KERNEL_DS;
  497. barrier();
  498. // 置位中断使能标志位
  499. regs.rflags = (1 << 9);
  500. barrier();
  501. // rip寄存器指向内核线程的引导程序
  502. regs.rip = (ul)kernel_thread_func;
  503. barrier();
  504. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  505. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  506. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  507. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  508. }
  509. /**
  510. * @brief 初始化进程模块
  511. * ☆前置条件:已完成系统调用模块的初始化
  512. */
  513. void process_init()
  514. {
  515. kinfo("Initializing process...");
  516. initial_mm.pgd = (pml4t_t *)get_CR3();
  517. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  518. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  519. initial_mm.data_addr_start = (ul)&_data;
  520. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  521. initial_mm.rodata_addr_start = (ul)&_rodata;
  522. initial_mm.rodata_addr_end = (ul)&_erodata;
  523. initial_mm.bss_start = (uint64_t)&_bss;
  524. initial_mm.bss_end = (uint64_t)&_ebss;
  525. initial_mm.brk_start = memory_management_struct.start_brk;
  526. initial_mm.brk_end = current_pcb->addr_limit;
  527. initial_mm.stack_start = _stack_start;
  528. initial_mm.vmas = NULL;
  529. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  530. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  531. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  532. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  533. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  534. for (int i = 256; i < 512; ++i)
  535. {
  536. uint64_t *tmp = idle_pml4t_vaddr + i;
  537. barrier();
  538. if (*tmp == 0)
  539. {
  540. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  541. barrier();
  542. memset(pdpt, 0, PAGE_4K_SIZE);
  543. barrier();
  544. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  545. }
  546. }
  547. barrier();
  548. flush_tlb();
  549. /*
  550. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  551. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  552. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  553. */
  554. // 初始化pid的写锁
  555. spin_init(&process_global_pid_write_lock);
  556. // 初始化进程的循环链表
  557. list_init(&initial_proc_union.pcb.list);
  558. barrier();
  559. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  560. barrier();
  561. initial_proc_union.pcb.state = PROC_RUNNING;
  562. initial_proc_union.pcb.preempt_count = 0;
  563. initial_proc_union.pcb.cpu_id = 0;
  564. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  565. current_pcb->virtual_runtime = (1UL << 60);
  566. }
  567. /**
  568. * @brief fork当前进程
  569. *
  570. * @param regs 新的寄存器值
  571. * @param clone_flags 克隆标志
  572. * @param stack_start 堆栈开始地址
  573. * @param stack_size 堆栈大小
  574. * @return unsigned long
  575. */
  576. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  577. {
  578. int retval = 0;
  579. struct process_control_block *tsk = NULL;
  580. // 为新的进程分配栈空间,并将pcb放置在底部
  581. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  582. barrier();
  583. if (tsk == NULL)
  584. {
  585. retval = -ENOMEM;
  586. return retval;
  587. }
  588. barrier();
  589. memset(tsk, 0, sizeof(struct process_control_block));
  590. io_mfence();
  591. // 将当前进程的pcb复制到新的pcb内
  592. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  593. io_mfence();
  594. // 初始化进程的循环链表结点
  595. list_init(&tsk->list);
  596. io_mfence();
  597. // 判断是否为内核态调用fork
  598. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  599. tsk->flags |= PF_KFORK;
  600. tsk->priority = 2;
  601. tsk->preempt_count = 0;
  602. // 增加全局的pid并赋值给新进程的pid
  603. spin_lock(&process_global_pid_write_lock);
  604. tsk->pid = process_global_pid++;
  605. barrier();
  606. // 加入到进程链表中
  607. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  608. barrier();
  609. initial_proc_union.pcb.next_pcb = tsk;
  610. barrier();
  611. tsk->parent_pcb = current_pcb;
  612. barrier();
  613. spin_unlock(&process_global_pid_write_lock);
  614. tsk->cpu_id = proc_current_cpu_id;
  615. tsk->state = PROC_UNINTERRUPTIBLE;
  616. tsk->parent_pcb = current_pcb;
  617. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  618. barrier();
  619. list_init(&tsk->list);
  620. retval = -ENOMEM;
  621. // 拷贝标志位
  622. if (process_copy_flags(clone_flags, tsk))
  623. goto copy_flags_failed;
  624. // 拷贝内存空间分布结构体
  625. if (process_copy_mm(clone_flags, tsk))
  626. goto copy_mm_failed;
  627. // 拷贝文件
  628. if (process_copy_files(clone_flags, tsk))
  629. goto copy_files_failed;
  630. // 拷贝线程结构体
  631. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  632. goto copy_thread_failed;
  633. // 拷贝成功
  634. retval = tsk->pid;
  635. tsk->flags &= ~PF_KFORK;
  636. // 唤醒进程
  637. process_wakeup(tsk);
  638. return retval;
  639. copy_thread_failed:;
  640. // 回收线程
  641. process_exit_thread(tsk);
  642. copy_files_failed:;
  643. // 回收文件
  644. process_exit_files(tsk);
  645. copy_mm_failed:;
  646. // 回收内存空间分布结构体
  647. process_exit_mm(tsk);
  648. copy_flags_failed:;
  649. kfree(tsk);
  650. return retval;
  651. return 0;
  652. }
  653. /**
  654. * @brief 根据pid获取进程的pcb
  655. *
  656. * @param pid
  657. * @return struct process_control_block*
  658. */
  659. struct process_control_block *process_get_pcb(long pid)
  660. {
  661. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  662. // 使用蛮力法搜索指定pid的pcb
  663. // todo: 使用哈希表来管理pcb
  664. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  665. {
  666. if (pcb->pid == pid)
  667. return pcb;
  668. }
  669. return NULL;
  670. }
  671. /**
  672. * @brief 将进程加入到调度器的就绪队列中
  673. *
  674. * @param pcb 进程的pcb
  675. */
  676. void process_wakeup(struct process_control_block *pcb)
  677. {
  678. pcb->state = PROC_RUNNING;
  679. sched_cfs_enqueue(pcb);
  680. }
  681. /**
  682. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  683. *
  684. * @param pcb 进程的pcb
  685. */
  686. void process_wakeup_immediately(struct process_control_block *pcb)
  687. {
  688. pcb->state = PROC_RUNNING;
  689. sched_cfs_enqueue(pcb);
  690. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  691. current_pcb->flags |= PF_NEED_SCHED;
  692. }
  693. /**
  694. * @brief 拷贝当前进程的标志位
  695. *
  696. * @param clone_flags 克隆标志位
  697. * @param pcb 新的进程的pcb
  698. * @return uint64_t
  699. */
  700. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  701. {
  702. if (clone_flags & CLONE_VM)
  703. pcb->flags |= PF_VFORK;
  704. return 0;
  705. }
  706. /**
  707. * @brief 拷贝当前进程的文件描述符等信息
  708. *
  709. * @param clone_flags 克隆标志位
  710. * @param pcb 新的进程的pcb
  711. * @return uint64_t
  712. */
  713. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  714. {
  715. int retval = 0;
  716. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  717. // 文件描述符已经在复制pcb时被拷贝
  718. if (clone_flags & CLONE_FS)
  719. return retval;
  720. // 为新进程拷贝新的文件描述符
  721. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  722. {
  723. if (current_pcb->fds[i] == NULL)
  724. continue;
  725. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  726. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  727. }
  728. return retval;
  729. }
  730. /**
  731. * @brief 回收进程的所有文件描述符
  732. *
  733. * @param pcb 要被回收的进程的pcb
  734. * @return uint64_t
  735. */
  736. uint64_t process_exit_files(struct process_control_block *pcb)
  737. {
  738. // 不与父进程共享文件描述符
  739. if (!(pcb->flags & PF_VFORK))
  740. {
  741. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  742. {
  743. if (pcb->fds[i] == NULL)
  744. continue;
  745. kfree(pcb->fds[i]);
  746. }
  747. }
  748. // 清空当前进程的文件描述符列表
  749. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  750. }
  751. /**
  752. * @brief 拷贝当前进程的内存空间分布结构体信息
  753. *
  754. * @param clone_flags 克隆标志位
  755. * @param pcb 新的进程的pcb
  756. * @return uint64_t
  757. */
  758. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  759. {
  760. int retval = 0;
  761. // 与父进程共享内存空间
  762. if (clone_flags & CLONE_VM)
  763. {
  764. pcb->mm = current_pcb->mm;
  765. return retval;
  766. }
  767. // 分配新的内存空间分布结构体
  768. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  769. memset(new_mms, 0, sizeof(struct mm_struct));
  770. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  771. new_mms->vmas = NULL;
  772. pcb->mm = new_mms;
  773. // 分配顶层页表, 并设置顶层页表的物理地址
  774. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  775. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  776. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  777. // 拷贝内核空间的页表指针
  778. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  779. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  780. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  781. // 拷贝用户空间的vma
  782. struct vm_area_struct *vma = current_pcb->mm->vmas;
  783. while (vma != NULL)
  784. {
  785. if (vma->vm_end > USER_MAX_LINEAR_ADDR)
  786. {
  787. vma = vma->vm_next;
  788. continue;
  789. }
  790. int64_t vma_size = vma->vm_end - vma->vm_start;
  791. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  792. if (vma_size > PAGE_2M_SIZE / 2)
  793. {
  794. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  795. for (int i = 0; i < page_to_alloc; ++i)
  796. {
  797. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  798. struct vm_area_struct *new_vma = NULL;
  799. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  800. // 防止内存泄露
  801. if (unlikely(ret == -EEXIST))
  802. free_pages(Phy_to_2M_Page(pa), 1);
  803. else
  804. mm_map_vma(new_vma, pa);
  805. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  806. vma_size -= PAGE_2M_SIZE;
  807. }
  808. }
  809. else
  810. {
  811. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  812. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  813. struct vm_area_struct *new_vma = NULL;
  814. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  815. // 防止内存泄露
  816. if (unlikely(ret == -EEXIST))
  817. kfree((void *)va);
  818. else
  819. mm_map_vma(new_vma, virt_2_phys(va));
  820. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  821. }
  822. vma = vma->vm_next;
  823. }
  824. return retval;
  825. }
  826. /**
  827. * @brief 释放进程的页表
  828. *
  829. * @param pcb 要被释放页表的进程
  830. * @return uint64_t
  831. */
  832. uint64_t process_exit_mm(struct process_control_block *pcb)
  833. {
  834. if (pcb->flags & CLONE_VM)
  835. return 0;
  836. if (pcb->mm == NULL)
  837. {
  838. kdebug("pcb->mm==NULL");
  839. return 0;
  840. }
  841. if (pcb->mm->pgd == NULL)
  842. {
  843. kdebug("pcb->mm->pgd==NULL");
  844. return 0;
  845. }
  846. // // 获取顶层页表
  847. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  848. // 循环释放VMA中的内存
  849. struct vm_area_struct *vma = pcb->mm->vmas;
  850. while (vma != NULL)
  851. {
  852. struct vm_area_struct *cur_vma = vma;
  853. vma = cur_vma->vm_next;
  854. uint64_t pa;
  855. mm_umap_vma(pcb->mm, cur_vma, &pa);
  856. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  857. // 释放内存
  858. switch (size)
  859. {
  860. case PAGE_2M_SIZE:
  861. free_pages(Phy_to_2M_Page(pa), 1);
  862. break;
  863. case PAGE_4K_SIZE:
  864. kfree(phys_2_virt(pa));
  865. break;
  866. default:
  867. break;
  868. }
  869. vm_area_del(cur_vma);
  870. kfree(cur_vma);
  871. }
  872. // 释放顶层页表
  873. kfree(current_pgd);
  874. if (unlikely(pcb->mm->vmas != NULL))
  875. {
  876. kwarn("pcb.mm.vmas!=NULL");
  877. }
  878. // 释放内存空间分布结构体
  879. kfree(pcb->mm);
  880. return 0;
  881. }
  882. /**
  883. * @brief 重写内核栈中的rbp地址
  884. *
  885. * @param new_regs 子进程的reg
  886. * @param new_pcb 子进程的pcb
  887. * @return int
  888. */
  889. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  890. {
  891. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  892. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  893. uint64_t *rbp = &new_regs->rbp;
  894. uint64_t *tmp = rbp;
  895. // 超出内核栈范围
  896. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  897. return 0;
  898. while (1)
  899. {
  900. // 计算delta
  901. uint64_t delta = old_top - *rbp;
  902. // 计算新的rbp值
  903. uint64_t newVal = new_top - delta;
  904. // 新的值不合法
  905. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  906. break;
  907. // 将新的值写入对应位置
  908. *rbp = newVal;
  909. // 跳转栈帧
  910. rbp = (uint64_t *)*rbp;
  911. }
  912. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  913. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  914. return 0;
  915. }
  916. /**
  917. * @brief 拷贝当前进程的线程结构体
  918. *
  919. * @param clone_flags 克隆标志位
  920. * @param pcb 新的进程的pcb
  921. * @return uint64_t
  922. */
  923. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  924. {
  925. // 将线程结构体放置在pcb后方
  926. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  927. memset(thd, 0, sizeof(struct thread_struct));
  928. pcb->thread = thd;
  929. struct pt_regs *child_regs = NULL;
  930. // 拷贝栈空间
  931. if (pcb->flags & PF_KFORK) // 内核态下的fork
  932. {
  933. // 内核态下则拷贝整个内核栈
  934. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  935. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  936. memcpy(child_regs, (void *)current_regs, size);
  937. barrier();
  938. // 然后重写新的栈中,每个栈帧的rbp值
  939. process_rewrite_rbp(child_regs, pcb);
  940. }
  941. else
  942. {
  943. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  944. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  945. barrier();
  946. child_regs->rsp = stack_start;
  947. }
  948. // 设置子进程的返回值为0
  949. child_regs->rax = 0;
  950. if (pcb->flags & PF_KFORK)
  951. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  952. else
  953. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  954. // 设置新的内核线程开始执行的时候的rsp
  955. thd->rsp = (uint64_t)child_regs;
  956. thd->fs = current_pcb->thread->fs;
  957. thd->gs = current_pcb->thread->gs;
  958. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  959. if (pcb->flags & PF_KFORK)
  960. thd->rip = (uint64_t)ret_from_system_call;
  961. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  962. thd->rip = (uint64_t)kernel_thread_func;
  963. else
  964. thd->rip = (uint64_t)ret_from_system_call;
  965. return 0;
  966. }
  967. /**
  968. * @brief todo: 回收线程结构体
  969. *
  970. * @param pcb
  971. */
  972. void process_exit_thread(struct process_control_block *pcb)
  973. {
  974. }
  975. // #pragma GCC pop_options