mm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. #include "mm.h"
  2. #include "mm-types.h"
  3. #include "mmio.h"
  4. #include "slab.h"
  5. #include <common/printk.h>
  6. #include <common/kprint.h>
  7. #include <driver/multiboot2/multiboot2.h>
  8. #include <process/process.h>
  9. #include <common/compiler.h>
  10. #include <common/errno.h>
  11. #include <debug/traceback/traceback.h>
  12. uint64_t mm_Total_Memory = 0;
  13. uint64_t mm_total_2M_pages = 0;
  14. struct mm_struct initial_mm = {0};
  15. struct memory_desc memory_management_struct = {{0}, 0};
  16. /**
  17. * @brief 从页表中获取pdt页表项的内容
  18. *
  19. * @param proc_page_table_addr 页表的地址
  20. * @param is_phys 页表地址是否为物理地址
  21. * @param virt_addr_start 要清除的虚拟地址的起始地址
  22. * @param length 要清除的区域的长度
  23. * @param clear 是否清除标志位
  24. */
  25. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  26. /**
  27. * @brief 检查页表是否存在不为0的页表项
  28. *
  29. * @param ptr 页表基指针
  30. * @return int8_t 存在 -> 1
  31. * 不存在 -> 0
  32. */
  33. int8_t mm_check_page_table(uint64_t *ptr)
  34. {
  35. for (int i = 0; i < 512; ++i, ++ptr)
  36. {
  37. if (*ptr != 0)
  38. return 1;
  39. }
  40. return 0;
  41. }
  42. void mm_init()
  43. {
  44. kinfo("Initializing memory management unit...");
  45. // 设置内核程序不同部分的起止地址
  46. memory_management_struct.kernel_code_start = (ul)&_text;
  47. memory_management_struct.kernel_code_end = (ul)&_etext;
  48. memory_management_struct.kernel_data_end = (ul)&_edata;
  49. memory_management_struct.rodata_end = (ul)&_erodata;
  50. memory_management_struct.start_brk = (ul)&_end;
  51. struct multiboot_mmap_entry_t mb2_mem_info[512];
  52. int count;
  53. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  54. io_mfence();
  55. for (int i = 0; i < count; ++i)
  56. {
  57. io_mfence();
  58. // 可用的内存
  59. if (mb2_mem_info->type == 1)
  60. mm_Total_Memory += mb2_mem_info->len;
  61. kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
  62. // 保存信息到mms
  63. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  64. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  65. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  66. memory_management_struct.len_e820 = i;
  67. // 脏数据
  68. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  69. break;
  70. }
  71. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", mm_Total_Memory);
  72. // 计算有效内存页数
  73. io_mfence();
  74. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  75. {
  76. if (memory_management_struct.e820[i].type != 1)
  77. continue;
  78. io_mfence();
  79. // 将内存段的起始物理地址按照2M进行对齐
  80. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  81. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  82. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  83. // 内存段不可用
  84. if (addr_end <= addr_start)
  85. continue;
  86. io_mfence();
  87. mm_total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  88. }
  89. kinfo("Total amounts of 2M pages : %ld.", mm_total_2M_pages);
  90. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  91. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  92. // 初始化mms的bitmap
  93. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  94. io_mfence();
  95. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  96. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  97. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  98. io_mfence();
  99. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  100. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  101. io_mfence();
  102. // 初始化内存页结构
  103. // 将页结构映射于bmp之后
  104. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  105. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  106. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  107. // 将pages_struct全部清空,以备后续初始化
  108. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  109. io_mfence();
  110. // 初始化内存区域
  111. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  112. io_mfence();
  113. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  114. memory_management_struct.count_zones = 0;
  115. io_mfence();
  116. // zones-struct 成员变量暂时按照5个来计算
  117. memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  118. io_mfence();
  119. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  120. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  121. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  122. {
  123. io_mfence();
  124. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  125. continue;
  126. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  127. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  128. if (addr_end <= addr_start)
  129. continue;
  130. // zone init
  131. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  132. ++memory_management_struct.count_zones;
  133. z->zone_addr_start = addr_start;
  134. z->zone_addr_end = addr_end;
  135. z->zone_length = addr_end - addr_start;
  136. z->count_pages_using = 0;
  137. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  138. z->total_pages_link = 0;
  139. z->attr = 0;
  140. z->gmd_struct = &memory_management_struct;
  141. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  142. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  143. // 初始化页
  144. struct Page *p = z->pages_group;
  145. for (int j = 0; j < z->count_pages; ++j, ++p)
  146. {
  147. p->zone = z;
  148. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  149. p->attr = 0;
  150. p->ref_counts = 0;
  151. p->age = 0;
  152. // 将bmp中对应的位 复位
  153. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  154. }
  155. }
  156. // 初始化0~2MB的物理页
  157. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  158. io_mfence();
  159. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  160. memory_management_struct.pages_struct->addr_phys = 0UL;
  161. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  162. memory_management_struct.pages_struct->ref_counts = 1;
  163. memory_management_struct.pages_struct->age = 0;
  164. // 将第0页的标志位给置上
  165. //*(memory_management_struct.bmp) |= 1UL;
  166. // 计算zone结构体的总长度(按照64位对齐)
  167. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  168. ZONE_DMA_INDEX = 0;
  169. ZONE_NORMAL_INDEX = 0;
  170. ZONE_UNMAPPED_INDEX = 0;
  171. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  172. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  173. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  174. // 初始化内存管理单元结构所占的物理页的结构体
  175. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  176. // kdebug("mms_max_page=%ld", mms_max_page);
  177. struct Page *tmp_page = NULL;
  178. ul page_num;
  179. // 第0个page已经在上方配置
  180. for (ul j = 1; j <= mms_max_page; ++j)
  181. {
  182. barrier();
  183. tmp_page = memory_management_struct.pages_struct + j;
  184. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  185. barrier();
  186. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  187. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  188. ++tmp_page->zone->count_pages_using;
  189. --tmp_page->zone->count_pages_free;
  190. }
  191. kinfo("Memory management unit initialize complete!");
  192. flush_tlb();
  193. // todo: 在这里增加代码,暂时停止视频输出,否则可能会导致图像数据写入slab的区域,从而造成异常
  194. // 初始化slab内存池
  195. slab_init();
  196. page_table_init();
  197. mmio_init();
  198. }
  199. /**
  200. * @brief 初始化内存页
  201. *
  202. * @param page 内存页结构体
  203. * @param flags 标志位
  204. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  205. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  206. * @return unsigned long
  207. */
  208. unsigned long page_init(struct Page *page, ul flags)
  209. {
  210. page->attr |= flags;
  211. // 若页面的引用计数为0或是共享页,增加引用计数
  212. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  213. {
  214. ++page->ref_counts;
  215. barrier();
  216. ++page->zone->total_pages_link;
  217. }
  218. page->anon_vma = NULL;
  219. spin_init(&(page->op_lock));
  220. return 0;
  221. }
  222. /**
  223. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  224. *
  225. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  226. * @param num 需要申请的连续内存页的数量 num<64
  227. * @param flags 将页面属性设置成flag
  228. * @return struct Page*
  229. */
  230. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  231. {
  232. ul zone_start = 0, zone_end = 0;
  233. if (num >= 64 && num <= 0)
  234. {
  235. kerror("alloc_pages(): num is invalid.");
  236. return NULL;
  237. }
  238. ul attr = flags;
  239. switch (zone_select)
  240. {
  241. case ZONE_DMA:
  242. // DMA区域
  243. zone_start = 0;
  244. zone_end = ZONE_DMA_INDEX;
  245. attr |= PAGE_PGT_MAPPED;
  246. break;
  247. case ZONE_NORMAL:
  248. zone_start = ZONE_DMA_INDEX;
  249. zone_end = ZONE_NORMAL_INDEX;
  250. attr |= PAGE_PGT_MAPPED;
  251. break;
  252. case ZONE_UNMAPPED_IN_PGT:
  253. zone_start = ZONE_NORMAL_INDEX;
  254. zone_end = ZONE_UNMAPPED_INDEX;
  255. attr = 0;
  256. break;
  257. default:
  258. kerror("In alloc_pages: param: zone_select incorrect.");
  259. // 返回空
  260. return NULL;
  261. break;
  262. }
  263. for (int i = zone_start; i <= zone_end; ++i)
  264. {
  265. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  266. continue;
  267. struct Zone *z = memory_management_struct.zones_struct + i;
  268. // 区域对应的起止页号
  269. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  270. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  271. ul tmp = 64 - page_start % 64;
  272. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  273. {
  274. // 按照bmp中的每一个元素进行查找
  275. // 先将p定位到bmp的起始元素
  276. ul *p = memory_management_struct.bmp + (j >> 6);
  277. ul shift = j % 64;
  278. ul tmp_num = ((1UL << num) - 1);
  279. for (ul k = shift; k < 64; ++k)
  280. {
  281. // 寻找连续num个空页
  282. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  283. {
  284. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  285. for (ul l = 0; l < num; ++l)
  286. {
  287. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  288. // 分配页面,手动配置属性及计数器
  289. // 置位bmp
  290. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  291. ++(z->count_pages_using);
  292. --(z->count_pages_free);
  293. page_init(x, attr);
  294. }
  295. // 成功分配了页面,返回第一个页面的指针
  296. // kwarn("start page num=%d\n", start_page_num);
  297. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  298. }
  299. }
  300. }
  301. }
  302. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, mm_total_2M_pages=%d", zone_select, num, mm_total_2M_pages);
  303. return NULL;
  304. }
  305. /**
  306. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  307. *
  308. * @param p 物理页结构体
  309. * @return unsigned long
  310. */
  311. unsigned long page_clean(struct Page *p)
  312. {
  313. --p->ref_counts;
  314. --p->zone->total_pages_link;
  315. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  316. if (!p->ref_counts)
  317. {
  318. p->attr &= PAGE_PGT_MAPPED;
  319. }
  320. return 0;
  321. }
  322. /**
  323. * @brief Get the page's attr
  324. *
  325. * @param page 内存页结构体
  326. * @return ul 属性
  327. */
  328. ul get_page_attr(struct Page *page)
  329. {
  330. if (page == NULL)
  331. {
  332. kBUG("get_page_attr(): page == NULL");
  333. return EPAGE_NULL;
  334. }
  335. else
  336. return page->attr;
  337. }
  338. /**
  339. * @brief Set the page's attr
  340. *
  341. * @param page 内存页结构体
  342. * @param flags 属性
  343. * @return ul 错误码
  344. */
  345. ul set_page_attr(struct Page *page, ul flags)
  346. {
  347. if (page == NULL)
  348. {
  349. kBUG("get_page_attr(): page == NULL");
  350. return EPAGE_NULL;
  351. }
  352. else
  353. {
  354. page->attr = flags;
  355. return 0;
  356. }
  357. }
  358. /**
  359. * @brief 释放连续number个内存页
  360. *
  361. * @param page 第一个要被释放的页面的结构体
  362. * @param number 要释放的内存页数量 number<64
  363. */
  364. void free_pages(struct Page *page, int number)
  365. {
  366. if (page == NULL)
  367. {
  368. kerror("free_pages() page is invalid.");
  369. return;
  370. }
  371. if (number >= 64 || number <= 0)
  372. {
  373. kerror("free_pages(): number %d is invalid.", number);
  374. return;
  375. }
  376. ul page_num;
  377. for (int i = 0; i < number; ++i, ++page)
  378. {
  379. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  380. // 复位bmp
  381. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  382. // 更新计数器
  383. --page->zone->count_pages_using;
  384. ++page->zone->count_pages_free;
  385. page->attr = 0;
  386. }
  387. return;
  388. }
  389. /**
  390. * @brief 重新初始化页表的函数
  391. * 将所有物理页映射到线性地址空间
  392. */
  393. void page_table_init()
  394. {
  395. kinfo("Re-Initializing page table...");
  396. ul *global_CR3 = get_CR3();
  397. int js = 0;
  398. ul *tmp_addr;
  399. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  400. {
  401. struct Zone *z = memory_management_struct.zones_struct + i;
  402. struct Page *p = z->pages_group;
  403. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  404. break;
  405. for (int j = 0; j < z->count_pages; ++j)
  406. {
  407. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
  408. ++p;
  409. ++js;
  410. }
  411. }
  412. flush_tlb();
  413. kinfo("Page table Initialized. Affects:%d", js);
  414. }
  415. /**
  416. * @brief 从页表中获取pdt页表项的内容
  417. *
  418. * @param proc_page_table_addr 页表的地址
  419. * @param is_phys 页表地址是否为物理地址
  420. * @param virt_addr_start 要清除的虚拟地址的起始地址
  421. * @param length 要清除的区域的长度
  422. * @param clear 是否清除标志位
  423. */
  424. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  425. {
  426. ul *tmp;
  427. if (is_phys)
  428. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  429. else
  430. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  431. // pml4页表项为0
  432. if (*tmp == 0)
  433. return 0;
  434. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  435. // pdpt页表项为0
  436. if (*tmp == 0)
  437. return 0;
  438. // 读取pdt页表项
  439. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  440. if (clear) // 清除页表项的标志位
  441. return *tmp & (~0x1fff);
  442. else
  443. return *tmp;
  444. }
  445. /**
  446. * @brief 从mms中寻找Page结构体
  447. *
  448. * @param phys_addr
  449. * @return struct Page*
  450. */
  451. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  452. {
  453. uint32_t zone_start, zone_end;
  454. switch (zone_select)
  455. {
  456. case ZONE_DMA:
  457. // DMA区域
  458. zone_start = 0;
  459. zone_end = ZONE_DMA_INDEX;
  460. break;
  461. case ZONE_NORMAL:
  462. zone_start = ZONE_DMA_INDEX;
  463. zone_end = ZONE_NORMAL_INDEX;
  464. break;
  465. case ZONE_UNMAPPED_IN_PGT:
  466. zone_start = ZONE_NORMAL_INDEX;
  467. zone_end = ZONE_UNMAPPED_INDEX;
  468. break;
  469. default:
  470. kerror("In mm_find_page: param: zone_select incorrect.");
  471. // 返回空
  472. return NULL;
  473. break;
  474. }
  475. for (int i = zone_start; i <= zone_end; ++i)
  476. {
  477. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  478. continue;
  479. struct Zone *z = memory_management_struct.zones_struct + i;
  480. // 区域对应的起止页号
  481. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  482. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  483. ul tmp = 64 - page_start % 64;
  484. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  485. {
  486. // 按照bmp中的每一个元素进行查找
  487. // 先将p定位到bmp的起始元素
  488. ul *p = memory_management_struct.bmp + (j >> 6);
  489. ul shift = j % 64;
  490. for (ul k = shift; k < 64; ++k)
  491. {
  492. if ((*p >> k) & 1) // 若当前页已分配
  493. {
  494. uint64_t page_num = j + k - shift;
  495. struct Page *x = memory_management_struct.pages_struct + page_num;
  496. if (x->addr_phys == phys_addr) // 找到对应的页
  497. return x;
  498. }
  499. }
  500. }
  501. }
  502. return NULL;
  503. }
  504. /**
  505. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  506. *
  507. * @todo 缩小堆区域
  508. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  509. * @param offset 新的地址相对于原地址的偏移量
  510. * @return uint64_t
  511. */
  512. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  513. {
  514. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  515. if (offset >= 0)
  516. {
  517. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  518. {
  519. struct vm_area_struct *vma = NULL;
  520. mm_create_vma(current_pcb->mm, i, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  521. mm_map_vma(vma, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys);
  522. }
  523. current_pcb->mm->brk_end = end_addr;
  524. }
  525. else
  526. {
  527. // 释放堆内存
  528. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  529. {
  530. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  531. // 找到对应的页
  532. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  533. if (p == NULL)
  534. {
  535. kerror("cannot find page addr=%#018lx", phys);
  536. return end_addr;
  537. }
  538. free_pages(p, 1);
  539. }
  540. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  541. // 在页表中取消映射
  542. }
  543. return end_addr;
  544. }
  545. /**
  546. * @brief 创建mmio对应的页结构体
  547. *
  548. * @param paddr 物理地址
  549. * @return struct Page* 创建成功的page
  550. */
  551. struct Page *__create_mmio_page_struct(uint64_t paddr)
  552. {
  553. struct Page *p = (struct Page *)kzalloc(sizeof(struct Page), 0);
  554. if (p == NULL)
  555. return NULL;
  556. p->addr_phys = paddr;
  557. page_init(p, PAGE_DEVICE);
  558. return p;
  559. }