mm.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. #include "mm.h"
  2. #include "mm-types.h"
  3. #include "slab.h"
  4. #include <common/printk.h>
  5. #include <common/kprint.h>
  6. #include <driver/multiboot2/multiboot2.h>
  7. #include <process/process.h>
  8. #include <common/compiler.h>
  9. #include <common/errno.h>
  10. #include <debug/traceback/traceback.h>
  11. uint64_t mm_Total_Memory = 0;
  12. uint64_t mm_total_2M_pages = 0;
  13. struct memory_desc memory_management_struct = {{0}, 0};
  14. /**
  15. * @brief 从页表中获取pdt页表项的内容
  16. *
  17. * @param proc_page_table_addr 页表的地址
  18. * @param is_phys 页表地址是否为物理地址
  19. * @param virt_addr_start 要清除的虚拟地址的起始地址
  20. * @param length 要清除的区域的长度
  21. * @param clear 是否清除标志位
  22. */
  23. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
  24. /**
  25. * @brief 检查页表是否存在不为0的页表项
  26. *
  27. * @param ptr 页表基指针
  28. * @return int8_t 存在 -> 1
  29. * 不存在 -> 0
  30. */
  31. int8_t mm_check_page_table(uint64_t *ptr)
  32. {
  33. for (int i = 0; i < 512; ++i, ++ptr)
  34. {
  35. if (*ptr != 0)
  36. return 1;
  37. }
  38. return 0;
  39. }
  40. void mm_init()
  41. {
  42. kinfo("Initializing memory management unit...");
  43. // 设置内核程序不同部分的起止地址
  44. memory_management_struct.kernel_code_start = (ul)&_text;
  45. memory_management_struct.kernel_code_end = (ul)&_etext;
  46. memory_management_struct.kernel_data_end = (ul)&_edata;
  47. memory_management_struct.rodata_end = (ul)&_erodata;
  48. memory_management_struct.start_brk = (ul)&_end;
  49. struct multiboot_mmap_entry_t mb2_mem_info[512];
  50. int count;
  51. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  52. io_mfence();
  53. for (int i = 0; i < count; ++i)
  54. {
  55. io_mfence();
  56. //可用的内存
  57. if (mb2_mem_info->type == 1)
  58. mm_Total_Memory += mb2_mem_info->len;
  59. kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
  60. // 保存信息到mms
  61. memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
  62. memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
  63. memory_management_struct.e820[i].type = mb2_mem_info[i].type;
  64. memory_management_struct.len_e820 = i;
  65. // 脏数据
  66. if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
  67. break;
  68. }
  69. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", mm_Total_Memory);
  70. // 计算有效内存页数
  71. io_mfence();
  72. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  73. {
  74. if (memory_management_struct.e820[i].type != 1)
  75. continue;
  76. io_mfence();
  77. // 将内存段的起始物理地址按照2M进行对齐
  78. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  79. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  80. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  81. // 内存段不可用
  82. if (addr_end <= addr_start)
  83. continue;
  84. io_mfence();
  85. mm_total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  86. }
  87. kinfo("Total amounts of 2M pages : %ld.", mm_total_2M_pages);
  88. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  89. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  90. // 初始化mms的bitmap
  91. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  92. io_mfence();
  93. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  94. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  95. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  96. io_mfence();
  97. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  98. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  99. io_mfence();
  100. kdebug("1212112");
  101. // 初始化内存页结构
  102. // 将页结构映射于bmp之后
  103. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  104. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  105. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  106. // 将pages_struct全部清空,以备后续初始化
  107. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  108. kdebug("ffff");
  109. io_mfence();
  110. // 初始化内存区域
  111. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  112. io_mfence();
  113. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  114. memory_management_struct.count_zones = 0;
  115. io_mfence();
  116. // zones-struct 成员变量暂时按照5个来计算
  117. memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  118. io_mfence();
  119. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  120. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  121. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  122. {
  123. io_mfence();
  124. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  125. continue;
  126. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  127. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  128. if (addr_end <= addr_start)
  129. continue;
  130. // zone init
  131. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  132. ++memory_management_struct.count_zones;
  133. z->zone_addr_start = addr_start;
  134. z->zone_addr_end = addr_end;
  135. z->zone_length = addr_end - addr_start;
  136. z->count_pages_using = 0;
  137. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  138. z->total_pages_link = 0;
  139. z->attr = 0;
  140. z->gmd_struct = &memory_management_struct;
  141. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  142. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  143. // 初始化页
  144. struct Page *p = z->pages_group;
  145. for (int j = 0; j < z->count_pages; ++j, ++p)
  146. {
  147. p->zone = z;
  148. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  149. p->attr = 0;
  150. p->ref_counts = 0;
  151. p->age = 0;
  152. // 将bmp中对应的位 复位
  153. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  154. }
  155. }
  156. // 初始化0~2MB的物理页
  157. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  158. io_mfence();
  159. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  160. memory_management_struct.pages_struct->addr_phys = 0UL;
  161. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  162. memory_management_struct.pages_struct->ref_counts = 1;
  163. memory_management_struct.pages_struct->age = 0;
  164. // 将第0页的标志位给置上
  165. //*(memory_management_struct.bmp) |= 1UL;
  166. // 计算zone结构体的总长度(按照64位对齐)
  167. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  168. ZONE_DMA_INDEX = 0;
  169. ZONE_NORMAL_INDEX = 0;
  170. ZONE_UNMAPPED_INDEX = 0;
  171. // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  172. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  173. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  174. // 初始化内存管理单元结构所占的物理页的结构体
  175. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  176. // kdebug("mms_max_page=%ld", mms_max_page);
  177. struct Page *tmp_page = NULL;
  178. ul page_num;
  179. // 第0个page已经在上方配置
  180. for (ul j = 1; j <= mms_max_page; ++j)
  181. {
  182. barrier();
  183. tmp_page = memory_management_struct.pages_struct + j;
  184. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  185. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  186. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  187. ++tmp_page->zone->count_pages_using;
  188. --tmp_page->zone->count_pages_free;
  189. }
  190. kinfo("Memory management unit initialize complete!");
  191. flush_tlb();
  192. // todo: 在这里增加代码,暂时停止视频输出,否则可能会导致图像数据写入slab的区域,从而造成异常
  193. // 初始化slab内存池
  194. slab_init();
  195. page_table_init();
  196. }
  197. /**
  198. * @brief 初始化内存页
  199. *
  200. * @param page 内存页结构体
  201. * @param flags 标志位
  202. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  203. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  204. * @return unsigned long
  205. */
  206. unsigned long page_init(struct Page *page, ul flags)
  207. {
  208. page->attr |= flags;
  209. // 若页面的引用计数为0或是共享页,增加引用计数
  210. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  211. {
  212. ++page->ref_counts;
  213. barrier();
  214. ++page->zone->total_pages_link;
  215. }
  216. return 0;
  217. }
  218. /**
  219. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  220. *
  221. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  222. * @param num 需要申请的连续内存页的数量 num<64
  223. * @param flags 将页面属性设置成flag
  224. * @return struct Page*
  225. */
  226. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  227. {
  228. ul zone_start = 0, zone_end = 0;
  229. if (num >= 64 && num <= 0)
  230. {
  231. kerror("alloc_pages(): num is invalid.");
  232. return NULL;
  233. }
  234. ul attr = flags;
  235. switch (zone_select)
  236. {
  237. case ZONE_DMA:
  238. // DMA区域
  239. zone_start = 0;
  240. zone_end = ZONE_DMA_INDEX;
  241. attr |= PAGE_PGT_MAPPED;
  242. break;
  243. case ZONE_NORMAL:
  244. zone_start = ZONE_DMA_INDEX;
  245. zone_end = ZONE_NORMAL_INDEX;
  246. attr |= PAGE_PGT_MAPPED;
  247. break;
  248. case ZONE_UNMAPPED_IN_PGT:
  249. zone_start = ZONE_NORMAL_INDEX;
  250. zone_end = ZONE_UNMAPPED_INDEX;
  251. attr = 0;
  252. break;
  253. default:
  254. kerror("In alloc_pages: param: zone_select incorrect.");
  255. // 返回空
  256. return NULL;
  257. break;
  258. }
  259. for (int i = zone_start; i <= zone_end; ++i)
  260. {
  261. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  262. continue;
  263. struct Zone *z = memory_management_struct.zones_struct + i;
  264. // 区域对应的起止页号
  265. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  266. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  267. ul tmp = 64 - page_start % 64;
  268. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  269. {
  270. // 按照bmp中的每一个元素进行查找
  271. // 先将p定位到bmp的起始元素
  272. ul *p = memory_management_struct.bmp + (j >> 6);
  273. ul shift = j % 64;
  274. ul tmp_num = ((1UL << num) - 1);
  275. for (ul k = shift; k < 64; ++k)
  276. {
  277. // 寻找连续num个空页
  278. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  279. {
  280. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  281. for (ul l = 0; l < num; ++l)
  282. {
  283. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  284. // 分配页面,手动配置属性及计数器
  285. // 置位bmp
  286. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  287. ++(z->count_pages_using);
  288. --(z->count_pages_free);
  289. x->attr = attr;
  290. }
  291. // 成功分配了页面,返回第一个页面的指针
  292. // kwarn("start page num=%d\n", start_page_num);
  293. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  294. }
  295. }
  296. }
  297. }
  298. kBUG("Cannot alloc page, ZONE=%d\tnums=%d, mm_total_2M_pages=%d", zone_select, num, mm_total_2M_pages);
  299. return NULL;
  300. }
  301. /**
  302. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  303. *
  304. * @param p 物理页结构体
  305. * @return unsigned long
  306. */
  307. unsigned long page_clean(struct Page *p)
  308. {
  309. --p->ref_counts;
  310. --p->zone->total_pages_link;
  311. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  312. if (!p->ref_counts)
  313. {
  314. p->attr &= PAGE_PGT_MAPPED;
  315. }
  316. return 0;
  317. }
  318. /**
  319. * @brief Get the page's attr
  320. *
  321. * @param page 内存页结构体
  322. * @return ul 属性
  323. */
  324. ul get_page_attr(struct Page *page)
  325. {
  326. if (page == NULL)
  327. {
  328. kBUG("get_page_attr(): page == NULL");
  329. return EPAGE_NULL;
  330. }
  331. else
  332. return page->attr;
  333. }
  334. /**
  335. * @brief Set the page's attr
  336. *
  337. * @param page 内存页结构体
  338. * @param flags 属性
  339. * @return ul 错误码
  340. */
  341. ul set_page_attr(struct Page *page, ul flags)
  342. {
  343. if (page == NULL)
  344. {
  345. kBUG("get_page_attr(): page == NULL");
  346. return EPAGE_NULL;
  347. }
  348. else
  349. {
  350. page->attr = flags;
  351. return 0;
  352. }
  353. }
  354. /**
  355. * @brief 释放连续number个内存页
  356. *
  357. * @param page 第一个要被释放的页面的结构体
  358. * @param number 要释放的内存页数量 number<64
  359. */
  360. void free_pages(struct Page *page, int number)
  361. {
  362. if (page == NULL)
  363. {
  364. kerror("free_pages() page is invalid.");
  365. return;
  366. }
  367. if (number >= 64 || number <= 0)
  368. {
  369. kerror("free_pages(): number %d is invalid.", number);
  370. return;
  371. }
  372. ul page_num;
  373. for (int i = 0; i < number; ++i, ++page)
  374. {
  375. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  376. // 复位bmp
  377. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  378. // 更新计数器
  379. --page->zone->count_pages_using;
  380. ++page->zone->count_pages_free;
  381. page->attr = 0;
  382. }
  383. return;
  384. }
  385. /**
  386. * @brief 重新初始化页表的函数
  387. * 将所有物理页映射到线性地址空间
  388. */
  389. void page_table_init()
  390. {
  391. kinfo("Re-Initializing page table...");
  392. ul *global_CR3 = get_CR3();
  393. int js = 0;
  394. ul *tmp_addr;
  395. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  396. {
  397. struct Zone *z = memory_management_struct.zones_struct + i;
  398. struct Page *p = z->pages_group;
  399. if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
  400. break;
  401. for (int j = 0; j < z->count_pages; ++j)
  402. {
  403. mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
  404. ++p;
  405. ++js;
  406. }
  407. }
  408. flush_tlb();
  409. kinfo("Page table Initialized. Affects:%d", js);
  410. }
  411. /**
  412. * @brief 从页表中获取pdt页表项的内容
  413. *
  414. * @param proc_page_table_addr 页表的地址
  415. * @param is_phys 页表地址是否为物理地址
  416. * @param virt_addr_start 要清除的虚拟地址的起始地址
  417. * @param length 要清除的区域的长度
  418. * @param clear 是否清除标志位
  419. */
  420. uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
  421. {
  422. ul *tmp;
  423. if (is_phys)
  424. tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  425. else
  426. tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
  427. // pml4页表项为0
  428. if (*tmp == 0)
  429. return 0;
  430. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  431. // pdpt页表项为0
  432. if (*tmp == 0)
  433. return 0;
  434. // 读取pdt页表项
  435. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  436. if (clear) // 清除页表项的标志位
  437. return *tmp & (~0x1fff);
  438. else
  439. return *tmp;
  440. }
  441. /**
  442. * @brief 从mms中寻找Page结构体
  443. *
  444. * @param phys_addr
  445. * @return struct Page*
  446. */
  447. static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
  448. {
  449. uint32_t zone_start, zone_end;
  450. switch (zone_select)
  451. {
  452. case ZONE_DMA:
  453. // DMA区域
  454. zone_start = 0;
  455. zone_end = ZONE_DMA_INDEX;
  456. break;
  457. case ZONE_NORMAL:
  458. zone_start = ZONE_DMA_INDEX;
  459. zone_end = ZONE_NORMAL_INDEX;
  460. break;
  461. case ZONE_UNMAPPED_IN_PGT:
  462. zone_start = ZONE_NORMAL_INDEX;
  463. zone_end = ZONE_UNMAPPED_INDEX;
  464. break;
  465. default:
  466. kerror("In mm_find_page: param: zone_select incorrect.");
  467. // 返回空
  468. return NULL;
  469. break;
  470. }
  471. for (int i = zone_start; i <= zone_end; ++i)
  472. {
  473. if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
  474. continue;
  475. struct Zone *z = memory_management_struct.zones_struct + i;
  476. // 区域对应的起止页号
  477. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  478. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  479. ul tmp = 64 - page_start % 64;
  480. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  481. {
  482. // 按照bmp中的每一个元素进行查找
  483. // 先将p定位到bmp的起始元素
  484. ul *p = memory_management_struct.bmp + (j >> 6);
  485. ul shift = j % 64;
  486. for (ul k = shift; k < 64; ++k)
  487. {
  488. if ((*p >> k) & 1) // 若当前页已分配
  489. {
  490. uint64_t page_num = j + k - shift;
  491. struct Page *x = memory_management_struct.pages_struct + page_num;
  492. if (x->addr_phys == phys_addr) // 找到对应的页
  493. return x;
  494. }
  495. }
  496. }
  497. }
  498. return NULL;
  499. }
  500. /**
  501. * @brief 调整堆区域的大小(暂时只能增加堆区域)
  502. *
  503. * @todo 缩小堆区域
  504. * @param old_brk_end_addr 原本的堆内存区域的结束地址
  505. * @param offset 新的地址相对于原地址的偏移量
  506. * @return uint64_t
  507. */
  508. uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
  509. {
  510. uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
  511. if (offset >= 0)
  512. {
  513. for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
  514. {
  515. // kdebug("map [%#018lx]", i);
  516. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
  517. }
  518. current_pcb->mm->brk_end = end_addr;
  519. }
  520. else
  521. {
  522. // 释放堆内存
  523. for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
  524. {
  525. uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
  526. // 找到对应的页
  527. struct Page *p = mm_find_page(phys, ZONE_NORMAL);
  528. if (p == NULL)
  529. {
  530. kerror("cannot find page addr=%#018lx", phys);
  531. return end_addr;
  532. }
  533. free_pages(p, 1);
  534. }
  535. mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
  536. // 在页表中取消映射
  537. }
  538. return end_addr;
  539. }
  540. /**
  541. * @brief 检测指定地址是否已经被映射
  542. *
  543. * @param page_table_phys_addr 页表的物理地址
  544. * @param virt_addr 要检测的地址
  545. * @return true 已经被映射
  546. * @return false
  547. */
  548. bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
  549. {
  550. ul *tmp;
  551. tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  552. // pml4页表项为0
  553. if (*tmp == 0)
  554. return 0;
  555. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  556. // pdpt页表项为0
  557. if (*tmp == 0)
  558. return 0;
  559. // 读取pdt页表项
  560. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
  561. // pde页表项为0
  562. if (*tmp == 0)
  563. return 0;
  564. if (*tmp & (1 << 7))
  565. {
  566. // 当前为2M物理页
  567. return true;
  568. }
  569. else
  570. {
  571. // 存在4级页表
  572. tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_4K_SHIFT) & 0x1ff)));
  573. if (*tmp != 0)
  574. return true;
  575. else
  576. return false;
  577. }
  578. }
  579. /**
  580. * @brief 检测是否为有效的2M页(物理内存页)
  581. *
  582. * @param paddr 物理地址
  583. * @return int8_t 是 -> 1
  584. * 否 -> 0
  585. */
  586. int8_t mm_is_2M_page(uint64_t paddr)
  587. {
  588. if (likely((paddr >> PAGE_2M_SHIFT) < mm_total_2M_pages))
  589. return 1;
  590. else
  591. return 0;
  592. }
  593. // #pragma GCC pop_options