xhci.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. #include "xhci.h"
  2. #include <common/kprint.h>
  3. #include <debug/bug.h>
  4. #include <common/spinlock.h>
  5. #include <mm/mm.h>
  6. #include <mm/slab.h>
  7. #include <debug/traceback/traceback.h>
  8. #include <common/time.h>
  9. #include <exception/irq.h>
  10. #include <driver/interrupt/apic/apic.h>
  11. // 由于xhci寄存器读取需要对齐,因此禁用GCC优化选项
  12. #pragma GCC push_options
  13. #pragma GCC optimize("O0")
  14. spinlock_t xhci_controller_init_lock = {0}; // xhci控制器初始化锁(在usb_init中被初始化)
  15. static int xhci_ctrl_count = 0; // xhci控制器计数
  16. static struct xhci_host_controller_t xhci_hc[XHCI_MAX_HOST_CONTROLLERS] = {0};
  17. void xhci_hc_irq_enable(uint64_t irq_num);
  18. void xhci_hc_irq_disable(uint64_t irq_num);
  19. uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg);
  20. void xhci_hc_irq_uninstall(uint64_t irq_num);
  21. static int xhci_hc_find_available_id();
  22. static int xhci_hc_stop(int id);
  23. static int xhci_hc_reset(int id);
  24. static int xhci_hc_stop_legacy(int id);
  25. static int xhci_hc_start_sched(int id);
  26. static int xhci_hc_stop_sched(int id);
  27. static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag);
  28. static int xhci_hc_pair_ports(int id);
  29. static uint64_t xhci_create_ring(int trbs);
  30. static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr);
  31. void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs);
  32. static int xhci_hc_init_intr(int id);
  33. static int xhci_hc_start_ports(int id);
  34. hardware_intr_controller xhci_hc_intr_controller =
  35. {
  36. .enable = xhci_hc_irq_enable,
  37. .disable = xhci_hc_irq_disable,
  38. .install = xhci_hc_irq_install,
  39. .uninstall = xhci_hc_irq_uninstall,
  40. .ack = apic_local_apic_edge_ack,
  41. };
  42. /*
  43. 注意!!!
  44. 尽管采用MMI/O的方式访问寄存器,但是对于指定大小的寄存器,
  45. 在发起读请求的时候,只能从寄存器的起始地址位置开始读取。
  46. 例子:不能在一个32bit的寄存器中的偏移量8的位置开始读取1个字节
  47. 这种情况下,我们必须从32bit的寄存器的0地址处开始读取32bit,然后通过移位的方式得到其中的字节。
  48. */
  49. #define xhci_read_cap_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase + offset))
  50. #define xhci_get_ptr_cap_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase + offset))
  51. #define xhci_write_cap_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase + offset) = (uint8_t)value)
  52. #define xhci_read_cap_reg32(id, offset) (*(uint32_t *)(xhci_hc[id].vbase + offset))
  53. #define xhci_get_ptr_cap_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase + offset))
  54. #define xhci_write_cap_reg32(id, offset, value) (*(uint32_t *)(xhci_hc[id].vbase + offset) = (uint32_t)value)
  55. #define xhci_read_cap_reg64(id, offset) (*(uint64_t *)(xhci_hc[id].vbase + offset))
  56. #define xhci_get_ptr_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase + offset))
  57. #define xhci_write_cap_reg64(id, offset, value) (*(uint64_t *)(xhci_hc[id].vbase + offset) = (uint64_t)value)
  58. #define xhci_read_op_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase_op + offset))
  59. #define xhci_get_ptr_op_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase_op + offset))
  60. #define xhci_write_op_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase_op + offset) = (uint8_t)value)
  61. #define xhci_read_op_reg32(id, offset) (*(uint32_t *)(xhci_hc[id].vbase_op + offset))
  62. #define xhci_get_ptr_op_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase_op + offset))
  63. #define xhci_write_op_reg32(id, offset, value) (*(uint32_t *)(xhci_hc[id].vbase_op + offset) = (uint32_t)value)
  64. #define xhci_read_op_reg64(id, offset) (*(uint64_t *)(xhci_hc[id].vbase_op + offset))
  65. #define xhci_get_ptr_op_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase_op + offset))
  66. #define xhci_write_op_reg64(id, offset, value) (*(uint64_t *)(xhci_hc[id].vbase_op + offset) = (uint64_t)value)
  67. /**
  68. * @brief 计算中断寄存器组虚拟地址
  69. * @param id 主机控制器id
  70. * @param num xhci中断寄存器组号
  71. */
  72. #define xhci_calc_intr_vaddr(id, num) (xhci_hc[id].vbase + xhci_hc[id].rts_offset + XHCI_RT_IR0 + num * XHCI_IR_SIZE)
  73. /**
  74. * @brief 读取/写入中断寄存器
  75. * @param id 主机控制器id
  76. * @param num xhci中断寄存器组号
  77. * @param intr_offset 寄存器在当前寄存器组中的偏移量
  78. */
  79. #define xhci_read_intr_reg32(id, num, intr_offset) (*(uint32_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset))
  80. #define xhci_write_intr_reg32(id, num, intr_offset, value) (*(uint32_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset) = value)
  81. #define xhci_read_intr_reg64(id, num, intr_offset) (*(uint64_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset))
  82. #define xhci_write_intr_reg64(id, num, intr_offset, value) (*(uint64_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset) = value)
  83. #define xhci_is_aligned64(addr) ((addr & 0x3f) == 0) // 是否64bytes对齐
  84. /**
  85. * @brief 判断端口信息
  86. * @param cid 主机控制器id
  87. * @param pid 端口id
  88. */
  89. #define XHCI_PORT_IS_USB2(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB2)
  90. #define XHCI_PORT_IS_USB3(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB3)
  91. #define XHCI_PORT_IS_USB2_HSO(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HSO) == XHCI_PROTOCOL_HSO)
  92. #define XHCI_PORT_HAS_PAIR(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HAS_PAIR) == XHCI_PROTOCOL_HAS_PAIR)
  93. #define XHCI_PORT_IS_ACTIVE(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_ACTIVE) == XHCI_PROTOCOL_ACTIVE)
  94. /**
  95. * @brief 设置link TRB的命令(dword3)
  96. *
  97. */
  98. #define xhci_TRB_set_link_cmd(trb_vaddr) \
  99. do \
  100. { \
  101. struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(trb_vaddr); \
  102. ptr->TRB_type = TRB_TYPE_LINK; \
  103. ptr->ioc = 0; \
  104. ptr->chain = 0; \
  105. ptr->ent = 0; \
  106. ptr->cycle = 1; \
  107. } while (0)
  108. // Common TRB types
  109. enum
  110. {
  111. TRB_TYPE_NORMAL = 1,
  112. TRB_TYPE_SETUP_STAGE,
  113. TRB_TYPE_DATA_STAGE,
  114. TRB_TYPE_STATUS_STAGE,
  115. TRB_TYPE_ISOCH,
  116. TRB_TYPE_LINK,
  117. TRB_TYPE_EVENT_DATA,
  118. TRB_TYPE_NO_OP,
  119. TRB_TYPE_ENABLE_SLOT,
  120. TRB_TYPE_DISABLE_SLOT = 10,
  121. TRB_TYPE_ADDRESS_DEVICE = 11,
  122. TRB_TYPE_CONFIG_EP,
  123. TRB_TYPE_EVALUATE_CONTEXT,
  124. TRB_TYPE_RESET_EP,
  125. TRB_TYPE_STOP_EP = 15,
  126. TRB_TYPE_SET_TR_DEQUEUE,
  127. TRB_TYPE_RESET_DEVICE,
  128. TRB_TYPE_FORCE_EVENT,
  129. TRB_TYPE_DEG_BANDWIDTH,
  130. TRB_TYPE_SET_LAT_TOLERANCE = 20,
  131. TRB_TYPE_GET_PORT_BAND = 21,
  132. TRB_TYPE_FORCE_HEADER,
  133. TRB_TYPE_NO_OP_CMD, // 24 - 31 = reserved
  134. TRB_TYPE_TRANS_EVENT = 32,
  135. TRB_TYPE_COMMAND_COMPLETION,
  136. TRB_TYPE_PORT_STATUS_CHANGE,
  137. TRB_TYPE_BANDWIDTH_REQUEST,
  138. TRB_TYPE_DOORBELL_EVENT,
  139. TRB_TYPE_HOST_CONTROLLER_EVENT = 37,
  140. TRB_TYPE_DEVICE_NOTIFICATION,
  141. TRB_TYPE_MFINDEX_WRAP,
  142. // 40 - 47 = reserved
  143. // 48 - 63 = Vendor Defined
  144. };
  145. /**
  146. * @brief 在controller数组之中寻找可用插槽
  147. *
  148. * 注意:该函数只能被获得init锁的进程所调用
  149. * @return int 可用id(无空位时返回-1)
  150. */
  151. static int xhci_hc_find_available_id()
  152. {
  153. if (unlikely(xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS))
  154. return -1;
  155. for (int i = 0; i < XHCI_MAX_HOST_CONTROLLERS; ++i)
  156. {
  157. if (xhci_hc[i].pci_dev_hdr == NULL)
  158. return i;
  159. }
  160. return -1;
  161. }
  162. /**
  163. * @brief 停止xhci主机控制器
  164. *
  165. * @param id 主机控制器id
  166. * @return int
  167. */
  168. static int xhci_hc_stop(int id)
  169. {
  170. // 判断是否已经停止
  171. if (unlikely((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 1))
  172. return 0;
  173. io_mfence();
  174. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00000000);
  175. io_mfence();
  176. char timeout = 17;
  177. while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
  178. {
  179. io_mfence();
  180. usleep(1000);
  181. if (--timeout == 0)
  182. return -ETIMEDOUT;
  183. }
  184. return 0;
  185. }
  186. /**
  187. * @brief reset xHCI主机控制器
  188. *
  189. * @param id 主机控制器id
  190. * @return int
  191. */
  192. static int xhci_hc_reset(int id)
  193. {
  194. int retval = 0;
  195. kdebug("usbsts=%#010lx", xhci_read_op_reg32(id, XHCI_OPS_USBSTS));
  196. io_mfence();
  197. // 判断HCHalted是否置位
  198. if ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
  199. {
  200. io_mfence();
  201. kdebug("stopping usb hc...");
  202. // 未置位,需要先尝试停止usb主机控制器
  203. retval = xhci_hc_stop(id);
  204. if (unlikely(retval))
  205. return retval;
  206. }
  207. int timeout = 500; // wait 500ms
  208. // reset
  209. uint32_t cmd = xhci_read_op_reg32(id, XHCI_OPS_USBCMD);
  210. io_mfence();
  211. kdebug("cmd=%#010lx", cmd);
  212. cmd |= (1 << 1);
  213. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, cmd);
  214. io_mfence();
  215. kdebug("after rst, sts=%#010lx", xhci_read_op_reg32(id, XHCI_OPS_USBSTS));
  216. io_mfence();
  217. while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1))
  218. {
  219. io_mfence();
  220. usleep(1000);
  221. if (--timeout == 0)
  222. return -ETIMEDOUT;
  223. }
  224. // kdebug("reset done!, timeout=%d", timeout);
  225. return retval;
  226. }
  227. /**
  228. * @brief 停止指定xhci控制器的legacy support
  229. *
  230. * @param id 控制器id
  231. * @return int
  232. */
  233. static int xhci_hc_stop_legacy(int id)
  234. {
  235. uint64_t current_offset = xhci_hc[id].ext_caps_off;
  236. do
  237. {
  238. // 判断当前entry是否为legacy support entry
  239. if (xhci_read_cap_reg8(id, current_offset) == XHCI_XECP_ID_LEGACY)
  240. {
  241. io_mfence();
  242. // 接管控制权
  243. xhci_write_cap_reg32(id, current_offset, xhci_read_cap_reg32(id, current_offset) | XHCI_XECP_LEGACY_OS_OWNED);
  244. io_mfence();
  245. // 等待响应完成
  246. int timeout = XHCI_XECP_LEGACY_TIMEOUT;
  247. while ((xhci_read_cap_reg32(id, current_offset) & XHCI_XECP_LEGACY_OWNING_MASK) != XHCI_XECP_LEGACY_OS_OWNED)
  248. {
  249. io_mfence();
  250. usleep(1000);
  251. if (--timeout == 0)
  252. {
  253. kerror("The BIOS doesn't stop legacy support.");
  254. return -ETIMEDOUT;
  255. }
  256. }
  257. // 处理完成
  258. return 0;
  259. }
  260. io_mfence();
  261. // 读取下一个entry的偏移增加量
  262. int next_off = ((xhci_read_cap_reg32(id, current_offset) & 0xff00) >> 8) << 2;
  263. io_mfence();
  264. // 将指针跳转到下一个entry
  265. current_offset = next_off ? (current_offset + next_off) : 0;
  266. } while (current_offset);
  267. // 当前controller不存在legacy支持,也问题不大,不影响
  268. return 0;
  269. }
  270. /**
  271. * @brief 启用指定xhci控制器的调度
  272. *
  273. * @param id 控制器id
  274. * @return int
  275. */
  276. static int xhci_hc_start_sched(int id)
  277. {
  278. io_mfence();
  279. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 >> 2) | (1 << 3));
  280. io_mfence();
  281. usleep(100 * 1000);
  282. }
  283. /**
  284. * @brief 停止指定xhci控制器的调度
  285. *
  286. * @param id 控制器id
  287. * @return int
  288. */
  289. static int xhci_hc_stop_sched(int id)
  290. {
  291. io_mfence();
  292. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00);
  293. io_mfence();
  294. }
  295. /**
  296. * @brief
  297. *
  298. * @return uint32_t
  299. */
  300. /**
  301. * @brief 在Ex capability list中寻找符合指定的协议号的寄存器offset、count、flag信息
  302. *
  303. * @param id 主机控制器id
  304. * @param list_off 列表项位置距离控制器虚拟基地址的偏移量
  305. * @param version 要寻找的端口版本号(2或3)
  306. * @param offset 返回的 Compatible Port Offset
  307. * @param count 返回的 Compatible Port Count
  308. * @param protocol_flag 返回的与协议相关的flag
  309. * @return uint32_t 下一个列表项的偏移量
  310. */
  311. static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag)
  312. {
  313. if (count)
  314. *count = 0;
  315. do
  316. {
  317. uint32_t dw0 = xhci_read_cap_reg32(id, list_off);
  318. io_mfence();
  319. uint32_t next_list_off = (dw0 >> 8) & 0xff;
  320. next_list_off = next_list_off ? (list_off + (next_list_off << 2)) : 0;
  321. if ((dw0 & 0xff) == XHCI_XECP_ID_PROTOCOL && ((dw0 & 0xff000000) >> 24) == version)
  322. {
  323. uint32_t dw2 = xhci_read_cap_reg32(id, list_off + 8);
  324. io_mfence();
  325. if (offset != NULL)
  326. *offset = (uint32_t)(dw2 & 0xff) - 1; // 使其转换为zero based
  327. if (count != NULL)
  328. *count = (uint32_t)((dw2 & 0xff00) >> 8);
  329. if (protocol_flag != NULL && version == 2)
  330. *protocol_flag = (uint16_t)((dw2 >> 16) & 0x0fff);
  331. return next_list_off;
  332. }
  333. list_off = next_list_off;
  334. } while (list_off);
  335. return 0;
  336. }
  337. /**
  338. * @brief 配对xhci主机控制器的usb2、usb3端口
  339. *
  340. * @param id 主机控制器id
  341. * @return int 返回码
  342. */
  343. static int xhci_hc_pair_ports(int id)
  344. {
  345. struct xhci_caps_HCSPARAMS1_reg_t hcs1;
  346. io_mfence();
  347. memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
  348. io_mfence();
  349. // 从hcs1获取端口数量
  350. xhci_hc[id].port_num = hcs1.max_ports;
  351. // 找到所有的端口并标记其端口信息
  352. xhci_hc[id].port_num_u2 = 0;
  353. xhci_hc[id].port_num_u3 = 0;
  354. uint32_t next_off = xhci_hc[id].ext_caps_off;
  355. uint32_t offset, cnt;
  356. uint16_t protocol_flags = 0;
  357. // 寻找所有的usb2端口
  358. while (next_off)
  359. {
  360. io_mfence();
  361. next_off = xhci_hc_get_protocol_offset(id, next_off, 2, &offset, &cnt, &protocol_flags);
  362. io_mfence();
  363. if (cnt)
  364. {
  365. for (int i = 0; i < cnt; ++i)
  366. {
  367. io_mfence();
  368. xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u2++;
  369. xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB2;
  370. io_mfence();
  371. // usb2 high speed only
  372. if (protocol_flags & 2)
  373. xhci_hc[id].ports[offset + i].flags |= XHCI_PROTOCOL_HSO;
  374. }
  375. }
  376. }
  377. // 寻找所有的usb3端口
  378. next_off = xhci_hc[id].ext_caps_off;
  379. while (next_off)
  380. {
  381. io_mfence();
  382. next_off = xhci_hc_get_protocol_offset(id, next_off, 3, &offset, &cnt, &protocol_flags);
  383. io_mfence();
  384. if (cnt)
  385. {
  386. for (int i = 0; i < cnt; ++i)
  387. {
  388. io_mfence();
  389. xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u3++;
  390. xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB3;
  391. }
  392. }
  393. }
  394. // 将对应的USB2端口和USB3端口进行配对
  395. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  396. {
  397. for (int j = 0; j < xhci_hc[id].port_num; ++j)
  398. {
  399. if (unlikely(i == j))
  400. continue;
  401. io_mfence();
  402. if ((xhci_hc[id].ports[i].offset == xhci_hc[id].ports[j].offset) &&
  403. ((xhci_hc[id].ports[i].flags & XHCI_PROTOCOL_INFO) != (xhci_hc[id].ports[j].flags & XHCI_PROTOCOL_INFO)))
  404. {
  405. xhci_hc[id].ports[i].paired_port_num = j;
  406. xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_HAS_PAIR;
  407. io_mfence();
  408. xhci_hc[id].ports[j].paired_port_num = i;
  409. xhci_hc[id].ports[j].flags |= XHCI_PROTOCOL_HAS_PAIR;
  410. }
  411. }
  412. }
  413. // 标记所有的usb3、单独的usb2端口为激活状态
  414. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  415. {
  416. io_mfence();
  417. if (XHCI_PORT_IS_USB3(id, i) ||
  418. (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))))
  419. xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_ACTIVE;
  420. }
  421. kinfo("Found %d ports on root hub, usb2 ports:%d, usb3 ports:%d", xhci_hc[id].port_num, xhci_hc[id].port_num_u2, xhci_hc[id].port_num_u3);
  422. /*
  423. // 打印配对结果
  424. for (int i = 1; i <= xhci_hc[id].port_num; ++i)
  425. {
  426. if (XHCI_PORT_IS_USB3(id, i))
  427. {
  428. kdebug("USB3 port %d, offset=%d, pair with usb2 port %d, current port is %s", i, xhci_hc[id].ports[i].offset,
  429. xhci_hc[id].ports[i].paired_port_num, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive");
  430. }
  431. else if (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))) // 单独的2.0接口
  432. {
  433. kdebug("Stand alone USB2 port %d, offset=%d, current port is %s", i, xhci_hc[id].ports[i].offset,
  434. XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive");
  435. }
  436. else if (XHCI_PORT_IS_USB2(id, i))
  437. {
  438. kdebug("USB2 port %d, offset=%d, current port is %s, has pair=%s", i, xhci_hc[id].ports[i].offset,
  439. XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive", XHCI_PORT_HAS_PAIR(id, i) ? "true" : "false");
  440. }
  441. }
  442. */
  443. return 0;
  444. }
  445. /**
  446. * @brief 创建ring,并将最后一个trb指向头一个trb
  447. *
  448. * @param trbs 要创建的trb数量
  449. * @return uint64_t trb数组的起始虚拟地址
  450. */
  451. static uint64_t xhci_create_ring(int trbs)
  452. {
  453. int total_size = trbs * sizeof(struct xhci_TRB_t);
  454. const uint64_t vaddr = (uint64_t)kmalloc(total_size, 0);
  455. io_mfence();
  456. memset((void *)vaddr, 0, total_size);
  457. io_mfence();
  458. // 设置最后一个trb为link trb
  459. xhci_TRB_set_link_cmd(vaddr + total_size - sizeof(struct xhci_TRB_t));
  460. io_mfence();
  461. return vaddr;
  462. }
  463. /**
  464. * @brief 创建新的event ring table和对应的ring segment
  465. *
  466. * @param trbs 包含的trb的数量
  467. * @param ret_ring_addr 返回的第一个event ring segment的基地址(虚拟)
  468. * @return uint64_t trb table的虚拟地址
  469. */
  470. static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr)
  471. {
  472. const uint64_t table_vaddr = (const uint64_t)kmalloc(64, 0); // table支持8个segment
  473. io_mfence();
  474. if (unlikely(table_vaddr == NULL))
  475. return -ENOMEM;
  476. memset((void *)table_vaddr, 0, 64);
  477. // 暂时只创建1个segment
  478. const uint64_t seg_vaddr = (const uint64_t)kmalloc(trbs * sizeof(struct xhci_TRB_t), 0);
  479. io_mfence();
  480. if (unlikely(seg_vaddr == NULL))
  481. return -ENOMEM;
  482. memset((void *)seg_vaddr, 0, trbs * sizeof(struct xhci_TRB_t));
  483. io_mfence();
  484. // 将segment地址和大小写入table
  485. *(uint64_t *)(table_vaddr) = virt_2_phys(seg_vaddr);
  486. *(uint64_t *)(table_vaddr + 8) = trbs;
  487. *ret_ring_addr = seg_vaddr;
  488. return table_vaddr;
  489. }
  490. void xhci_hc_irq_enable(uint64_t irq_num)
  491. {
  492. int cid = xhci_find_hcid_by_irq_num(irq_num);
  493. io_mfence();
  494. if (WARN_ON(cid == -1))
  495. return;
  496. kdebug("start msi");
  497. io_mfence();
  498. pci_start_msi(xhci_hc[cid].pci_dev_hdr);
  499. kdebug("start sched");
  500. io_mfence();
  501. xhci_hc_start_sched(cid);
  502. kdebug("start ports");
  503. io_mfence();
  504. xhci_hc_start_ports(cid);
  505. kdebug("enabled");
  506. }
  507. void xhci_hc_irq_disable(uint64_t irq_num)
  508. {
  509. int cid = xhci_find_hcid_by_irq_num(irq_num);
  510. io_mfence();
  511. if (WARN_ON(cid == -1))
  512. return;
  513. xhci_hc_stop_sched(cid);
  514. io_mfence();
  515. pci_disable_msi(xhci_hc[cid].pci_dev_hdr);
  516. io_mfence();
  517. }
  518. uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg)
  519. {
  520. int cid = xhci_find_hcid_by_irq_num(irq_num);
  521. io_mfence();
  522. if (WARN_ON(cid == -1))
  523. return -EINVAL;
  524. struct xhci_hc_irq_install_info_t *info = (struct xhci_hc_irq_install_info_t *)arg;
  525. struct msi_desc_t msi_desc;
  526. memset(&msi_desc, 0, sizeof(struct msi_desc_t));
  527. io_mfence();
  528. msi_desc.pci_dev = (struct pci_device_structure_header_t *)xhci_hc[cid].pci_dev_hdr;
  529. msi_desc.assert = info->assert;
  530. msi_desc.edge_trigger = info->edge_trigger;
  531. msi_desc.processor = info->processor;
  532. msi_desc.pci.msi_attribute.is_64 = 1;
  533. // todo: QEMU是使用msix的,因此要先在pci中实现msix
  534. io_mfence();
  535. int retval = pci_enable_msi(&msi_desc);
  536. kdebug("pci retval = %d", retval);
  537. kdebug("xhci irq %d installed.", irq_num);
  538. return 0;
  539. }
  540. void xhci_hc_irq_uninstall(uint64_t irq_num)
  541. {
  542. // todo
  543. int cid = xhci_find_hcid_by_irq_num(irq_num);
  544. io_mfence();
  545. if (WARN_ON(cid == -1))
  546. return;
  547. xhci_hc_stop(cid);
  548. io_mfence();
  549. }
  550. /**
  551. * @brief xhci主机控制器的中断处理函数
  552. *
  553. * @param irq_num 中断向量号
  554. * @param cid 控制器号
  555. * @param regs 寄存器值
  556. */
  557. void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs)
  558. {
  559. // todo: handle irq
  560. kdebug("USB irq received.");
  561. }
  562. /**
  563. * @brief 重置端口
  564. *
  565. * @param id 控制器id
  566. * @param port 端口id
  567. * @return int
  568. */
  569. static int xhci_reset_port(const int id, const int port)
  570. {
  571. int retval = 0;
  572. // 相对于op寄存器基地址的偏移量
  573. uint64_t port_status_offset = XHCI_OPS_PRS + port * 16;
  574. // kdebug("to reset %d, offset=%#018lx", port, port_status_offset);
  575. io_mfence();
  576. // 检查端口电源状态
  577. if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
  578. {
  579. kdebug("port is power off, starting...");
  580. io_mfence();
  581. xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9));
  582. io_mfence();
  583. usleep(2000);
  584. // 检测端口是否被启用, 若未启用,则报错
  585. if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
  586. {
  587. kdebug("cannot power on %d", port);
  588. return -EAGAIN;
  589. }
  590. }
  591. // kdebug("port:%d, power check ok", port);
  592. io_mfence();
  593. // 确保端口的status被清0
  594. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
  595. io_mfence();
  596. // 重置当前端口
  597. if (XHCI_PORT_IS_USB3(id, port))
  598. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 31));
  599. else
  600. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 4));
  601. retval = -ETIMEDOUT;
  602. // 等待portsc的port reset change位被置位,说明reset完成
  603. int timeout = 200;
  604. while (timeout)
  605. {
  606. io_mfence();
  607. uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
  608. io_mfence();
  609. if (XHCI_PORT_IS_USB3(id, port) && (val & (1 << 31)) == 0)
  610. break;
  611. else if (XHCI_PORT_IS_USB2(id, port) && (val & (1 << 4)) == 0)
  612. break;
  613. else if (val & (1 << 21))
  614. break;
  615. --timeout;
  616. usleep(500);
  617. }
  618. // kdebug("timeout= %d", timeout);
  619. if (timeout > 0)
  620. {
  621. // 等待恢复
  622. usleep(USB_TIME_RST_REC * 1000);
  623. uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
  624. io_mfence();
  625. // 如果reset之后,enable bit仍然是1,那么说明reset成功
  626. if (val & (1 << 1))
  627. {
  628. io_mfence();
  629. // 清除status change bit
  630. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
  631. io_mfence();
  632. }
  633. retval = 0;
  634. }
  635. // 如果usb2端口成功reset,则处理该端口的active状态
  636. if (retval == 0 && XHCI_PORT_IS_USB2(id, port))
  637. {
  638. xhci_hc[id].ports[port].flags |= XHCI_PROTOCOL_ACTIVE;
  639. if (XHCI_PORT_HAS_PAIR(id, port)) // 如果有对应的usb3端口,则将usb3端口设置为未激活
  640. xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags &= ~(XHCI_PROTOCOL_ACTIVE);
  641. }
  642. // 如果usb3端口reset失败,则启用与之配对的usb2端口
  643. if (retval != 0 && XHCI_PORT_IS_USB3(id, port))
  644. {
  645. xhci_hc[id].ports[port].flags &= ~XHCI_PROTOCOL_ACTIVE;
  646. xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags |= XHCI_PROTOCOL_ACTIVE;
  647. }
  648. return retval;
  649. }
  650. /**
  651. * @brief 启用xhci控制器的端口
  652. *
  653. * @param id 控制器id
  654. * @return int
  655. */
  656. static int xhci_hc_start_ports(int id)
  657. {
  658. int cnt = 0;
  659. // 注意,这两个循环应该不能合并到一起,因为可能存在usb2端口offset在前,usb3端口在后的情况,那样的话就会出错
  660. // 循环启动所有的usb3端口
  661. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  662. {
  663. if (XHCI_PORT_IS_USB3(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
  664. {
  665. io_mfence();
  666. // reset该端口
  667. if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符
  668. // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
  669. {
  670. // xhci_hc_get_descriptor(id, i);
  671. ++cnt;
  672. }
  673. }
  674. }
  675. kdebug("active usb3 ports:%d", cnt);
  676. // 循环启动所有的usb2端口
  677. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  678. {
  679. if (XHCI_PORT_IS_USB2(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
  680. {
  681. // reset该端口
  682. if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符
  683. // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
  684. {
  685. // xhci_hc_get_descriptor(id, i);
  686. ++cnt;
  687. }
  688. }
  689. }
  690. kinfo("xHCI controller %d: Started %d ports.", id, cnt);
  691. }
  692. /**
  693. * @brief 初始化xhci主机控制器的中断控制
  694. *
  695. * @param id 主机控制器id
  696. * @return int 返回码
  697. */
  698. static int xhci_hc_init_intr(int id)
  699. {
  700. uint64_t retval = 0;
  701. struct xhci_caps_HCSPARAMS1_reg_t hcs1;
  702. struct xhci_caps_HCSPARAMS2_reg_t hcs2;
  703. io_mfence();
  704. memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
  705. io_mfence();
  706. memcpy(&hcs2, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
  707. io_mfence();
  708. uint32_t max_segs = (1 << (uint32_t)(hcs2.ERST_Max));
  709. uint32_t max_interrupters = hcs1.max_intrs;
  710. // 创建 event ring
  711. retval = xhci_create_event_ring(4096, &xhci_hc[id].event_ring_vaddr);
  712. io_mfence();
  713. if (unlikely((int64_t)(retval) == -ENOMEM))
  714. return -ENOMEM;
  715. xhci_hc[id].event_ring_table_vaddr = retval;
  716. retval = 0;
  717. xhci_hc[id].current_event_ring_cycle = 1;
  718. // 写入第0个中断寄存器组
  719. io_mfence();
  720. xhci_write_intr_reg32(id, 0, XHCI_IR_MAN, 0x3); // 使能中断并清除pending位(这个pending位是写入1就清0的)
  721. io_mfence();
  722. xhci_write_intr_reg32(id, 0, XHCI_IR_MOD, 0); // 关闭中断管制
  723. io_mfence();
  724. xhci_write_intr_reg32(id, 0, XHCI_IR_TABLE_SIZE, 1); // 当前只有1个segment
  725. io_mfence();
  726. xhci_write_intr_reg64(id, 0, XHCI_IR_DEQUEUE, virt_2_phys(xhci_hc[id].event_ring_vaddr) | (1 << 3)); // 写入dequeue寄存器,并清除busy位(写1就会清除)
  727. io_mfence();
  728. xhci_write_intr_reg64(id, 0, XHCI_IR_TABLE_ADDR, virt_2_phys(xhci_hc[id].event_ring_table_vaddr)); // 写入table地址
  729. io_mfence();
  730. // 清除状态位
  731. xhci_write_op_reg32(id, XHCI_OPS_USBSTS, (1 << 10) | (1 << 4) | (1 << 3) | (1 << 2));
  732. io_mfence();
  733. // 开启usb中断
  734. // 注册中断处理程序
  735. struct xhci_hc_irq_install_info_t install_info;
  736. install_info.assert = 1;
  737. install_info.edge_trigger = 1;
  738. install_info.processor = 0; // 投递到bsp
  739. char *buf = (char *)kmalloc(16, 0);
  740. memset(buf, 0, 16);
  741. sprintk(buf, "xHCI HC%d", id);
  742. io_mfence();
  743. irq_register(xhci_controller_irq_num[id], &install_info, &xhci_hc_irq_handler, id, &xhci_hc_intr_controller, buf);
  744. io_mfence();
  745. kfree(buf);
  746. kdebug("xhci host controller %d: interrupt registered. irq num=%d", id, xhci_controller_irq_num[id]);
  747. return 0;
  748. }
  749. /**
  750. * @brief 初始化xhci控制器
  751. *
  752. * @param header 指定控制器的pci device头部
  753. */
  754. void xhci_init(struct pci_device_structure_general_device_t *dev_hdr)
  755. {
  756. if (xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS)
  757. {
  758. kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
  759. return;
  760. }
  761. spin_lock(&xhci_controller_init_lock);
  762. kinfo("Initializing xhci host controller: bus=%#02x, device=%#02x, func=%#02x, VendorID=%#04x, irq_line=%d, irq_pin=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, dev_hdr->header.Vendor_ID, dev_hdr->Interrupt_Line, dev_hdr->Interrupt_PIN);
  763. io_mfence();
  764. int cid = xhci_hc_find_available_id();
  765. if (cid < 0)
  766. {
  767. kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
  768. goto failed_exceed_max;
  769. }
  770. memset(&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
  771. xhci_hc[cid].controller_id = cid;
  772. xhci_hc[cid].pci_dev_hdr = dev_hdr;
  773. io_mfence();
  774. pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4, 0x0006); // mem I/O access enable and bus master enable
  775. io_mfence();
  776. // 为当前控制器映射寄存器地址空间
  777. xhci_hc[cid].vbase = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + XHCI_MAPPING_OFFSET + 65536 * xhci_hc[cid].controller_id;
  778. // kdebug("dev_hdr->BAR0 & (~0xf)=%#018lx", dev_hdr->BAR0 & (~0xf));
  779. mm_map_phys_addr(xhci_hc[cid].vbase, dev_hdr->BAR0 & (~0xf), 65536, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, true);
  780. io_mfence();
  781. // 读取xhci控制寄存器
  782. uint16_t iversion = *(uint16_t *)(xhci_hc[cid].vbase + XHCI_CAPS_HCIVERSION);
  783. struct xhci_caps_HCCPARAMS1_reg_t hcc1;
  784. struct xhci_caps_HCCPARAMS2_reg_t hcc2;
  785. struct xhci_caps_HCSPARAMS1_reg_t hcs1;
  786. struct xhci_caps_HCSPARAMS2_reg_t hcs2;
  787. memcpy(&hcc1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS1), sizeof(struct xhci_caps_HCCPARAMS1_reg_t));
  788. memcpy(&hcc2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS2), sizeof(struct xhci_caps_HCCPARAMS2_reg_t));
  789. memcpy(&hcs1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
  790. memcpy(&hcs2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
  791. // kdebug("hcc1.xECP=%#010lx", hcc1.xECP);
  792. // 计算operational registers的地址
  793. xhci_hc[cid].vbase_op = xhci_hc[cid].vbase + xhci_read_cap_reg8(cid, XHCI_CAPS_CAPLENGTH);
  794. io_mfence();
  795. xhci_hc[cid].db_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_DBOFF) & (~0x3); // bits [1:0] reserved
  796. io_mfence();
  797. xhci_hc[cid].rts_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_RTSOFF) & (~0x1f); // bits [4:0] reserved.
  798. io_mfence();
  799. xhci_hc[cid].ext_caps_off = 1UL * (hcc1.xECP) * 4;
  800. xhci_hc[cid].context_size = (hcc1.csz) ? 64 : 32;
  801. if (iversion < 0x95)
  802. {
  803. kwarn("Unsupported/Unknowned xHCI controller version: %#06x. This may cause unexpected behavior.", iversion);
  804. }
  805. // if it is a Panther Point device, make sure sockets are xHCI controlled.
  806. if (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) & 0xffff) == 0x8086) &&
  807. ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 2) & 0xffff) == 0x1E31) &&
  808. ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 8) & 0xff) == 4))
  809. {
  810. kdebug("Is a Panther Point device");
  811. pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd8, 0xffffffff);
  812. pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd0, 0xffffffff);
  813. }
  814. io_mfence();
  815. // 关闭legacy支持
  816. FAIL_ON_TO(xhci_hc_stop_legacy(cid), failed);
  817. io_mfence();
  818. // 重置xhci控制器
  819. FAIL_ON_TO(xhci_hc_reset(cid), failed);
  820. io_mfence();
  821. // 端口配对
  822. FAIL_ON_TO(xhci_hc_pair_ports(cid), failed);
  823. io_mfence();
  824. // ========== 设置USB host controller =========
  825. // 获取页面大小
  826. kdebug("ops pgsize=%#010lx", xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE));
  827. xhci_hc[cid].page_size = (xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE) & 0xffff) << 12;
  828. kdebug("page size=%d", xhci_hc[cid].page_size);
  829. io_mfence();
  830. // 获取设备上下文空间
  831. xhci_hc[cid].dcbaap_vaddr = (uint64_t)kmalloc(2048, 0); // 分配2KB的设备上下文地址数组空间
  832. memset((void *)xhci_hc[cid].dcbaap_vaddr, 0, 2048);
  833. io_mfence();
  834. kdebug("dcbaap_vaddr=%#018lx", xhci_hc[cid].dcbaap_vaddr);
  835. if (unlikely(!xhci_is_aligned64(xhci_hc[cid].dcbaap_vaddr))) // 地址不是按照64byte对齐
  836. {
  837. kerror("dcbaap isn't 64 byte aligned.");
  838. goto failed_free_dyn;
  839. }
  840. // 写入dcbaap
  841. xhci_write_op_reg64(cid, XHCI_OPS_DCBAAP, virt_2_phys(xhci_hc[cid].dcbaap_vaddr));
  842. io_mfence();
  843. // 创建command ring
  844. xhci_hc[cid].cmd_ring_vaddr = xhci_create_ring(XHCI_CMND_RING_TRBS);
  845. if (unlikely(!xhci_is_aligned64(xhci_hc[cid].cmd_ring_vaddr))) // 地址不是按照64byte对齐
  846. {
  847. kerror("cmd ring isn't 64 byte aligned.");
  848. goto failed_free_dyn;
  849. }
  850. // 设置初始cycle bit为1
  851. xhci_hc[cid].cmd_trb_cycle = XHCI_TRB_CYCLE_ON;
  852. io_mfence();
  853. // 写入command ring控制寄存器
  854. xhci_write_op_reg64(cid, XHCI_OPS_CRCR, virt_2_phys(xhci_hc[cid].cmd_ring_vaddr) | xhci_hc[cid].cmd_trb_cycle);
  855. // 写入配置寄存器
  856. uint32_t max_slots = hcs1.max_slots;
  857. kdebug("max slots = %d", max_slots);
  858. io_mfence();
  859. xhci_write_op_reg32(cid, XHCI_OPS_CONFIG, max_slots);
  860. io_mfence();
  861. // 写入设备通知控制寄存器
  862. xhci_write_op_reg32(cid, XHCI_OPS_DNCTRL, (1 << 1)); // 目前只有N1被支持
  863. io_mfence();
  864. FAIL_ON_TO(xhci_hc_init_intr(cid), failed_free_dyn);
  865. io_mfence();
  866. ++xhci_ctrl_count;
  867. spin_unlock(&xhci_controller_init_lock);
  868. return;
  869. failed_free_dyn:; // 释放动态申请的内存
  870. if (xhci_hc[cid].dcbaap_vaddr)
  871. kfree((void *)xhci_hc[cid].dcbaap_vaddr);
  872. if (xhci_hc[cid].cmd_ring_vaddr)
  873. kfree((void *)xhci_hc[cid].cmd_ring_vaddr);
  874. if (xhci_hc[cid].event_ring_table_vaddr)
  875. kfree((void *)xhci_hc[cid].event_ring_table_vaddr);
  876. if (xhci_hc[cid].event_ring_vaddr)
  877. kfree((void *)xhci_hc[cid].event_ring_vaddr);
  878. failed:;
  879. io_mfence();
  880. // 取消地址映射
  881. mm_unmap(xhci_hc[cid].vbase, 65536);
  882. io_mfence();
  883. // 清空数组
  884. memset((void *)&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
  885. failed_exceed_max:;
  886. kerror("Failed to initialize controller: bus=%d, dev=%d, func=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func);
  887. spin_unlock(&xhci_controller_init_lock);
  888. }
  889. #pragma GCC pop_options