mm.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. #include <process/process.h>
  7. ul Total_Memory = 0;
  8. ul total_2M_pages = 0;
  9. static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
  10. void mm_init()
  11. {
  12. kinfo("Initializing memory management unit...");
  13. // 设置内核程序不同部分的起止地址
  14. memory_management_struct.kernel_code_start = (ul)&_text;
  15. memory_management_struct.kernel_code_end = (ul)&_etext;
  16. memory_management_struct.kernel_data_end = (ul)&_edata;
  17. memory_management_struct.rodata_end = (ul)&_erodata;
  18. memory_management_struct.start_brk = (ul)&_end;
  19. struct multiboot_mmap_entry_t mb2_mem_info[512];
  20. int count;
  21. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  22. for (int i = 0; i < count; ++i)
  23. {
  24. //可用的内存
  25. if (mb2_mem_info->type == 1)
  26. Total_Memory += mb2_mem_info->len;
  27. // 保存信息到mms
  28. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  29. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  30. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  31. memory_management_struct.len_e820 = i;
  32. // 脏数据
  33. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  34. break;
  35. }
  36. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  37. // 计算有效内存页数
  38. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  39. {
  40. if (memory_management_struct.e820[i].type != 1)
  41. continue;
  42. // 将内存段的起始物理地址按照2M进行对齐
  43. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  44. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  45. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  46. // 内存段不可用
  47. if (addr_end <= addr_start)
  48. continue;
  49. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  50. }
  51. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  52. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  53. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  54. // 初始化mms的bitmap
  55. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  56. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  57. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  58. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  59. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  60. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  61. // 初始化内存页结构
  62. // 将页结构映射于bmp之后
  63. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  64. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  65. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  66. // 将pages_struct全部清空,以备后续初始化
  67. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  68. // 初始化内存区域
  69. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  70. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  71. memory_management_struct.count_zones = 0;
  72. // zones-struct 成员变量暂时按照5个来计算
  73. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  74. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  75. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  76. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  77. {
  78. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  79. continue;
  80. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  81. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  82. if (addr_end <= addr_start)
  83. continue;
  84. // zone init
  85. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  86. ++memory_management_struct.count_zones;
  87. z->zone_addr_start = addr_start;
  88. z->zone_addr_end = addr_end;
  89. z->zone_length = addr_end - addr_start;
  90. z->count_pages_using = 0;
  91. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  92. z->total_pages_link = 0;
  93. z->attr = 0;
  94. z->gmd_struct = &memory_management_struct;
  95. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  96. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  97. // 初始化页
  98. struct Page *p = z->pages_group;
  99. for (int j = 0; j < z->count_pages; ++j, ++p)
  100. {
  101. p->zone = z;
  102. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  103. p->attr = 0;
  104. p->ref_counts = 0;
  105. p->age = 0;
  106. // 将bmp中对应的位 复位
  107. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  108. }
  109. }
  110. // 初始化0~2MB的物理页
  111. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  112. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  113. memory_management_struct.pages_struct->addr_phys = 0UL;
  114. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  115. memory_management_struct.pages_struct->ref_counts = 1;
  116. memory_management_struct.pages_struct->age = 0;
  117. // 将第0页的标志位给置上
  118. //*(memory_management_struct.bmp) |= 1UL;
  119. // 计算zone结构体的总长度(按照64位对齐)
  120. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  121. ZONE_DMA_INDEX = 0;
  122. ZONE_NORMAL_INDEX = 0;
  123. ZONE_UNMAPPED_INDEX = 0;
  124. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  125. {
  126. struct Zone *z = memory_management_struct.zones_struct + i;
  127. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  128. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  129. // 1GB以上的内存空间不做映射
  130. if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  131. ZONE_UNMAPPED_INDEX = i;
  132. }
  133. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  134. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  135. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  136. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  137. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  138. // 初始化内存管理单元结构所占的物理页的结构体
  139. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  140. // kdebug("mms_max_page=%ld", mms_max_page);
  141. struct Page *tmp_page = NULL;
  142. ul page_num;
  143. // 第0个page已经在上方配置
  144. for (ul j = 1; j <= mms_max_page; ++j)
  145. {
  146. tmp_page = memory_management_struct.pages_struct + j;
  147. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  148. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  149. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  150. ++tmp_page->zone->count_pages_using;
  151. --tmp_page->zone->count_pages_free;
  152. }
  153. global_CR3 = get_CR3();
  154. // root_page_table_phys_addr = global_CR3;
  155. // kdebug("global_CR3\t:%#018lx", global_CR3);
  156. // kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff));
  157. // kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff));
  158. // kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  159. // kinfo("Cleaning page table remapping at 0x0000");
  160. kinfo("Memory management unit initialize complete!");
  161. flush_tlb();
  162. // 初始化slab内存池
  163. slab_init();
  164. page_table_init();
  165. init_frame_buffer();
  166. }
  167. /**
  168. * @brief 初始化内存页
  169. *
  170. * @param page 内存页结构体
  171. * @param flags 标志位
  172. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  173. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  174. * @return unsigned long
  175. */
  176. unsigned long page_init(struct Page *page, ul flags)
  177. {
  178. page->attr |= flags;
  179. // 若页面的引用计数为0或是共享页,增加引用计数
  180. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  181. {
  182. ++page->ref_counts;
  183. ++page->zone->total_pages_link;
  184. }
  185. return 0;
  186. }
  187. /**
  188. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  189. *
  190. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  191. * @param num 需要申请的连续内存页的数量 num<64
  192. * @param flags 将页面属性设置成flag
  193. * @return struct Page*
  194. */
  195. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  196. {
  197. ul zone_start = 0, zone_end = 0;
  198. if (num >= 64 && num <= 0)
  199. {
  200. kerror("alloc_pages(): num is invalid.");
  201. return NULL;
  202. }
  203. ul attr = flags;
  204. switch (zone_select)
  205. {
  206. case ZONE_DMA:
  207. // DMA区域
  208. zone_start = 0;
  209. zone_end = ZONE_DMA_INDEX;
  210. attr |= PAGE_PGT_MAPPED;
  211. break;
  212. case ZONE_NORMAL:
  213. zone_start = ZONE_DMA_INDEX;
  214. zone_end = ZONE_NORMAL_INDEX;
  215. attr |= PAGE_PGT_MAPPED;
  216. break;
  217. case ZONE_UNMAPPED_IN_PGT:
  218. zone_start = ZONE_NORMAL_INDEX;
  219. zone_end = ZONE_UNMAPPED_INDEX;
  220. attr = 0;
  221. break;
  222. default:
  223. kerror("In alloc_pages: param: zone_select incorrect.");
  224. // 返回空
  225. return NULL;
  226. break;
  227. }
  228. for (int i = zone_start; i <= zone_end; ++i)
  229. {
  230. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  231. continue;
  232. struct Zone *z = memory_management_struct.zones_struct + i;
  233. // 区域对应的起止页号
  234. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  235. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  236. ul tmp = 64 - page_start % 64;
  237. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  238. {
  239. // 按照bmp中的每一个元素进行查找
  240. // 先将p定位到bmp的起始元素
  241. ul *p = memory_management_struct.bmp + (j >> 6);
  242. ul shift = j % 64;
  243. ul tmp_num = ((1UL << num) - 1);
  244. for (ul k = shift; k < 64; ++k)
  245. {
  246. // 寻找连续num个空页
  247. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  248. {
  249. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  250. for (ul l = 0; l < num; ++l)
  251. {
  252. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  253. // 分配页面,手动配置属性及计数器
  254. // 置位bmp
  255. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  256. ++z->count_pages_using;
  257. --z->count_pages_free;
  258. x->attr = attr;
  259. }
  260. // 成功分配了页面,返回第一个页面的指针
  261. // printk("start page num=%d\n",start_page_num);
  262. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  263. }
  264. }
  265. }
  266. }
  267. return NULL;
  268. }
  269. /**
  270. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  271. *
  272. * @param p 物理页结构体
  273. * @return unsigned long
  274. */
  275. unsigned long page_clean(struct Page *p)
  276. {
  277. --p->ref_counts;
  278. --p->zone->total_pages_link;
  279. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  280. if (!p->ref_counts)
  281. {
  282. p->attr &= PAGE_PGT_MAPPED;
  283. }
  284. return 0;
  285. }
  286. /**
  287. * @brief Get the page's attr
  288. *
  289. * @param page 内存页结构体
  290. * @return ul 属性
  291. */
  292. ul get_page_attr(struct Page *page)
  293. {
  294. if (page == NULL)
  295. {
  296. kBUG("get_page_attr(): page == NULL");
  297. return EPAGE_NULL;
  298. }
  299. else
  300. return page->attr;
  301. }
  302. /**
  303. * @brief Set the page's attr
  304. *
  305. * @param page 内存页结构体
  306. * @param flags 属性
  307. * @return ul 错误码
  308. */
  309. ul set_page_attr(struct Page *page, ul flags)
  310. {
  311. if (page == NULL)
  312. {
  313. kBUG("get_page_attr(): page == NULL");
  314. return EPAGE_NULL;
  315. }
  316. else
  317. {
  318. page->attr = flags;
  319. return 0;
  320. }
  321. }
  322. /**
  323. * @brief 释放连续number个内存页
  324. *
  325. * @param page 第一个要被释放的页面的结构体
  326. * @param number 要释放的内存页数量 number<64
  327. */
  328. void free_pages(struct Page *page, int number)
  329. {
  330. if (page == NULL)
  331. {
  332. kerror("free_pages() page is invalid.");
  333. return;
  334. }
  335. if (number >= 64 || number <= 0)
  336. {
  337. kerror("free_pages(): number %d is invalid.", number);
  338. return;
  339. }
  340. ul page_num;
  341. for (int i = 0; i < number; ++i, ++page)
  342. {
  343. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  344. // 复位bmp
  345. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  346. // 更新计数器
  347. --page->zone->count_pages_using;
  348. ++page->zone->count_pages_free;
  349. page->attr = 0;
  350. }
  351. return;
  352. }
  353. /**
  354. * @brief 重新初始化页表的函数
  355. * 将0~4GB的物理页映射到线性地址空间
  356. */
  357. void page_table_init()
  358. {
  359. kinfo("Re-Initializing page table...");
  360. global_CR3 = get_CR3();
  361. /*
  362. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  363. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  364. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  365. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  366. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  367. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  368. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  369. */
  370. ul *tmp_addr;
  371. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  372. {
  373. struct Zone *z = memory_management_struct.zones_struct + i;
  374. struct Page *p = z->pages_group;
  375. if (i == ZONE_UNMAPPED_INDEX)
  376. break;
  377. for (int j = 0; j < z->count_pages; ++j)
  378. {
  379. mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
  380. /*
  381. // 计算出PML4页表中的页表项的地址
  382. tmp_addr = (ul *)((ul)pml4_addr + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_GDT_SHIFT) & 0x1ff) * 8);
  383. // 说明该页还没有分配pdpt页表,使用kmalloc分配一个
  384. if (*tmp_addr = 0)
  385. {
  386. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  387. set_pml4t(tmp_addr, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  388. }
  389. // 计算出pdpt页表的页表项的地址
  390. tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_1G_SHIFT) & 0x1ff) * 8);
  391. // 说明该页还没有分配pd页表,使用kmalloc分配一个
  392. if (*tmp_addr = 0)
  393. {
  394. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  395. set_pdpt(tmp_addr, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  396. }
  397. // 计算出pd页表的页表项的地址
  398. tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_2M_SHIFT) & 0x1ff) * 8);
  399. // 填入pd页表的页表项,映射2MB物理页
  400. set_pdt(tmp_addr, mk_pdt(virt_2_phys(p->addr_phys), PAGE_KERNEL_PAGE));
  401. */
  402. // 测试
  403. if (j % 50 == 0)
  404. kdebug("pd_addr=%#018lx, *pd_addr=%#018lx", tmp_addr, *tmp_addr);
  405. }
  406. }
  407. flush_tlb();
  408. kinfo("Page table Initialized.");
  409. }
  410. /**
  411. * @brief VBE帧缓存区的地址重新映射
  412. * 将帧缓存区映射到地址0xffff800003000000处
  413. */
  414. void init_frame_buffer()
  415. {
  416. kinfo("Re-mapping VBE frame buffer...");
  417. global_CR3 = get_CR3();
  418. ul fb_virt_addr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
  419. ul fb_phys_addr = get_VBE_FB_phys_addr();
  420. // 计算帧缓冲区的线性地址对应的pml4页表项的地址
  421. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  422. if (*tmp == 0)
  423. {
  424. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  425. memset(virt_addr, 0, PAGE_4K_SIZE);
  426. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  427. }
  428. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  429. if (*tmp == 0)
  430. {
  431. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  432. memset(virt_addr, 0, PAGE_4K_SIZE);
  433. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  434. }
  435. ul vbe_fb_length = get_VBE_FB_length();
  436. ul *tmp1;
  437. // 初始化2M物理页
  438. for (ul i = 0; i < (vbe_fb_length << 2); i += PAGE_2M_SIZE)
  439. {
  440. // 计算当前2M物理页对应的pdt的页表项的物理地址
  441. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff));
  442. // 页面写穿,禁止缓存
  443. set_pdt(tmp1, mk_pdt((ul)fb_phys_addr + i, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD));
  444. }
  445. set_pos_VBE_FB_addr((uint *)fb_virt_addr);
  446. flush_tlb();
  447. kinfo("VBE frame buffer successfully Re-mapped!");
  448. }
  449. /**
  450. * @brief 将物理地址映射到页表的函数
  451. *
  452. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  453. * @param phys_addr_start 物理地址的起始位置
  454. * @param length 要映射的区域的长度(字节)
  455. */
  456. void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  457. {
  458. global_CR3 = get_CR3();
  459. // 计算线性地址对应的pml4页表项的地址
  460. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  461. if (*tmp == 0)
  462. {
  463. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  464. memset(virt_addr, 0, PAGE_4K_SIZE);
  465. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  466. }
  467. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  468. if (*tmp == 0)
  469. {
  470. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  471. memset(virt_addr, 0, PAGE_4K_SIZE);
  472. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  473. }
  474. ul *tmp1;
  475. // 初始化2M物理页
  476. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  477. {
  478. // 计算当前2M物理页对应的pdt的页表项的物理地址
  479. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  480. // 页面写穿,禁止缓存
  481. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags));
  482. }
  483. flush_tlb();
  484. }
  485. void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
  486. {
  487. global_CR3 = get_CR3();
  488. // 计算线性地址对应的pml4页表项的地址
  489. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  490. if (*tmp == 0)
  491. {
  492. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  493. memset(virt_addr, 0, PAGE_4K_SIZE);
  494. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_USER_PGT));
  495. }
  496. else
  497. kdebug("*tmp != 0!!! \t tmp = %#018lx\t *tmp = %#018lx", tmp, *tmp);
  498. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  499. if (*tmp == 0)
  500. {
  501. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  502. memset(virt_addr, 0, PAGE_4K_SIZE);
  503. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_USER_DIR));
  504. }
  505. else
  506. kdebug("*tmp != 0!!! \t tmp = %#018lx\t *tmp = %#018lx", tmp, *tmp);
  507. ul *tmp1;
  508. // 初始化2M物理页
  509. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  510. {
  511. // 计算当前2M物理页对应的pdt的页表项的物理地址
  512. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  513. // 页面写穿,禁止缓存
  514. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | PAGE_USER_PAGE));
  515. }
  516. flush_tlb();
  517. }
  518. /**
  519. * @brief 将将物理地址填写到进程的页表的函数
  520. *
  521. * @param proc_page_table_addr 页表的基地址
  522. * @param is_phys 页表的基地址是否为物理地址
  523. * @param virt_addr_start 要映射到的虚拟地址的起始位置
  524. * @param phys_addr_start 物理地址的起始位置
  525. * @param length 要映射的区域的长度(字节)
  526. * @param user 用户态是否可访问
  527. */
  528. void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user)
  529. {
  530. // kdebug("proc_page_table_addr=%#018lx", proc_page_table_addr);
  531. // 计算线性地址对应的pml4页表项的地址
  532. ul *tmp;
  533. if (is_phys)
  534. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
  535. else
  536. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
  537. // kdebug("tmp = %#018lx", tmp);
  538. if (*tmp == 0)
  539. {
  540. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  541. memset(virt_addr, 0, PAGE_4K_SIZE);
  542. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
  543. }
  544. // kdebug("*tmp = %#018lx", *tmp);
  545. if (is_phys)
  546. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
  547. else
  548. tmp = (ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff);
  549. if (*tmp == 0)
  550. {
  551. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  552. memset(virt_addr, 0, PAGE_4K_SIZE);
  553. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
  554. }
  555. ul *tmp1;
  556. // 初始化2M物理页
  557. for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
  558. {
  559. // 计算当前2M物理页对应的pdt的页表项的物理地址
  560. if (is_phys)
  561. tmp1 = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff)));
  562. else
  563. tmp1 = ((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
  564. // 页面写穿,禁止缓存
  565. set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
  566. }
  567. flush_tlb();
  568. }
  569. /**
  570. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  571. *
  572. * @todo 缩小堆区域
  573. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  574. * @param offset 新的地址相对于原地址的偏移量
  575. * @return uint64_t
  576. */
  577. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  578. {
  579. // 暂不支持缩小堆内存
  580. if(offset <0)
  581. return old_brk_end_addr;
  582. uint64_t end_addr = old_brk_end_addr + offset;
  583. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  584. mm_map_proc_page_table(current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED), PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  585. current_pcb->mm->brk_end = end_addr;
  586. return end_addr;
  587. }