syscall.rs 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. use alloc::{ffi::CString, string::String, sync::Arc, vec::Vec};
  2. use system_error::SystemError;
  3. use crate::{
  4. arch::{
  5. interrupt::TrapFrame,
  6. process::table::{USER_CS, USER_DS},
  7. CurrentIrqArch,
  8. },
  9. exception::InterruptArch,
  10. libs::rand::rand_bytes,
  11. mm::ucontext::AddressSpace,
  12. process::{
  13. exec::{load_binary_file, ExecParam, ExecParamFlags},
  14. ProcessControlBlock, ProcessManager,
  15. },
  16. syscall::{user_access::UserBufferWriter, Syscall},
  17. };
  18. impl Syscall {
  19. pub fn do_execve(
  20. path: String,
  21. argv: Vec<CString>,
  22. envp: Vec<CString>,
  23. regs: &mut TrapFrame,
  24. ) -> Result<(), SystemError> {
  25. // 关中断,防止在设置地址空间的时候,发生中断,然后进调度器,出现错误。
  26. let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
  27. let pcb = ProcessManager::current_pcb();
  28. // log::debug!(
  29. // "pid: {:?} do_execve: path: {:?}, argv: {:?}, envp: {:?}\n",
  30. // pcb.pid(),
  31. // path,
  32. // argv,
  33. // envp
  34. // );
  35. let mut basic_info = pcb.basic_mut();
  36. // 暂存原本的用户地址空间的引用(因为如果在切换页表之前释放了它,可能会造成内存use after free)
  37. let old_address_space = basic_info.user_vm();
  38. // 在pcb中原来的用户地址空间
  39. unsafe {
  40. basic_info.set_user_vm(None);
  41. }
  42. // 创建新的地址空间并设置为当前地址空间
  43. let address_space = AddressSpace::new(true).expect("Failed to create new address space");
  44. unsafe {
  45. basic_info.set_user_vm(Some(address_space.clone()));
  46. }
  47. // to avoid deadlock
  48. drop(basic_info);
  49. assert!(
  50. AddressSpace::is_current(&address_space),
  51. "Failed to set address space"
  52. );
  53. // debug!("Switch to new address space");
  54. // 切换到新的用户地址空间
  55. unsafe { address_space.read().user_mapper.utable.make_current() };
  56. drop(old_address_space);
  57. drop(irq_guard);
  58. // debug!("to load binary file");
  59. let mut param = ExecParam::new(path.as_str(), address_space.clone(), ExecParamFlags::EXEC)?;
  60. // 加载可执行文件
  61. let load_result = load_binary_file(&mut param)?;
  62. // debug!("load binary file done");
  63. // debug!("argv: {:?}, envp: {:?}", argv, envp);
  64. param.init_info_mut().args = argv;
  65. param.init_info_mut().envs = envp;
  66. // 生成16字节随机数
  67. param.init_info_mut().rand_num = rand_bytes::<16>();
  68. // 把proc_init_info写到用户栈上
  69. let mut ustack_message = unsafe {
  70. address_space
  71. .write()
  72. .user_stack_mut()
  73. .expect("No user stack found")
  74. .clone_info_only()
  75. };
  76. let (user_sp, argv_ptr) = unsafe {
  77. param
  78. .init_info_mut()
  79. .push_at(&mut ustack_message)
  80. .expect("Failed to push proc_init_info to user stack")
  81. };
  82. address_space.write().user_stack = Some(ustack_message);
  83. // debug!("write proc_init_info to user stack done");
  84. // (兼容旧版libc)把argv的指针写到寄存器内
  85. // TODO: 改写旧版libc,不再需要这个兼容
  86. regs.rdi = param.init_info().args.len() as u64;
  87. regs.rsi = argv_ptr.data() as u64;
  88. // 设置系统调用返回时的寄存器状态
  89. // TODO: 中断管理重构后,这里的寄存器状态设置要删掉!!!改为对trap frame的设置。要增加架构抽象。
  90. regs.rsp = user_sp.data() as u64;
  91. regs.rbp = user_sp.data() as u64;
  92. regs.rip = load_result.entry_point().data() as u64;
  93. regs.cs = USER_CS.bits() as u64;
  94. regs.ds = USER_DS.bits() as u64;
  95. regs.ss = USER_DS.bits() as u64;
  96. regs.es = 0;
  97. regs.rflags = 0x200;
  98. regs.rax = 1;
  99. drop(param);
  100. // debug!("regs: {:?}\n", regs);
  101. // crate::debug!(
  102. // "tmp_rs_execve: done, load_result.entry_point()={:?}",
  103. // load_result.entry_point()
  104. // );
  105. return Ok(());
  106. }
  107. /// ## 用于控制和查询与体系结构相关的进程特定选项
  108. pub fn arch_prctl(option: usize, arg2: usize) -> Result<usize, SystemError> {
  109. let pcb = ProcessManager::current_pcb();
  110. if let Err(SystemError::EINVAL) = Self::do_arch_prctl_64(&pcb, option, arg2, true) {
  111. Self::do_arch_prctl_common(option, arg2)?;
  112. }
  113. Ok(0)
  114. }
  115. /// ## 64位下控制fs/gs base寄存器的方法
  116. pub fn do_arch_prctl_64(
  117. pcb: &Arc<ProcessControlBlock>,
  118. option: usize,
  119. arg2: usize,
  120. from_user: bool,
  121. ) -> Result<usize, SystemError> {
  122. let mut arch_info = pcb.arch_info_irqsave();
  123. match option {
  124. ARCH_GET_FS => {
  125. unsafe { arch_info.save_fsbase() };
  126. let mut writer = UserBufferWriter::new(
  127. arg2 as *mut usize,
  128. core::mem::size_of::<usize>(),
  129. from_user,
  130. )?;
  131. writer.copy_one_to_user(&arch_info.fsbase, 0)?;
  132. }
  133. ARCH_GET_GS => {
  134. unsafe { arch_info.save_gsbase() };
  135. let mut writer = UserBufferWriter::new(
  136. arg2 as *mut usize,
  137. core::mem::size_of::<usize>(),
  138. from_user,
  139. )?;
  140. writer.copy_one_to_user(&arch_info.gsbase, 0)?;
  141. }
  142. ARCH_SET_FS => {
  143. arch_info.fsbase = arg2;
  144. // 如果是当前进程则直接写入寄存器
  145. if pcb.pid() == ProcessManager::current_pcb().pid() {
  146. unsafe { arch_info.restore_fsbase() }
  147. }
  148. }
  149. ARCH_SET_GS => {
  150. arch_info.gsbase = arg2;
  151. if pcb.pid() == ProcessManager::current_pcb().pid() {
  152. unsafe { arch_info.restore_gsbase() }
  153. }
  154. }
  155. _ => {
  156. return Err(SystemError::EINVAL);
  157. }
  158. }
  159. Ok(0)
  160. }
  161. #[allow(dead_code)]
  162. pub fn do_arch_prctl_common(_option: usize, _arg2: usize) -> Result<usize, SystemError> {
  163. todo!("do_arch_prctl_common not unimplemented");
  164. }
  165. }
  166. pub const ARCH_SET_GS: usize = 0x1001;
  167. pub const ARCH_SET_FS: usize = 0x1002;
  168. pub const ARCH_GET_FS: usize = 0x1003;
  169. pub const ARCH_GET_GS: usize = 0x1004;