process.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/compiler.h>
  6. #include <common/libELF/elf.h>
  7. #include <driver/video/video.h>
  8. #include <driver/usb/usb.h>
  9. #include <exception/gate.h>
  10. #include <filesystem/fat32/fat32.h>
  11. #include <mm/slab.h>
  12. #include <process/spinlock.h>
  13. #include <syscall/syscall.h>
  14. #include <syscall/syscall_num.h>
  15. #include <sched/sched.h>
  16. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  17. long process_global_pid = 1; // 系统中最大的pid
  18. extern void system_call(void);
  19. extern void kernel_thread_func(void);
  20. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  21. struct mm_struct initial_mm = {0};
  22. struct thread_struct initial_thread =
  23. {
  24. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  25. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  26. .fs = KERNEL_DS,
  27. .gs = KERNEL_DS,
  28. .cr2 = 0,
  29. .trap_num = 0,
  30. .err_code = 0};
  31. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  32. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  33. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  34. // 为每个核心初始化初始进程的tss
  35. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  36. /**
  37. * @brief 拷贝当前进程的标志位
  38. *
  39. * @param clone_flags 克隆标志位
  40. * @param pcb 新的进程的pcb
  41. * @return uint64_t
  42. */
  43. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  44. /**
  45. * @brief 拷贝当前进程的文件描述符等信息
  46. *
  47. * @param clone_flags 克隆标志位
  48. * @param pcb 新的进程的pcb
  49. * @return uint64_t
  50. */
  51. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  52. /**
  53. * @brief 回收进程的所有文件描述符
  54. *
  55. * @param pcb 要被回收的进程的pcb
  56. * @return uint64_t
  57. */
  58. uint64_t process_exit_files(struct process_control_block *pcb);
  59. /**
  60. * @brief 拷贝当前进程的内存空间分布结构体信息
  61. *
  62. * @param clone_flags 克隆标志位
  63. * @param pcb 新的进程的pcb
  64. * @return uint64_t
  65. */
  66. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  67. /**
  68. * @brief 释放进程的页表
  69. *
  70. * @param pcb 要被释放页表的进程
  71. * @return uint64_t
  72. */
  73. uint64_t process_exit_mm(struct process_control_block *pcb);
  74. /**
  75. * @brief 拷贝当前进程的线程结构体
  76. *
  77. * @param clone_flags 克隆标志位
  78. * @param pcb 新的进程的pcb
  79. * @return uint64_t
  80. */
  81. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  82. void process_exit_thread(struct process_control_block *pcb);
  83. /**
  84. * @brief 切换进程
  85. *
  86. * @param prev 上一个进程的pcb
  87. * @param next 将要切换到的进程的pcb
  88. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  89. * 这里切换fs和gs寄存器
  90. */
  91. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  92. {
  93. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  94. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  95. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  96. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  97. __asm__ __volatile__("movq %%fs, %0 \n\t"
  98. : "=a"(prev->thread->fs));
  99. __asm__ __volatile__("movq %%gs, %0 \n\t"
  100. : "=a"(prev->thread->gs));
  101. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  102. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  103. // wrmsr(0x175, next->thread->rbp);
  104. }
  105. /**
  106. * @brief 打开要执行的程序文件
  107. *
  108. * @param path
  109. * @return struct vfs_file_t*
  110. */
  111. struct vfs_file_t *process_open_exec_file(char *path)
  112. {
  113. struct vfs_dir_entry_t *dentry = NULL;
  114. struct vfs_file_t *filp = NULL;
  115. dentry = vfs_path_walk(path, 0);
  116. if (dentry == NULL)
  117. return (void *)-ENOENT;
  118. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  119. return (void *)-ENOTDIR;
  120. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  121. if (filp == NULL)
  122. return (void *)-ENOMEM;
  123. filp->position = 0;
  124. filp->mode = 0;
  125. filp->dEntry = dentry;
  126. filp->mode = ATTR_READ_ONLY;
  127. filp->file_ops = dentry->dir_inode->file_ops;
  128. return filp;
  129. }
  130. /**
  131. * @brief 加载elf格式的程序文件到内存中,并设置regs
  132. *
  133. * @param regs 寄存器
  134. * @param path 文件路径
  135. * @return int
  136. */
  137. static int process_load_elf_file(struct pt_regs *regs, char *path)
  138. {
  139. int retval = 0;
  140. struct vfs_file_t *filp = process_open_exec_file(path);
  141. if ((long)filp <= 0 && (long)filp >= -255)
  142. {
  143. // kdebug("(long)filp=%ld", (long)filp);
  144. return (unsigned long)filp;
  145. }
  146. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  147. memset(buf, 0, PAGE_4K_SIZE);
  148. uint64_t pos = 0;
  149. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  150. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  151. retval = 0;
  152. if (!elf_check(buf))
  153. {
  154. kerror("Not an ELF file: %s", path);
  155. retval = -ENOTSUP;
  156. goto load_elf_failed;
  157. }
  158. #if ARCH(X86_64)
  159. // 暂时只支持64位的文件
  160. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  161. {
  162. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  163. retval = -EUNSUPPORTED;
  164. goto load_elf_failed;
  165. }
  166. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  167. // 暂时只支持AMD64架构
  168. if (ehdr.e_machine != EM_AMD64)
  169. {
  170. kerror("e_machine=%d", ehdr.e_machine);
  171. retval = -EUNSUPPORTED;
  172. goto load_elf_failed;
  173. }
  174. #else
  175. #error Unsupported architecture!
  176. #endif
  177. if (ehdr.e_type != ET_EXEC)
  178. {
  179. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  180. retval = -EUNSUPPORTED;
  181. goto load_elf_failed;
  182. }
  183. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  184. regs->rip = ehdr.e_entry;
  185. current_pcb->mm->code_addr_start = ehdr.e_entry;
  186. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  187. // 将指针移动到program header处
  188. pos = ehdr.e_phoff;
  189. // 读取所有的phdr
  190. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  191. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  192. if ((unsigned long)filp <= 0)
  193. {
  194. kdebug("(unsigned long)filp=%d", (long)filp);
  195. retval = -ENOEXEC;
  196. goto load_elf_failed;
  197. }
  198. Elf64_Phdr *phdr = buf;
  199. // 将程序加载到内存中
  200. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  201. {
  202. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  203. // 不是可加载的段
  204. if (phdr->p_type != PT_LOAD)
  205. continue;
  206. int64_t remain_mem_size = phdr->p_memsz;
  207. int64_t remain_file_size = phdr->p_filesz;
  208. pos = phdr->p_offset;
  209. uint64_t virt_base = phdr->p_vaddr;
  210. // kdebug("virt_base = %#018lx, &memory_management_struct=%#018lx", virt_base, &memory_management_struct);
  211. while (remain_mem_size > 0)
  212. {
  213. // todo: 改用slab分配4K大小内存块并映射到4K页
  214. if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
  215. {
  216. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
  217. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  218. }
  219. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  220. int64_t val = 0;
  221. if (remain_file_size != 0)
  222. {
  223. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  224. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  225. }
  226. if (val < 0)
  227. goto load_elf_failed;
  228. remain_mem_size -= PAGE_2M_SIZE;
  229. remain_file_size -= val;
  230. virt_base += PAGE_2M_SIZE;
  231. }
  232. }
  233. // 分配2MB的栈内存空间
  234. regs->rsp = current_pcb->mm->stack_start;
  235. regs->rbp = current_pcb->mm->stack_start;
  236. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  237. mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
  238. // 清空栈空间
  239. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  240. load_elf_failed:;
  241. if (buf != NULL)
  242. kfree(buf);
  243. return retval;
  244. }
  245. /**
  246. * @brief 使当前进程去执行新的代码
  247. *
  248. * @param regs 当前进程的寄存器
  249. * @param path 可执行程序的路径
  250. * @param argv 参数列表
  251. * @param envp 环境变量
  252. * @return ul 错误码
  253. */
  254. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  255. {
  256. // kdebug("do_execve is running...");
  257. // 当前进程正在与父进程共享地址空间,需要创建
  258. // 独立的地址空间才能使新程序正常运行
  259. if (current_pcb->flags & PF_VFORK)
  260. {
  261. kdebug("proc:%d creating new mem space", current_pcb->pid);
  262. // 分配新的内存空间分布结构体
  263. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  264. memset(new_mms, 0, sizeof(struct mm_struct));
  265. current_pcb->mm = new_mms;
  266. // 分配顶层页表, 并设置顶层页表的物理地址
  267. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  268. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  269. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  270. // 拷贝内核空间的页表指针
  271. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  272. }
  273. // 设置用户栈和用户堆的基地址
  274. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  275. const uint64_t brk_start_addr = 0x700000000000UL;
  276. process_switch_mm(current_pcb);
  277. // 为用户态程序设置地址边界
  278. if (!(current_pcb->flags & PF_KTHREAD))
  279. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  280. current_pcb->mm->code_addr_end = 0;
  281. current_pcb->mm->data_addr_start = 0;
  282. current_pcb->mm->data_addr_end = 0;
  283. current_pcb->mm->rodata_addr_start = 0;
  284. current_pcb->mm->rodata_addr_end = 0;
  285. current_pcb->mm->bss_start = 0;
  286. current_pcb->mm->bss_end = 0;
  287. current_pcb->mm->brk_start = brk_start_addr;
  288. current_pcb->mm->brk_end = brk_start_addr;
  289. current_pcb->mm->stack_start = stack_start_addr;
  290. // 关闭之前的文件描述符
  291. process_exit_files(current_pcb);
  292. // 清除进程的vfork标志位
  293. current_pcb->flags &= ~PF_VFORK;
  294. // 加载elf格式的可执行文件
  295. int tmp = process_load_elf_file(regs, path);
  296. if (tmp < 0)
  297. goto exec_failed;
  298. // 拷贝参数列表
  299. if (argv != NULL)
  300. {
  301. int argc = 0;
  302. // 目标程序的argv基地址指针,最大8个参数
  303. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  304. uint64_t str_addr = (uint64_t)dst_argv;
  305. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  306. {
  307. if (*argv[argc] == NULL)
  308. break;
  309. // 测量参数的长度(最大1023)
  310. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  311. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  312. str_addr -= argv_len;
  313. dst_argv[argc] = (char *)str_addr;
  314. //字符串加上结尾字符
  315. ((char *)str_addr)[argv_len] = '\0';
  316. }
  317. // 重新设定栈基址,并预留空间防止越界
  318. stack_start_addr = str_addr - 8;
  319. current_pcb->mm->stack_start = stack_start_addr;
  320. regs->rsp = regs->rbp = stack_start_addr;
  321. // 传递参数
  322. regs->rdi = argc;
  323. regs->rsi = (uint64_t)dst_argv;
  324. }
  325. kdebug("execve ok");
  326. regs->cs = USER_CS | 3;
  327. regs->ds = USER_DS | 3;
  328. regs->ss = USER_DS | 0x3;
  329. regs->rflags = 0x200246;
  330. regs->rax = 1;
  331. regs->es = 0;
  332. return 0;
  333. exec_failed:;
  334. process_do_exit(tmp);
  335. }
  336. /**
  337. * @brief 内核init进程
  338. *
  339. * @param arg
  340. * @return ul 参数
  341. */
  342. ul initial_kernel_thread(ul arg)
  343. {
  344. // kinfo("initial proc running...\targ:%#018lx", arg);
  345. fat32_init();
  346. usb_init();
  347. // 准备切换到用户态
  348. struct pt_regs *regs;
  349. current_pcb->thread->rip = (ul)ret_from_system_call;
  350. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  351. current_pcb->thread->fs = USER_DS | 0x3;
  352. current_pcb->thread->gs = USER_DS | 0x3;
  353. // 主动放弃内核线程身份
  354. current_pcb->flags &= (~PF_KTHREAD);
  355. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  356. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  357. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  358. regs = (struct pt_regs *)current_pcb->thread->rsp;
  359. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  360. current_pcb->flags = 0;
  361. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  362. // 加载用户态程序:shell.elf
  363. char init_path[] = "/shell.elf";
  364. uint64_t addr = (uint64_t)&init_path;
  365. __asm__ __volatile__("movq %1, %%rsp \n\t"
  366. "pushq %2 \n\t"
  367. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  368. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  369. : "memory");
  370. return 1;
  371. }
  372. /**
  373. * @brief 当子进程退出后向父进程发送通知
  374. *
  375. */
  376. void process_exit_notify()
  377. {
  378. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  379. }
  380. /**
  381. * @brief 进程退出时执行的函数
  382. *
  383. * @param code 返回码
  384. * @return ul
  385. */
  386. ul process_do_exit(ul code)
  387. {
  388. // kinfo("process exiting..., code is %ld.", (long)code);
  389. cli();
  390. struct process_control_block *pcb = current_pcb;
  391. // 进程退出时释放资源
  392. process_exit_files(pcb);
  393. process_exit_thread(pcb);
  394. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  395. pcb->state = PROC_ZOMBIE;
  396. pcb->exit_code = code;
  397. sti();
  398. process_exit_notify();
  399. sched_cfs();
  400. while (1)
  401. hlt();
  402. }
  403. /**
  404. * @brief 初始化内核进程
  405. *
  406. * @param fn 目标程序的地址
  407. * @param arg 向目标程序传入的参数
  408. * @param flags
  409. * @return int
  410. */
  411. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  412. {
  413. struct pt_regs regs;
  414. memset(&regs, 0, sizeof(regs));
  415. // 在rbx寄存器中保存进程的入口地址
  416. regs.rbx = (ul)fn;
  417. // 在rdx寄存器中保存传入的参数
  418. regs.rdx = (ul)arg;
  419. regs.ds = KERNEL_DS;
  420. regs.es = KERNEL_DS;
  421. regs.cs = KERNEL_CS;
  422. regs.ss = KERNEL_DS;
  423. // 置位中断使能标志位
  424. regs.rflags = (1 << 9);
  425. // rip寄存器指向内核线程的引导程序
  426. regs.rip = (ul)kernel_thread_func;
  427. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  428. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  429. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  430. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  431. }
  432. /**
  433. * @brief 初始化进程模块
  434. * ☆前置条件:已完成系统调用模块的初始化
  435. */
  436. void process_init()
  437. {
  438. kinfo("Initializing process...");
  439. initial_mm.pgd = (pml4t_t *)get_CR3();
  440. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  441. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  442. initial_mm.data_addr_start = (ul)&_data;
  443. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  444. initial_mm.rodata_addr_start = (ul)&_rodata;
  445. initial_mm.rodata_addr_end = (ul)&_erodata;
  446. initial_mm.bss_start = (uint64_t)&_bss;
  447. initial_mm.bss_end = (uint64_t)&_ebss;
  448. initial_mm.brk_start = memory_management_struct.start_brk;
  449. initial_mm.brk_end = current_pcb->addr_limit;
  450. initial_mm.stack_start = _stack_start;
  451. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  452. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  453. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  454. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  455. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  456. for (int i = 256; i < 512; ++i)
  457. {
  458. uint64_t *tmp = idle_pml4t_vaddr + i;
  459. if (*tmp == 0)
  460. {
  461. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  462. memset(pdpt, 0, PAGE_4K_SIZE);
  463. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  464. }
  465. }
  466. /*
  467. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  468. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  469. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  470. */
  471. // 初始化pid的写锁
  472. spin_init(&process_global_pid_write_lock);
  473. // 初始化进程的循环链表
  474. list_init(&initial_proc_union.pcb.list);
  475. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程
  476. initial_proc_union.pcb.state = PROC_RUNNING;
  477. initial_proc_union.pcb.preempt_count = 0;
  478. initial_proc_union.pcb.cpu_id = 0;
  479. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  480. current_pcb->virtual_runtime = (1UL << 60);
  481. }
  482. /**
  483. * @brief fork当前进程
  484. *
  485. * @param regs 新的寄存器值
  486. * @param clone_flags 克隆标志
  487. * @param stack_start 堆栈开始地址
  488. * @param stack_size 堆栈大小
  489. * @return unsigned long
  490. */
  491. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  492. {
  493. int retval = 0;
  494. struct process_control_block *tsk = NULL;
  495. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  496. // 为新的进程分配栈空间,并将pcb放置在底部
  497. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  498. // kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk);
  499. if (tsk == NULL)
  500. {
  501. retval = -ENOMEM;
  502. return retval;
  503. }
  504. memset(tsk, 0, sizeof(struct process_control_block));
  505. // 将当前进程的pcb复制到新的pcb内
  506. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  507. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  508. // 将进程加入循环链表
  509. list_init(&tsk->list);
  510. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  511. tsk->priority = 2;
  512. tsk->preempt_count = 0;
  513. // 增加全局的pid并赋值给新进程的pid
  514. spin_lock(&process_global_pid_write_lock);
  515. tsk->pid = process_global_pid++;
  516. // 加入到进程链表中
  517. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  518. initial_proc_union.pcb.next_pcb = tsk;
  519. tsk->parent_pcb = current_pcb;
  520. spin_unlock(&process_global_pid_write_lock);
  521. tsk->cpu_id = proc_current_cpu_id;
  522. tsk->state = PROC_UNINTERRUPTIBLE;
  523. tsk->parent_pcb = current_pcb;
  524. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  525. list_init(&tsk->list);
  526. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  527. retval = -ENOMEM;
  528. // 拷贝标志位
  529. if (process_copy_flags(clone_flags, tsk))
  530. goto copy_flags_failed;
  531. // 拷贝内存空间分布结构体
  532. if (process_copy_mm(clone_flags, tsk))
  533. goto copy_mm_failed;
  534. // 拷贝文件
  535. if (process_copy_files(clone_flags, tsk))
  536. goto copy_files_failed;
  537. // 拷贝线程结构体
  538. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  539. goto copy_thread_failed;
  540. // 拷贝成功
  541. retval = tsk->pid;
  542. // 唤醒进程
  543. process_wakeup(tsk);
  544. return retval;
  545. copy_thread_failed:;
  546. // 回收线程
  547. process_exit_thread(tsk);
  548. copy_files_failed:;
  549. // 回收文件
  550. process_exit_files(tsk);
  551. copy_mm_failed:;
  552. // 回收内存空间分布结构体
  553. process_exit_mm(tsk);
  554. copy_flags_failed:;
  555. kfree(tsk);
  556. return retval;
  557. return 0;
  558. }
  559. /**
  560. * @brief 根据pid获取进程的pcb
  561. *
  562. * @param pid
  563. * @return struct process_control_block*
  564. */
  565. struct process_control_block *process_get_pcb(long pid)
  566. {
  567. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  568. // 使用蛮力法搜索指定pid的pcb
  569. // todo: 使用哈希表来管理pcb
  570. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  571. {
  572. if (pcb->pid == pid)
  573. return pcb;
  574. }
  575. return NULL;
  576. }
  577. /**
  578. * @brief 将进程加入到调度器的就绪队列中
  579. *
  580. * @param pcb 进程的pcb
  581. */
  582. void process_wakeup(struct process_control_block *pcb)
  583. {
  584. pcb->state = PROC_RUNNING;
  585. sched_cfs_enqueue(pcb);
  586. }
  587. /**
  588. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  589. *
  590. * @param pcb 进程的pcb
  591. */
  592. void process_wakeup_immediately(struct process_control_block *pcb)
  593. {
  594. pcb->state = PROC_RUNNING;
  595. sched_cfs_enqueue(pcb);
  596. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  597. current_pcb->flags |= PF_NEED_SCHED;
  598. }
  599. /**
  600. * @brief 拷贝当前进程的标志位
  601. *
  602. * @param clone_flags 克隆标志位
  603. * @param pcb 新的进程的pcb
  604. * @return uint64_t
  605. */
  606. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  607. {
  608. if (clone_flags & CLONE_VM)
  609. pcb->flags |= PF_VFORK;
  610. return 0;
  611. }
  612. /**
  613. * @brief 拷贝当前进程的文件描述符等信息
  614. *
  615. * @param clone_flags 克隆标志位
  616. * @param pcb 新的进程的pcb
  617. * @return uint64_t
  618. */
  619. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  620. {
  621. int retval = 0;
  622. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  623. // 文件描述符已经在复制pcb时被拷贝
  624. if (clone_flags & CLONE_FS)
  625. return retval;
  626. // 为新进程拷贝新的文件描述符
  627. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  628. {
  629. if (current_pcb->fds[i] == NULL)
  630. continue;
  631. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  632. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  633. }
  634. return retval;
  635. }
  636. /**
  637. * @brief 回收进程的所有文件描述符
  638. *
  639. * @param pcb 要被回收的进程的pcb
  640. * @return uint64_t
  641. */
  642. uint64_t process_exit_files(struct process_control_block *pcb)
  643. {
  644. // 不与父进程共享文件描述符
  645. if (!(pcb->flags & PF_VFORK))
  646. {
  647. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  648. {
  649. if (pcb->fds[i] == NULL)
  650. continue;
  651. kfree(pcb->fds[i]);
  652. }
  653. }
  654. // 清空当前进程的文件描述符列表
  655. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  656. }
  657. /**
  658. * @brief 拷贝当前进程的内存空间分布结构体信息
  659. *
  660. * @param clone_flags 克隆标志位
  661. * @param pcb 新的进程的pcb
  662. * @return uint64_t
  663. */
  664. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  665. {
  666. int retval = 0;
  667. // 与父进程共享内存空间
  668. if (clone_flags & CLONE_VM)
  669. {
  670. // kdebug("copy_vm\t current_pcb->mm->pgd=%#018lx", current_pcb->mm->pgd);
  671. pcb->mm = current_pcb->mm;
  672. return retval;
  673. }
  674. // 分配新的内存空间分布结构体
  675. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  676. memset(new_mms, 0, sizeof(struct mm_struct));
  677. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  678. pcb->mm = new_mms;
  679. // 分配顶层页表, 并设置顶层页表的物理地址
  680. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  681. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  682. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  683. // 拷贝内核空间的页表指针
  684. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  685. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  686. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  687. // 迭代地拷贝用户空间
  688. for (int i = 0; i <= 255; ++i)
  689. {
  690. // 当前页表项为空
  691. if ((*(uint64_t *)(current_pgd + i)) == 0)
  692. continue;
  693. // 分配新的二级页表
  694. uint64_t *new_pdpt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  695. memset(new_pdpt, 0, PAGE_4K_SIZE);
  696. // 在新的一级页表中设置新的二级页表表项
  697. set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
  698. uint64_t *current_pdpt = (uint64_t *)phys_2_virt((*(uint64_t *)(current_pgd + i)) & (~0xfffUL));
  699. // kdebug("current_pdpt=%#018lx, current_pid=%d", current_pdpt, current_pcb->pid);
  700. for (int j = 0; j < 512; ++j)
  701. {
  702. if (*(current_pdpt + j) == 0)
  703. continue;
  704. // 分配新的三级页表
  705. uint64_t *new_pdt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
  706. memset(new_pdt, 0, PAGE_4K_SIZE);
  707. // 在二级页表中填写新的三级页表
  708. // 在新的二级页表中设置三级页表的表项
  709. set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(current_pdpt + j)) & 0xfffUL));
  710. uint64_t *current_pdt = (uint64_t *)phys_2_virt((*(current_pdpt + j)) & (~0xfffUL));
  711. // kdebug("current_pdt=%#018lx", current_pdt);
  712. // 循环拷贝三级页表
  713. for (int k = 0; k < 512; ++k)
  714. {
  715. if (*(current_pdt + k) == 0)
  716. continue;
  717. // 获取新的物理页
  718. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  719. memset((void *)phys_2_virt(pa), 0, PAGE_2M_SIZE);
  720. set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pa, *(current_pdt + k) & 0x1ffUL));
  721. // 拷贝数据
  722. memcpy(phys_2_virt(pa), phys_2_virt((*(current_pdt + k)) & (~0x1ffUL)), PAGE_2M_SIZE);
  723. }
  724. }
  725. }
  726. return retval;
  727. }
  728. /**
  729. * @brief 释放进程的页表
  730. *
  731. * @param pcb 要被释放页表的进程
  732. * @return uint64_t
  733. */
  734. uint64_t process_exit_mm(struct process_control_block *pcb)
  735. {
  736. if (pcb->flags & CLONE_VM)
  737. return 0;
  738. if (pcb->mm == NULL)
  739. {
  740. kdebug("pcb->mm==NULL");
  741. return 0;
  742. }
  743. if (pcb->mm->pgd == NULL)
  744. {
  745. kdebug("pcb->mm->pgd==NULL");
  746. return 0;
  747. }
  748. // 获取顶层页表
  749. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  750. // 迭代地释放用户空间
  751. for (int i = 0; i <= 255; ++i)
  752. {
  753. // 当前页表项为空
  754. if ((current_pgd + i)->pml4t == 0)
  755. continue;
  756. // 二级页表entry
  757. pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
  758. // 遍历二级页表
  759. for (int j = 0; j < 512; ++j)
  760. {
  761. if ((current_pdpt + j)->pdpt == 0)
  762. continue;
  763. // 三级页表的entry
  764. pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
  765. // 释放三级页表的内存页
  766. for (int k = 0; k < 512; ++k)
  767. {
  768. if ((current_pdt + k)->pdt == 0)
  769. continue;
  770. // 存在4级页表
  771. if (unlikely(((current_pdt + k)->pdt & (1 << 7)) == 0))
  772. {
  773. // 存在4K页
  774. uint64_t *pt_ptr = (uint64_t *)phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL));
  775. uint64_t *pte_ptr = pt_ptr;
  776. // 循环处理4K页表, 直接清空
  777. // todo: 当支持使用slab分配4K内存作为进程的4K页之后,在这里需要释放这些4K对象
  778. for (int16_t g = 0; g < 512; ++g, ++pte_ptr)
  779. *pte_ptr = 0;
  780. // 4级页表已经空了,释放页表
  781. if (unlikely(mm_check_page_table(pt_ptr)) == 0)
  782. kfree(pt_ptr);
  783. }
  784. else
  785. {
  786. // 释放内存页
  787. if (mm_is_2M_page((current_pdt + k)->pdt & (~0x1fffUL))) // 校验是否为内存中的物理页
  788. free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
  789. }
  790. }
  791. // 释放三级页表
  792. kfree(current_pdt);
  793. }
  794. // 释放二级页表
  795. kfree(current_pdpt);
  796. }
  797. // 释放顶层页表
  798. kfree(current_pgd);
  799. // 释放内存空间分布结构体
  800. kfree(pcb->mm);
  801. return 0;
  802. }
  803. /**
  804. * @brief 拷贝当前进程的线程结构体
  805. *
  806. * @param clone_flags 克隆标志位
  807. * @param pcb 新的进程的pcb
  808. * @return uint64_t
  809. */
  810. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  811. {
  812. // 将线程结构体放置在pcb后方
  813. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  814. memset(thd, 0, sizeof(struct thread_struct));
  815. pcb->thread = thd;
  816. // 拷贝栈空间
  817. struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  818. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  819. // 设置子进程的返回值为0
  820. child_regs->rax = 0;
  821. child_regs->rsp = stack_start;
  822. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  823. thd->rsp = (uint64_t)child_regs;
  824. thd->fs = current_pcb->thread->fs;
  825. thd->gs = current_pcb->thread->gs;
  826. // kdebug("pcb->flags=%ld", pcb->flags);
  827. // 根据是否为内核线程,设置进程的开始执行的地址
  828. if (pcb->flags & PF_KTHREAD)
  829. thd->rip = (uint64_t)kernel_thread_func;
  830. else
  831. thd->rip = (uint64_t)ret_from_system_call;
  832. // kdebug("new proc's ret addr = %#018lx\tthd->rip=%#018lx stack_start=%#018lx child_regs->rsp = %#018lx, new_rip=%#018lx)", child_regs->rbx, thd->rip, stack_start, child_regs->rsp, child_regs->rip);
  833. return 0;
  834. }
  835. /**
  836. * @brief todo: 回收线程结构体
  837. *
  838. * @param pcb
  839. */
  840. void process_exit_thread(struct process_control_block *pcb)
  841. {
  842. }