mm.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. #include "mm.h"
  2. #include "../common/printk.h"
  3. #include "../common/kprint.h"
  4. #include "../driver/multiboot2/multiboot2.h"
  5. ul Total_Memory = 0;
  6. ul total_2M_pages = 0;
  7. void mm_init()
  8. {
  9. kinfo("Initializing memory management unit...");
  10. // 设置内核程序不同部分的起止地址
  11. memory_management_struct.kernel_code_start = (ul)&_text;
  12. memory_management_struct.kernel_code_end = (ul)&_etext;
  13. memory_management_struct.kernel_data_end = (ul)&_edata;
  14. memory_management_struct.kernel_end = (ul)&_end;
  15. struct multiboot_mmap_entry_t *mb2_mem_info;
  16. int count;
  17. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  18. for (int i = 0; i < count; ++i)
  19. {
  20. //可用的内存
  21. if (mb2_mem_info->type == 1)
  22. Total_Memory += mb2_mem_info->len;
  23. // 保存信息到mms
  24. memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr;
  25. memory_management_struct.e820[i].Length = mb2_mem_info->len;
  26. memory_management_struct.e820[i].type = mb2_mem_info->type;
  27. memory_management_struct.len_e820 = i;
  28. ++mb2_mem_info;
  29. // 脏数据
  30. if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1)
  31. break;
  32. }
  33. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  34. // 计算有效内存页数
  35. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  36. {
  37. if (memory_management_struct.e820[i].type != 1)
  38. continue;
  39. // 将内存段的起始物理地址按照2M进行对齐
  40. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  41. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  42. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  43. // 内存段不可用
  44. if (addr_end <= addr_start)
  45. continue;
  46. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  47. }
  48. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  49. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  50. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  51. // 初始化mms的bitmap
  52. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  53. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  54. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  55. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  56. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  57. memset(memory_management_struct.bmp, 0xffffffffffffffff, memory_management_struct.bmp_len);
  58. // 初始化内存页结构
  59. // 将页结构映射于bmp之后
  60. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  61. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  62. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  63. // 将pages_struct全部清空,以备后续初始化
  64. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  65. // 初始化内存区域
  66. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  67. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  68. memory_management_struct.count_zones = 0;
  69. // zones-struct 成员变量暂时按照5个来计算
  70. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  71. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  72. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  73. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  74. {
  75. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  76. continue;
  77. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  78. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  79. if (addr_end <= addr_start)
  80. continue;
  81. // zone init
  82. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  83. ++memory_management_struct.count_zones;
  84. z->zone_addr_start = addr_start;
  85. z->zone_addr_end = addr_end;
  86. z->zone_length = addr_end - addr_start;
  87. z->count_pages_using = 0;
  88. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  89. z->total_pages_link = 0;
  90. z->attr = 0;
  91. z->gmd_struct = &memory_management_struct;
  92. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  93. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  94. // 初始化页
  95. struct Page *p = z->pages_group;
  96. for (int j = 0; j < z->count_pages; ++j, ++p)
  97. {
  98. p->zone = z;
  99. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  100. p->attr = 0;
  101. p->ref_counts = 0;
  102. p->age = 0;
  103. // 将bmp中对应的位 复位
  104. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  105. }
  106. }
  107. // 初始化0~2MB的物理页
  108. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  109. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  110. memory_management_struct.pages_struct->addr_phys = 0UL;
  111. memory_management_struct.pages_struct->attr = 0;
  112. memory_management_struct.pages_struct->ref_counts = 0;
  113. memory_management_struct.pages_struct->age = 0;
  114. // 计算zone结构体的总长度(按照64位对齐)
  115. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  116. /*
  117. printk_color(ORANGE, BLACK, "bmp:%#18lx, bmp_len:%#18lx, bits_size:%#18lx\n", memory_management_struct.bmp, memory_management_struct.bmp_len, memory_management_struct.bits_size);
  118. printk_color(ORANGE, BLACK, "pages_struct:%#18lx, count_pages:%#18lx, pages_struct_len:%#18lx\n", memory_management_struct.pages_struct, memory_management_struct.count_pages, memory_management_struct.pages_struct_len);
  119. printk_color(ORANGE, BLACK, "zones_struct:%#18lx, count_zones:%#18lx, zones_struct_len:%#18lx\n", memory_management_struct.zones_struct, memory_management_struct.count_zones, memory_management_struct.zones_struct_len);
  120. */
  121. ZONE_DMA_INDEX = 0; // need rewrite in the future
  122. ZONE_NORMAL_INDEX = 0; // need rewrite in the future
  123. for (int i = 0; i < memory_management_struct.count_zones; ++i) // need rewrite in the future
  124. {
  125. struct Zone *z = memory_management_struct.zones_struct + i;
  126. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  127. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  128. // 1GB以上的内存空间不做映射
  129. if (z->zone_addr_start == 0x100000000)
  130. ZONE_UNMAPED_INDEX = i;
  131. }
  132. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  133. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  134. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  135. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  136. // 初始化内存管理单元结构所占的物理页的结构体
  137. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  138. for (ul j = 0; j <= mms_max_page; ++j)
  139. {
  140. page_init(memory_management_struct.pages_struct + j, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT | PAGE_ACTIVE);
  141. }
  142. global_CR3 = get_CR3();
  143. flush_tlb();
  144. kinfo("Memory management unit initialize complete!");
  145. }
  146. /**
  147. * @brief 初始化内存页
  148. *
  149. * @param page 内存页结构体
  150. * @param flags 标志位
  151. * 对于新页面: 初始化struct page
  152. * 对于当前页面属性/flags中含有引用属性或共享属性时,则只增加struct page和struct zone的被引用计数。否则就只是添加页表属性,并置位bmp的相应位。
  153. * @return unsigned long
  154. */
  155. unsigned long page_init(struct Page *page, ul flags)
  156. {
  157. // 全新的页面
  158. if (!page->attr)
  159. {
  160. // 将bmp对应的标志位置位
  161. *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64;
  162. page->attr = flags;
  163. ++(page->ref_counts);
  164. ++(page->zone->count_pages_using);
  165. --(page->zone->count_pages_free);
  166. ++(page->zone->total_pages_link);
  167. }
  168. // 不是全新的页面,而是含有引用属性/共享属性
  169. else if ((page->attr & PAGE_REFERENCED) || (page->attr & PAGE_K_SHARE_TO_U) || (flags & PAGE_REFERENCED) || (flags & PAGE_K_SHARE_TO_U))
  170. {
  171. page->attr |= flags;
  172. ++(page->ref_counts);
  173. ++(page->zone->total_pages_link);
  174. }
  175. else
  176. {
  177. // 将bmp对应的标志位置位
  178. //*(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << ((page->addr_phys >> PAGE_2M_SHIFT) % 64));
  179. *(memory_management_struct.bmp + ((page->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= 1UL << (page->addr_phys >> PAGE_2M_SHIFT) % 64;
  180. page->attr |= flags;
  181. }
  182. return 0;
  183. }
  184. /**
  185. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  186. *
  187. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  188. * @param num 需要申请的连续内存页的数量 num<=64
  189. * @param flags 将页面属性设置成flag
  190. * @return struct Page*
  191. */
  192. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  193. {
  194. ul zone_start = 0, zone_end = 0;
  195. switch (zone_select)
  196. {
  197. case ZONE_DMA:
  198. // DMA区域
  199. zone_start = 0;
  200. zone_end = ZONE_DMA_INDEX;
  201. break;
  202. case ZONE_NORMAL:
  203. zone_start = ZONE_DMA_INDEX;
  204. zone_end = ZONE_NORMAL_INDEX;
  205. break;
  206. case ZONE_UNMAPPED_IN_PGT:
  207. zone_start = ZONE_NORMAL_INDEX;
  208. zone_end = ZONE_UNMAPED_INDEX;
  209. break;
  210. default:
  211. kwarn("In alloc_pages: param: zone_select incorrect.");
  212. // 返回空
  213. return NULL;
  214. break;
  215. }
  216. for (int i = zone_start; i <= zone_end; ++i)
  217. {
  218. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  219. continue;
  220. struct Zone *z = memory_management_struct.zones_struct + i;
  221. // 区域对应的起止页号以及区域拥有的页面数
  222. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  223. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  224. ul page_num = (z->zone_length >> PAGE_2M_SHIFT);
  225. ul tmp = 64 - page_start % 64;
  226. for (ul j = page_start; j <= page_end; j += ((j % 64) ? tmp : 64))
  227. {
  228. // 按照bmp中的每一个元素进行查找
  229. // 先将p定位到bmp的起始元素
  230. ul *p = memory_management_struct.bmp + (j >> 6);
  231. ul shift = j % 64;
  232. for (ul k = shift; k < 64 - shift; ++k)
  233. {
  234. // 寻找连续num个空页
  235. if (!(((*p >> k) | (*(p + 1) << (64 - k))) & (num == 64 ? 0xffffffffffffffffUL : ((1UL << num) - 1))))
  236. {
  237. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号(书上的公式有问题,这个是改过之后的版本)
  238. for (ul l = 0; l < num; ++l)
  239. {
  240. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  241. page_init(x, flags);
  242. }
  243. // 成功分配了页面,返回第一个页面的指针
  244. // printk("start page num=%d\n",start_page_num);
  245. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  246. }
  247. }
  248. }
  249. }
  250. return NULL;
  251. }
  252. unsigned long page_clean(struct Page *p)
  253. {
  254. if (!p->attr)
  255. p->attr = 0;
  256. else if ((p->attr & PAGE_REFERENCED) || (p->attr & PAGE_K_SHARE_TO_U))
  257. {
  258. // 被引用的页或内核共享给用户态的页
  259. --p->ref_counts;
  260. --p->zone->total_pages_link;
  261. // 当引用为0时
  262. if (!p->ref_counts)
  263. {
  264. p->attr = 0;
  265. --p->zone->count_pages_using;
  266. ++p->zone->count_pages_free;
  267. }
  268. }
  269. else
  270. {
  271. // 将bmp复位
  272. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) &= ~(1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  273. p->attr = 0;
  274. p->ref_counts = 0;
  275. --p->zone->count_pages_using;
  276. ++p->zone->count_pages_free;
  277. --p->zone->total_pages_link;
  278. }
  279. }
  280. /**
  281. * @brief 释放连续number个内存页
  282. *
  283. * @param page 第一个要被释放的页面的结构体
  284. * @param number 要释放的内存页数量 number<64
  285. */
  286. void free_pages(struct Page *page, int number)
  287. {
  288. // @todo: 释放连续number个内存页
  289. }