process.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <mm/slab.h>
  15. #include <common/spinlock.h>
  16. #include <syscall/syscall.h>
  17. #include <syscall/syscall_num.h>
  18. #include <sched/sched.h>
  19. #include <common/unistd.h>
  20. #include <debug/traceback/traceback.h>
  21. #include <ktest/ktest.h>
  22. #include <mm/mmio.h>
  23. #include <common/lz4.h>
  24. // #pragma GCC push_options
  25. // #pragma GCC optimize("O0")
  26. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  27. long process_global_pid = 1; // 系统中最大的pid
  28. extern void system_call(void);
  29. extern void kernel_thread_func(void);
  30. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  31. extern struct mm_struct initial_mm;
  32. struct thread_struct initial_thread =
  33. {
  34. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  35. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  36. .fs = KERNEL_DS,
  37. .gs = KERNEL_DS,
  38. .cr2 = 0,
  39. .trap_num = 0,
  40. .err_code = 0};
  41. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  42. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  43. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  44. // 为每个核心初始化初始进程的tss
  45. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  46. /**
  47. * @brief 拷贝当前进程的标志位
  48. *
  49. * @param clone_flags 克隆标志位
  50. * @param pcb 新的进程的pcb
  51. * @return uint64_t
  52. */
  53. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  54. /**
  55. * @brief 拷贝当前进程的文件描述符等信息
  56. *
  57. * @param clone_flags 克隆标志位
  58. * @param pcb 新的进程的pcb
  59. * @return uint64_t
  60. */
  61. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  62. /**
  63. * @brief 回收进程的所有文件描述符
  64. *
  65. * @param pcb 要被回收的进程的pcb
  66. * @return uint64_t
  67. */
  68. uint64_t process_exit_files(struct process_control_block *pcb);
  69. /**
  70. * @brief 拷贝当前进程的内存空间分布结构体信息
  71. *
  72. * @param clone_flags 克隆标志位
  73. * @param pcb 新的进程的pcb
  74. * @return uint64_t
  75. */
  76. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  77. /**
  78. * @brief 释放进程的页表
  79. *
  80. * @param pcb 要被释放页表的进程
  81. * @return uint64_t
  82. */
  83. uint64_t process_exit_mm(struct process_control_block *pcb);
  84. /**
  85. * @brief 拷贝当前进程的线程结构体
  86. *
  87. * @param clone_flags 克隆标志位
  88. * @param pcb 新的进程的pcb
  89. * @return uint64_t
  90. */
  91. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  92. void process_exit_thread(struct process_control_block *pcb);
  93. /**
  94. * @brief 切换进程
  95. *
  96. * @param prev 上一个进程的pcb
  97. * @param next 将要切换到的进程的pcb
  98. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  99. * 这里切换fs和gs寄存器
  100. */
  101. #pragma GCC push_options
  102. #pragma GCC optimize("O0")
  103. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  104. {
  105. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  106. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  107. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  108. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  109. __asm__ __volatile__("movq %%fs, %0 \n\t"
  110. : "=a"(prev->thread->fs));
  111. __asm__ __volatile__("movq %%gs, %0 \n\t"
  112. : "=a"(prev->thread->gs));
  113. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  114. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  115. }
  116. #pragma GCC pop_options
  117. /**
  118. * @brief 打开要执行的程序文件
  119. *
  120. * @param path
  121. * @return struct vfs_file_t*
  122. */
  123. struct vfs_file_t *process_open_exec_file(char *path)
  124. {
  125. struct vfs_dir_entry_t *dentry = NULL;
  126. struct vfs_file_t *filp = NULL;
  127. dentry = vfs_path_walk(path, 0);
  128. if (dentry == NULL)
  129. return (void *)-ENOENT;
  130. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  131. return (void *)-ENOTDIR;
  132. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  133. if (filp == NULL)
  134. return (void *)-ENOMEM;
  135. filp->position = 0;
  136. filp->mode = 0;
  137. filp->dEntry = dentry;
  138. filp->mode = ATTR_READ_ONLY;
  139. filp->file_ops = dentry->dir_inode->file_ops;
  140. return filp;
  141. }
  142. /**
  143. * @brief 加载elf格式的程序文件到内存中,并设置regs
  144. *
  145. * @param regs 寄存器
  146. * @param path 文件路径
  147. * @return int
  148. */
  149. static int process_load_elf_file(struct pt_regs *regs, char *path)
  150. {
  151. int retval = 0;
  152. struct vfs_file_t *filp = process_open_exec_file(path);
  153. if ((long)filp <= 0 && (long)filp >= -255)
  154. {
  155. // kdebug("(long)filp=%ld", (long)filp);
  156. return (unsigned long)filp;
  157. }
  158. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  159. memset(buf, 0, PAGE_4K_SIZE);
  160. uint64_t pos = 0;
  161. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  162. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  163. retval = 0;
  164. if (!elf_check(buf))
  165. {
  166. kerror("Not an ELF file: %s", path);
  167. retval = -ENOTSUP;
  168. goto load_elf_failed;
  169. }
  170. #if ARCH(X86_64)
  171. // 暂时只支持64位的文件
  172. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  173. {
  174. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  175. retval = -EUNSUPPORTED;
  176. goto load_elf_failed;
  177. }
  178. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  179. // 暂时只支持AMD64架构
  180. if (ehdr.e_machine != EM_AMD64)
  181. {
  182. kerror("e_machine=%d", ehdr.e_machine);
  183. retval = -EUNSUPPORTED;
  184. goto load_elf_failed;
  185. }
  186. #else
  187. #error Unsupported architecture!
  188. #endif
  189. if (ehdr.e_type != ET_EXEC)
  190. {
  191. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  192. retval = -EUNSUPPORTED;
  193. goto load_elf_failed;
  194. }
  195. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  196. regs->rip = ehdr.e_entry;
  197. current_pcb->mm->code_addr_start = ehdr.e_entry;
  198. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  199. // 将指针移动到program header处
  200. pos = ehdr.e_phoff;
  201. // 读取所有的phdr
  202. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  203. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  204. if ((unsigned long)filp <= 0)
  205. {
  206. kdebug("(unsigned long)filp=%d", (long)filp);
  207. retval = -ENOEXEC;
  208. goto load_elf_failed;
  209. }
  210. Elf64_Phdr *phdr = buf;
  211. // 将程序加载到内存中
  212. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  213. {
  214. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  215. // 不是可加载的段
  216. if (phdr->p_type != PT_LOAD)
  217. continue;
  218. int64_t remain_mem_size = phdr->p_memsz;
  219. int64_t remain_file_size = phdr->p_filesz;
  220. pos = phdr->p_offset;
  221. uint64_t virt_base = phdr->p_vaddr;
  222. while (remain_mem_size > 0)
  223. {
  224. // kdebug("loading...");
  225. int64_t map_size = 0;
  226. if (remain_mem_size > PAGE_2M_SIZE / 2)
  227. {
  228. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  229. struct vm_area_struct *vma = NULL;
  230. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  231. // 防止内存泄露
  232. if (ret == -EEXIST)
  233. free_pages(Phy_to_2M_Page(pa), 1);
  234. else
  235. mm_map_vma(vma, pa);
  236. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  237. map_size = PAGE_2M_SIZE;
  238. }
  239. else
  240. {
  241. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  242. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  243. // 循环分配4K大小内存块
  244. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  245. {
  246. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  247. struct vm_area_struct *vma = NULL;
  248. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  249. if (val == -EEXIST)
  250. kfree(phys_2_virt(paddr));
  251. else
  252. mm_map_vma(vma, paddr);
  253. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  254. }
  255. }
  256. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  257. int64_t val = 0;
  258. if (remain_file_size != 0)
  259. {
  260. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  261. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  262. }
  263. if (val < 0)
  264. goto load_elf_failed;
  265. remain_mem_size -= map_size;
  266. remain_file_size -= val;
  267. virt_base += map_size;
  268. }
  269. }
  270. // 分配2MB的栈内存空间
  271. regs->rsp = current_pcb->mm->stack_start;
  272. regs->rbp = current_pcb->mm->stack_start;
  273. {
  274. struct vm_area_struct *vma = NULL;
  275. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  276. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  277. if (val == -EEXIST)
  278. free_pages(Phy_to_2M_Page(pa), 1);
  279. else
  280. mm_map_vma(vma, pa);
  281. }
  282. // 清空栈空间
  283. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  284. load_elf_failed:;
  285. if (buf != NULL)
  286. kfree(buf);
  287. return retval;
  288. }
  289. /**
  290. * @brief 使当前进程去执行新的代码
  291. *
  292. * @param regs 当前进程的寄存器
  293. * @param path 可执行程序的路径
  294. * @param argv 参数列表
  295. * @param envp 环境变量
  296. * @return ul 错误码
  297. */
  298. #pragma GCC push_options
  299. #pragma GCC optimize("O0")
  300. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  301. {
  302. // kdebug("do_execve is running...");
  303. // 当前进程正在与父进程共享地址空间,需要创建
  304. // 独立的地址空间才能使新程序正常运行
  305. if (current_pcb->flags & PF_VFORK)
  306. {
  307. kdebug("proc:%d creating new mem space", current_pcb->pid);
  308. // 分配新的内存空间分布结构体
  309. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  310. memset(new_mms, 0, sizeof(struct mm_struct));
  311. current_pcb->mm = new_mms;
  312. // 分配顶层页表, 并设置顶层页表的物理地址
  313. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  314. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  315. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  316. // 拷贝内核空间的页表指针
  317. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  318. }
  319. // 设置用户栈和用户堆的基地址
  320. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  321. const uint64_t brk_start_addr = 0x700000000000UL;
  322. process_switch_mm(current_pcb);
  323. // 为用户态程序设置地址边界
  324. if (!(current_pcb->flags & PF_KTHREAD))
  325. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  326. current_pcb->mm->code_addr_end = 0;
  327. current_pcb->mm->data_addr_start = 0;
  328. current_pcb->mm->data_addr_end = 0;
  329. current_pcb->mm->rodata_addr_start = 0;
  330. current_pcb->mm->rodata_addr_end = 0;
  331. current_pcb->mm->bss_start = 0;
  332. current_pcb->mm->bss_end = 0;
  333. current_pcb->mm->brk_start = brk_start_addr;
  334. current_pcb->mm->brk_end = brk_start_addr;
  335. current_pcb->mm->stack_start = stack_start_addr;
  336. // 关闭之前的文件描述符
  337. process_exit_files(current_pcb);
  338. // 清除进程的vfork标志位
  339. current_pcb->flags &= ~PF_VFORK;
  340. // 加载elf格式的可执行文件
  341. int tmp = process_load_elf_file(regs, path);
  342. if (tmp < 0)
  343. goto exec_failed;
  344. // 拷贝参数列表
  345. if (argv != NULL)
  346. {
  347. int argc = 0;
  348. // 目标程序的argv基地址指针,最大8个参数
  349. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  350. uint64_t str_addr = (uint64_t)dst_argv;
  351. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  352. {
  353. if (*argv[argc] == NULL)
  354. break;
  355. // 测量参数的长度(最大1023)
  356. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  357. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  358. str_addr -= argv_len;
  359. dst_argv[argc] = (char *)str_addr;
  360. // 字符串加上结尾字符
  361. ((char *)str_addr)[argv_len] = '\0';
  362. }
  363. // 重新设定栈基址,并预留空间防止越界
  364. stack_start_addr = str_addr - 8;
  365. current_pcb->mm->stack_start = stack_start_addr;
  366. regs->rsp = regs->rbp = stack_start_addr;
  367. // 传递参数
  368. regs->rdi = argc;
  369. regs->rsi = (uint64_t)dst_argv;
  370. }
  371. // kdebug("execve ok");
  372. regs->cs = USER_CS | 3;
  373. regs->ds = USER_DS | 3;
  374. regs->ss = USER_DS | 0x3;
  375. regs->rflags = 0x200246;
  376. regs->rax = 1;
  377. regs->es = 0;
  378. return 0;
  379. exec_failed:;
  380. process_do_exit(tmp);
  381. }
  382. #pragma GCC pop_options
  383. /**
  384. * @brief 内核init进程
  385. *
  386. * @param arg
  387. * @return ul 参数
  388. */
  389. #pragma GCC push_options
  390. #pragma GCC optimize("O0")
  391. ul initial_kernel_thread(ul arg)
  392. {
  393. // kinfo("initial proc running...\targ:%#018lx", arg);
  394. fat32_init();
  395. // 使用单独的内核线程来初始化usb驱动程序
  396. int usb_pid = kernel_thread(usb_init, 0, 0);
  397. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  398. // 对一些组件进行单元测试
  399. uint64_t tpid[] = {
  400. ktest_start(ktest_test_bitree, 0),
  401. ktest_start(ktest_test_kfifo, 0),
  402. ktest_start(ktest_test_mutex, 0),
  403. usb_pid,
  404. };
  405. kinfo("Waiting test thread exit...");
  406. // 等待测试进程退出
  407. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  408. waitpid(tpid[i], NULL, NULL);
  409. kinfo("All test done.");
  410. // 准备切换到用户态
  411. struct pt_regs *regs;
  412. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  413. cli();
  414. current_pcb->thread->rip = (ul)ret_from_system_call;
  415. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  416. current_pcb->thread->fs = USER_DS | 0x3;
  417. barrier();
  418. current_pcb->thread->gs = USER_DS | 0x3;
  419. // 主动放弃内核线程身份
  420. current_pcb->flags &= (~PF_KTHREAD);
  421. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  422. regs = (struct pt_regs *)current_pcb->thread->rsp;
  423. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  424. current_pcb->flags = 0;
  425. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  426. // 加载用户态程序:shell.elf
  427. char init_path[] = "/shell.elf";
  428. uint64_t addr = (uint64_t)&init_path;
  429. __asm__ __volatile__("movq %1, %%rsp \n\t"
  430. "pushq %2 \n\t"
  431. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  432. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  433. : "memory");
  434. return 1;
  435. }
  436. #pragma GCC pop_options
  437. /**
  438. * @brief 当子进程退出后向父进程发送通知
  439. *
  440. */
  441. void process_exit_notify()
  442. {
  443. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  444. }
  445. /**
  446. * @brief 进程退出时执行的函数
  447. *
  448. * @param code 返回码
  449. * @return ul
  450. */
  451. ul process_do_exit(ul code)
  452. {
  453. // kinfo("process exiting..., code is %ld.", (long)code);
  454. cli();
  455. struct process_control_block *pcb = current_pcb;
  456. // 进程退出时释放资源
  457. process_exit_files(pcb);
  458. process_exit_thread(pcb);
  459. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  460. pcb->state = PROC_ZOMBIE;
  461. pcb->exit_code = code;
  462. sti();
  463. process_exit_notify();
  464. sched();
  465. while (1)
  466. pause();
  467. }
  468. /**
  469. * @brief 初始化内核进程
  470. *
  471. * @param fn 目标程序的地址
  472. * @param arg 向目标程序传入的参数
  473. * @param flags
  474. * @return int
  475. */
  476. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  477. {
  478. struct pt_regs regs;
  479. barrier();
  480. memset(&regs, 0, sizeof(regs));
  481. barrier();
  482. // 在rbx寄存器中保存进程的入口地址
  483. regs.rbx = (ul)fn;
  484. // 在rdx寄存器中保存传入的参数
  485. regs.rdx = (ul)arg;
  486. barrier();
  487. regs.ds = KERNEL_DS;
  488. barrier();
  489. regs.es = KERNEL_DS;
  490. barrier();
  491. regs.cs = KERNEL_CS;
  492. barrier();
  493. regs.ss = KERNEL_DS;
  494. barrier();
  495. // 置位中断使能标志位
  496. regs.rflags = (1 << 9);
  497. barrier();
  498. // rip寄存器指向内核线程的引导程序
  499. regs.rip = (ul)kernel_thread_func;
  500. barrier();
  501. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  502. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  503. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  504. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  505. }
  506. /**
  507. * @brief 初始化进程模块
  508. * ☆前置条件:已完成系统调用模块的初始化
  509. */
  510. void process_init()
  511. {
  512. kinfo("Initializing process...");
  513. initial_mm.pgd = (pml4t_t *)get_CR3();
  514. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  515. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  516. initial_mm.data_addr_start = (ul)&_data;
  517. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  518. initial_mm.rodata_addr_start = (ul)&_rodata;
  519. initial_mm.rodata_addr_end = (ul)&_erodata;
  520. initial_mm.bss_start = (uint64_t)&_bss;
  521. initial_mm.bss_end = (uint64_t)&_ebss;
  522. initial_mm.brk_start = memory_management_struct.start_brk;
  523. initial_mm.brk_end = current_pcb->addr_limit;
  524. initial_mm.stack_start = _stack_start;
  525. initial_mm.vmas = NULL;
  526. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  527. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  528. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  529. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  530. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  531. for (int i = 256; i < 512; ++i)
  532. {
  533. uint64_t *tmp = idle_pml4t_vaddr + i;
  534. barrier();
  535. if (*tmp == 0)
  536. {
  537. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  538. barrier();
  539. memset(pdpt, 0, PAGE_4K_SIZE);
  540. barrier();
  541. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  542. }
  543. }
  544. barrier();
  545. flush_tlb();
  546. /*
  547. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  548. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  549. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  550. */
  551. // 初始化pid的写锁
  552. spin_init(&process_global_pid_write_lock);
  553. // 初始化进程的循环链表
  554. list_init(&initial_proc_union.pcb.list);
  555. barrier();
  556. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  557. barrier();
  558. initial_proc_union.pcb.state = PROC_RUNNING;
  559. initial_proc_union.pcb.preempt_count = 0;
  560. initial_proc_union.pcb.cpu_id = 0;
  561. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  562. current_pcb->virtual_runtime = (1UL << 60);
  563. }
  564. /**
  565. * @brief fork当前进程
  566. *
  567. * @param regs 新的寄存器值
  568. * @param clone_flags 克隆标志
  569. * @param stack_start 堆栈开始地址
  570. * @param stack_size 堆栈大小
  571. * @return unsigned long
  572. */
  573. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  574. {
  575. int retval = 0;
  576. struct process_control_block *tsk = NULL;
  577. // 为新的进程分配栈空间,并将pcb放置在底部
  578. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  579. barrier();
  580. if (tsk == NULL)
  581. {
  582. retval = -ENOMEM;
  583. return retval;
  584. }
  585. barrier();
  586. memset(tsk, 0, sizeof(struct process_control_block));
  587. io_mfence();
  588. // 将当前进程的pcb复制到新的pcb内
  589. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  590. io_mfence();
  591. // 初始化进程的循环链表结点
  592. list_init(&tsk->list);
  593. io_mfence();
  594. // 判断是否为内核态调用fork
  595. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  596. tsk->flags |= PF_KFORK;
  597. tsk->priority = 2;
  598. tsk->preempt_count = 0;
  599. // 增加全局的pid并赋值给新进程的pid
  600. spin_lock(&process_global_pid_write_lock);
  601. tsk->pid = process_global_pid++;
  602. barrier();
  603. // 加入到进程链表中
  604. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  605. barrier();
  606. initial_proc_union.pcb.next_pcb = tsk;
  607. barrier();
  608. tsk->parent_pcb = current_pcb;
  609. barrier();
  610. spin_unlock(&process_global_pid_write_lock);
  611. tsk->cpu_id = proc_current_cpu_id;
  612. tsk->state = PROC_UNINTERRUPTIBLE;
  613. tsk->parent_pcb = current_pcb;
  614. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  615. barrier();
  616. list_init(&tsk->list);
  617. retval = -ENOMEM;
  618. // 拷贝标志位
  619. if (process_copy_flags(clone_flags, tsk))
  620. goto copy_flags_failed;
  621. // 拷贝内存空间分布结构体
  622. if (process_copy_mm(clone_flags, tsk))
  623. goto copy_mm_failed;
  624. // 拷贝文件
  625. if (process_copy_files(clone_flags, tsk))
  626. goto copy_files_failed;
  627. // 拷贝线程结构体
  628. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  629. goto copy_thread_failed;
  630. // 拷贝成功
  631. retval = tsk->pid;
  632. tsk->flags &= ~PF_KFORK;
  633. // 唤醒进程
  634. process_wakeup(tsk);
  635. return retval;
  636. copy_thread_failed:;
  637. // 回收线程
  638. process_exit_thread(tsk);
  639. copy_files_failed:;
  640. // 回收文件
  641. process_exit_files(tsk);
  642. copy_mm_failed:;
  643. // 回收内存空间分布结构体
  644. process_exit_mm(tsk);
  645. copy_flags_failed:;
  646. kfree(tsk);
  647. return retval;
  648. return 0;
  649. }
  650. /**
  651. * @brief 根据pid获取进程的pcb
  652. *
  653. * @param pid
  654. * @return struct process_control_block*
  655. */
  656. struct process_control_block *process_get_pcb(long pid)
  657. {
  658. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  659. // 使用蛮力法搜索指定pid的pcb
  660. // todo: 使用哈希表来管理pcb
  661. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  662. {
  663. if (pcb->pid == pid)
  664. return pcb;
  665. }
  666. return NULL;
  667. }
  668. /**
  669. * @brief 将进程加入到调度器的就绪队列中
  670. *
  671. * @param pcb 进程的pcb
  672. */
  673. void process_wakeup(struct process_control_block *pcb)
  674. {
  675. pcb->state = PROC_RUNNING;
  676. sched_enqueue(pcb);
  677. }
  678. /**
  679. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  680. *
  681. * @param pcb 进程的pcb
  682. */
  683. void process_wakeup_immediately(struct process_control_block *pcb)
  684. {
  685. pcb->state = PROC_RUNNING;
  686. sched_enqueue(pcb);
  687. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  688. current_pcb->flags |= PF_NEED_SCHED;
  689. }
  690. /**
  691. * @brief 拷贝当前进程的标志位
  692. *
  693. * @param clone_flags 克隆标志位
  694. * @param pcb 新的进程的pcb
  695. * @return uint64_t
  696. */
  697. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  698. {
  699. if (clone_flags & CLONE_VM)
  700. pcb->flags |= PF_VFORK;
  701. return 0;
  702. }
  703. /**
  704. * @brief 拷贝当前进程的文件描述符等信息
  705. *
  706. * @param clone_flags 克隆标志位
  707. * @param pcb 新的进程的pcb
  708. * @return uint64_t
  709. */
  710. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  711. {
  712. int retval = 0;
  713. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  714. // 文件描述符已经在复制pcb时被拷贝
  715. if (clone_flags & CLONE_FS)
  716. return retval;
  717. // 为新进程拷贝新的文件描述符
  718. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  719. {
  720. if (current_pcb->fds[i] == NULL)
  721. continue;
  722. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  723. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  724. }
  725. return retval;
  726. }
  727. /**
  728. * @brief 回收进程的所有文件描述符
  729. *
  730. * @param pcb 要被回收的进程的pcb
  731. * @return uint64_t
  732. */
  733. uint64_t process_exit_files(struct process_control_block *pcb)
  734. {
  735. // 不与父进程共享文件描述符
  736. if (!(pcb->flags & PF_VFORK))
  737. {
  738. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  739. {
  740. if (pcb->fds[i] == NULL)
  741. continue;
  742. kfree(pcb->fds[i]);
  743. }
  744. }
  745. // 清空当前进程的文件描述符列表
  746. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  747. }
  748. /**
  749. * @brief 拷贝当前进程的内存空间分布结构体信息
  750. *
  751. * @param clone_flags 克隆标志位
  752. * @param pcb 新的进程的pcb
  753. * @return uint64_t
  754. */
  755. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  756. {
  757. int retval = 0;
  758. // 与父进程共享内存空间
  759. if (clone_flags & CLONE_VM)
  760. {
  761. pcb->mm = current_pcb->mm;
  762. return retval;
  763. }
  764. // 分配新的内存空间分布结构体
  765. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  766. memset(new_mms, 0, sizeof(struct mm_struct));
  767. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  768. new_mms->vmas = NULL;
  769. pcb->mm = new_mms;
  770. // 分配顶层页表, 并设置顶层页表的物理地址
  771. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  772. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  773. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  774. // 拷贝内核空间的页表指针
  775. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  776. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  777. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  778. // 拷贝用户空间的vma
  779. struct vm_area_struct *vma = current_pcb->mm->vmas;
  780. while (vma != NULL)
  781. {
  782. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  783. {
  784. vma = vma->vm_next;
  785. continue;
  786. }
  787. int64_t vma_size = vma->vm_end - vma->vm_start;
  788. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  789. if (vma_size > PAGE_2M_SIZE / 2)
  790. {
  791. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  792. for (int i = 0; i < page_to_alloc; ++i)
  793. {
  794. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  795. struct vm_area_struct *new_vma = NULL;
  796. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  797. // 防止内存泄露
  798. if (unlikely(ret == -EEXIST))
  799. free_pages(Phy_to_2M_Page(pa), 1);
  800. else
  801. mm_map_vma(new_vma, pa);
  802. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  803. vma_size -= PAGE_2M_SIZE;
  804. }
  805. }
  806. else
  807. {
  808. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  809. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  810. struct vm_area_struct *new_vma = NULL;
  811. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  812. // 防止内存泄露
  813. if (unlikely(ret == -EEXIST))
  814. kfree((void *)va);
  815. else
  816. mm_map_vma(new_vma, virt_2_phys(va));
  817. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  818. }
  819. vma = vma->vm_next;
  820. }
  821. return retval;
  822. }
  823. /**
  824. * @brief 释放进程的页表
  825. *
  826. * @param pcb 要被释放页表的进程
  827. * @return uint64_t
  828. */
  829. uint64_t process_exit_mm(struct process_control_block *pcb)
  830. {
  831. if (pcb->flags & CLONE_VM)
  832. return 0;
  833. if (pcb->mm == NULL)
  834. {
  835. kdebug("pcb->mm==NULL");
  836. return 0;
  837. }
  838. if (pcb->mm->pgd == NULL)
  839. {
  840. kdebug("pcb->mm->pgd==NULL");
  841. return 0;
  842. }
  843. // // 获取顶层页表
  844. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  845. // 循环释放VMA中的内存
  846. struct vm_area_struct *vma = pcb->mm->vmas;
  847. while (vma != NULL)
  848. {
  849. struct vm_area_struct *cur_vma = vma;
  850. vma = cur_vma->vm_next;
  851. uint64_t pa;
  852. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  853. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  854. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  855. // 释放内存
  856. switch (size)
  857. {
  858. case PAGE_4K_SIZE:
  859. kfree(phys_2_virt(pa));
  860. break;
  861. default:
  862. break;
  863. }
  864. vm_area_del(cur_vma);
  865. vm_area_free(cur_vma);
  866. }
  867. // 释放顶层页表
  868. kfree(current_pgd);
  869. if (unlikely(pcb->mm->vmas != NULL))
  870. {
  871. kwarn("pcb.mm.vmas!=NULL");
  872. }
  873. // 释放内存空间分布结构体
  874. kfree(pcb->mm);
  875. return 0;
  876. }
  877. /**
  878. * @brief 重写内核栈中的rbp地址
  879. *
  880. * @param new_regs 子进程的reg
  881. * @param new_pcb 子进程的pcb
  882. * @return int
  883. */
  884. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  885. {
  886. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  887. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  888. uint64_t *rbp = &new_regs->rbp;
  889. uint64_t *tmp = rbp;
  890. // 超出内核栈范围
  891. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  892. return 0;
  893. while (1)
  894. {
  895. // 计算delta
  896. uint64_t delta = old_top - *rbp;
  897. // 计算新的rbp值
  898. uint64_t newVal = new_top - delta;
  899. // 新的值不合法
  900. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  901. break;
  902. // 将新的值写入对应位置
  903. *rbp = newVal;
  904. // 跳转栈帧
  905. rbp = (uint64_t *)*rbp;
  906. }
  907. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  908. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  909. return 0;
  910. }
  911. /**
  912. * @brief 拷贝当前进程的线程结构体
  913. *
  914. * @param clone_flags 克隆标志位
  915. * @param pcb 新的进程的pcb
  916. * @return uint64_t
  917. */
  918. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  919. {
  920. // 将线程结构体放置在pcb后方
  921. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  922. memset(thd, 0, sizeof(struct thread_struct));
  923. pcb->thread = thd;
  924. struct pt_regs *child_regs = NULL;
  925. // 拷贝栈空间
  926. if (pcb->flags & PF_KFORK) // 内核态下的fork
  927. {
  928. // 内核态下则拷贝整个内核栈
  929. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  930. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  931. memcpy(child_regs, (void *)current_regs, size);
  932. barrier();
  933. // 然后重写新的栈中,每个栈帧的rbp值
  934. process_rewrite_rbp(child_regs, pcb);
  935. }
  936. else
  937. {
  938. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  939. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  940. barrier();
  941. child_regs->rsp = stack_start;
  942. }
  943. // 设置子进程的返回值为0
  944. child_regs->rax = 0;
  945. if (pcb->flags & PF_KFORK)
  946. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  947. else
  948. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  949. // 设置新的内核线程开始执行的时候的rsp
  950. thd->rsp = (uint64_t)child_regs;
  951. thd->fs = current_pcb->thread->fs;
  952. thd->gs = current_pcb->thread->gs;
  953. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  954. if (pcb->flags & PF_KFORK)
  955. thd->rip = (uint64_t)ret_from_system_call;
  956. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  957. thd->rip = (uint64_t)kernel_thread_func;
  958. else
  959. thd->rip = (uint64_t)ret_from_system_call;
  960. return 0;
  961. }
  962. /**
  963. * @brief todo: 回收线程结构体
  964. *
  965. * @param pcb
  966. */
  967. void process_exit_thread(struct process_control_block *pcb)
  968. {
  969. }
  970. /**
  971. * @brief 申请可用的文件句柄
  972. *
  973. * @return int
  974. */
  975. int process_fd_alloc(struct vfs_file_t *file)
  976. {
  977. int fd_num = -1;
  978. struct vfs_file_t **f = current_pcb->fds;
  979. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  980. {
  981. /* 找到指针数组中的空位 */
  982. if (f[i] == NULL)
  983. {
  984. fd_num = i;
  985. f[i] = file;
  986. break;
  987. }
  988. }
  989. return fd_num;
  990. }