process.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <filesystem/devfs/devfs.h>
  15. #include <mm/slab.h>
  16. #include <common/spinlock.h>
  17. #include <syscall/syscall.h>
  18. #include <syscall/syscall_num.h>
  19. #include <sched/sched.h>
  20. #include <common/unistd.h>
  21. #include <debug/traceback/traceback.h>
  22. #include <driver/disk/ahci/ahci.h>
  23. #include <ktest/ktest.h>
  24. #include <mm/mmio.h>
  25. #include <common/lz4.h>
  26. // #pragma GCC push_options
  27. // #pragma GCC optimize("O0")
  28. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  29. long process_global_pid = 1; // 系统中最大的pid
  30. extern void system_call(void);
  31. extern void kernel_thread_func(void);
  32. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  33. extern struct mm_struct initial_mm;
  34. struct thread_struct initial_thread =
  35. {
  36. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  37. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  38. .fs = KERNEL_DS,
  39. .gs = KERNEL_DS,
  40. .cr2 = 0,
  41. .trap_num = 0,
  42. .err_code = 0};
  43. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  44. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  45. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  46. // 为每个核心初始化初始进程的tss
  47. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  48. /**
  49. * @brief 拷贝当前进程的标志位
  50. *
  51. * @param clone_flags 克隆标志位
  52. * @param pcb 新的进程的pcb
  53. * @return uint64_t
  54. */
  55. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  56. /**
  57. * @brief 拷贝当前进程的文件描述符等信息
  58. *
  59. * @param clone_flags 克隆标志位
  60. * @param pcb 新的进程的pcb
  61. * @return uint64_t
  62. */
  63. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  64. /**
  65. * @brief 回收进程的所有文件描述符
  66. *
  67. * @param pcb 要被回收的进程的pcb
  68. * @return uint64_t
  69. */
  70. uint64_t process_exit_files(struct process_control_block *pcb);
  71. /**
  72. * @brief 拷贝当前进程的内存空间分布结构体信息
  73. *
  74. * @param clone_flags 克隆标志位
  75. * @param pcb 新的进程的pcb
  76. * @return uint64_t
  77. */
  78. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  79. /**
  80. * @brief 释放进程的页表
  81. *
  82. * @param pcb 要被释放页表的进程
  83. * @return uint64_t
  84. */
  85. uint64_t process_exit_mm(struct process_control_block *pcb);
  86. /**
  87. * @brief 拷贝当前进程的线程结构体
  88. *
  89. * @param clone_flags 克隆标志位
  90. * @param pcb 新的进程的pcb
  91. * @return uint64_t
  92. */
  93. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  94. void process_exit_thread(struct process_control_block *pcb);
  95. /**
  96. * @brief 切换进程
  97. *
  98. * @param prev 上一个进程的pcb
  99. * @param next 将要切换到的进程的pcb
  100. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  101. * 这里切换fs和gs寄存器
  102. */
  103. #pragma GCC push_options
  104. #pragma GCC optimize("O0")
  105. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  106. {
  107. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  108. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  109. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  110. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  111. __asm__ __volatile__("movq %%fs, %0 \n\t"
  112. : "=a"(prev->thread->fs));
  113. __asm__ __volatile__("movq %%gs, %0 \n\t"
  114. : "=a"(prev->thread->gs));
  115. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  116. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  117. }
  118. #pragma GCC pop_options
  119. /**
  120. * @brief 打开要执行的程序文件
  121. *
  122. * @param path
  123. * @return struct vfs_file_t*
  124. */
  125. struct vfs_file_t *process_open_exec_file(char *path)
  126. {
  127. struct vfs_dir_entry_t *dentry = NULL;
  128. struct vfs_file_t *filp = NULL;
  129. dentry = vfs_path_walk(path, 0);
  130. if (dentry == NULL)
  131. return (void *)-ENOENT;
  132. if (dentry->dir_inode->attribute == VFS_IF_DIR)
  133. return (void *)-ENOTDIR;
  134. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  135. if (filp == NULL)
  136. return (void *)-ENOMEM;
  137. filp->position = 0;
  138. filp->mode = 0;
  139. filp->dEntry = dentry;
  140. filp->mode = ATTR_READ_ONLY;
  141. filp->file_ops = dentry->dir_inode->file_ops;
  142. return filp;
  143. }
  144. /**
  145. * @brief 加载elf格式的程序文件到内存中,并设置regs
  146. *
  147. * @param regs 寄存器
  148. * @param path 文件路径
  149. * @return int
  150. */
  151. static int process_load_elf_file(struct pt_regs *regs, char *path)
  152. {
  153. int retval = 0;
  154. struct vfs_file_t *filp = process_open_exec_file(path);
  155. if ((long)filp <= 0 && (long)filp >= -255)
  156. {
  157. // kdebug("(long)filp=%ld", (long)filp);
  158. return (unsigned long)filp;
  159. }
  160. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  161. memset(buf, 0, PAGE_4K_SIZE);
  162. uint64_t pos = 0;
  163. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  164. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  165. retval = 0;
  166. if (!elf_check(buf))
  167. {
  168. kerror("Not an ELF file: %s", path);
  169. retval = -ENOTSUP;
  170. goto load_elf_failed;
  171. }
  172. #if ARCH(X86_64)
  173. // 暂时只支持64位的文件
  174. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  175. {
  176. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  177. retval = -EUNSUPPORTED;
  178. goto load_elf_failed;
  179. }
  180. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  181. // 暂时只支持AMD64架构
  182. if (ehdr.e_machine != EM_AMD64)
  183. {
  184. kerror("e_machine=%d", ehdr.e_machine);
  185. retval = -EUNSUPPORTED;
  186. goto load_elf_failed;
  187. }
  188. #else
  189. #error Unsupported architecture!
  190. #endif
  191. if (ehdr.e_type != ET_EXEC)
  192. {
  193. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  194. retval = -EUNSUPPORTED;
  195. goto load_elf_failed;
  196. }
  197. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  198. regs->rip = ehdr.e_entry;
  199. current_pcb->mm->code_addr_start = ehdr.e_entry;
  200. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  201. // 将指针移动到program header处
  202. pos = ehdr.e_phoff;
  203. // 读取所有的phdr
  204. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  205. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  206. if ((unsigned long)filp <= 0)
  207. {
  208. kdebug("(unsigned long)filp=%d", (long)filp);
  209. retval = -ENOEXEC;
  210. goto load_elf_failed;
  211. }
  212. Elf64_Phdr *phdr = buf;
  213. // 将程序加载到内存中
  214. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  215. {
  216. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  217. // 不是可加载的段
  218. if (phdr->p_type != PT_LOAD)
  219. continue;
  220. int64_t remain_mem_size = phdr->p_memsz;
  221. int64_t remain_file_size = phdr->p_filesz;
  222. pos = phdr->p_offset;
  223. uint64_t virt_base = phdr->p_vaddr;
  224. while (remain_mem_size > 0)
  225. {
  226. // kdebug("loading...");
  227. int64_t map_size = 0;
  228. if (remain_mem_size > PAGE_2M_SIZE / 2)
  229. {
  230. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  231. struct vm_area_struct *vma = NULL;
  232. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  233. // 防止内存泄露
  234. if (ret == -EEXIST)
  235. free_pages(Phy_to_2M_Page(pa), 1);
  236. else
  237. mm_map_vma(vma, pa);
  238. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  239. map_size = PAGE_2M_SIZE;
  240. }
  241. else
  242. {
  243. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  244. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  245. // 循环分配4K大小内存块
  246. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  247. {
  248. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  249. struct vm_area_struct *vma = NULL;
  250. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  251. if (val == -EEXIST)
  252. kfree(phys_2_virt(paddr));
  253. else
  254. mm_map_vma(vma, paddr);
  255. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  256. }
  257. }
  258. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  259. int64_t val = 0;
  260. if (remain_file_size != 0)
  261. {
  262. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  263. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  264. }
  265. if (val < 0)
  266. goto load_elf_failed;
  267. remain_mem_size -= map_size;
  268. remain_file_size -= val;
  269. virt_base += map_size;
  270. }
  271. }
  272. // 分配2MB的栈内存空间
  273. regs->rsp = current_pcb->mm->stack_start;
  274. regs->rbp = current_pcb->mm->stack_start;
  275. {
  276. struct vm_area_struct *vma = NULL;
  277. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  278. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  279. if (val == -EEXIST)
  280. free_pages(Phy_to_2M_Page(pa), 1);
  281. else
  282. mm_map_vma(vma, pa);
  283. }
  284. // 清空栈空间
  285. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  286. load_elf_failed:;
  287. if (buf != NULL)
  288. kfree(buf);
  289. return retval;
  290. }
  291. /**
  292. * @brief 使当前进程去执行新的代码
  293. *
  294. * @param regs 当前进程的寄存器
  295. * @param path 可执行程序的路径
  296. * @param argv 参数列表
  297. * @param envp 环境变量
  298. * @return ul 错误码
  299. */
  300. #pragma GCC push_options
  301. #pragma GCC optimize("O0")
  302. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  303. {
  304. // kdebug("do_execve is running...");
  305. // 当前进程正在与父进程共享地址空间,需要创建
  306. // 独立的地址空间才能使新程序正常运行
  307. if (current_pcb->flags & PF_VFORK)
  308. {
  309. kdebug("proc:%d creating new mem space", current_pcb->pid);
  310. // 分配新的内存空间分布结构体
  311. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  312. memset(new_mms, 0, sizeof(struct mm_struct));
  313. current_pcb->mm = new_mms;
  314. // 分配顶层页表, 并设置顶层页表的物理地址
  315. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  316. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  317. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  318. // 拷贝内核空间的页表指针
  319. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  320. }
  321. // 设置用户栈和用户堆的基地址
  322. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  323. const uint64_t brk_start_addr = 0x700000000000UL;
  324. process_switch_mm(current_pcb);
  325. // 为用户态程序设置地址边界
  326. if (!(current_pcb->flags & PF_KTHREAD))
  327. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  328. current_pcb->mm->code_addr_end = 0;
  329. current_pcb->mm->data_addr_start = 0;
  330. current_pcb->mm->data_addr_end = 0;
  331. current_pcb->mm->rodata_addr_start = 0;
  332. current_pcb->mm->rodata_addr_end = 0;
  333. current_pcb->mm->bss_start = 0;
  334. current_pcb->mm->bss_end = 0;
  335. current_pcb->mm->brk_start = brk_start_addr;
  336. current_pcb->mm->brk_end = brk_start_addr;
  337. current_pcb->mm->stack_start = stack_start_addr;
  338. // 关闭之前的文件描述符
  339. process_exit_files(current_pcb);
  340. // 清除进程的vfork标志位
  341. current_pcb->flags &= ~PF_VFORK;
  342. // 加载elf格式的可执行文件
  343. int tmp = process_load_elf_file(regs, path);
  344. if (tmp < 0)
  345. goto exec_failed;
  346. // 拷贝参数列表
  347. if (argv != NULL)
  348. {
  349. int argc = 0;
  350. // 目标程序的argv基地址指针,最大8个参数
  351. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  352. uint64_t str_addr = (uint64_t)dst_argv;
  353. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  354. {
  355. if (*argv[argc] == NULL)
  356. break;
  357. // 测量参数的长度(最大1023)
  358. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  359. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  360. str_addr -= argv_len;
  361. dst_argv[argc] = (char *)str_addr;
  362. // 字符串加上结尾字符
  363. ((char *)str_addr)[argv_len] = '\0';
  364. }
  365. // 重新设定栈基址,并预留空间防止越界
  366. stack_start_addr = str_addr - 8;
  367. current_pcb->mm->stack_start = stack_start_addr;
  368. regs->rsp = regs->rbp = stack_start_addr;
  369. // 传递参数
  370. regs->rdi = argc;
  371. regs->rsi = (uint64_t)dst_argv;
  372. }
  373. // kdebug("execve ok");
  374. regs->cs = USER_CS | 3;
  375. regs->ds = USER_DS | 3;
  376. regs->ss = USER_DS | 0x3;
  377. regs->rflags = 0x200246;
  378. regs->rax = 1;
  379. regs->es = 0;
  380. return 0;
  381. exec_failed:;
  382. process_do_exit(tmp);
  383. }
  384. #pragma GCC pop_options
  385. /**
  386. * @brief 内核init进程
  387. *
  388. * @param arg
  389. * @return ul 参数
  390. */
  391. #pragma GCC push_options
  392. #pragma GCC optimize("O0")
  393. ul initial_kernel_thread(ul arg)
  394. {
  395. // kinfo("initial proc running...\targ:%#018lx", arg);
  396. ahci_init();
  397. vfs_init();
  398. fat32_init();
  399. devfs_init();
  400. // 使用单独的内核线程来初始化usb驱动程序
  401. int usb_pid = kernel_thread(usb_init, 0, 0);
  402. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  403. // 对一些组件进行单元测试
  404. uint64_t tpid[] = {
  405. ktest_start(ktest_test_bitree, 0),
  406. ktest_start(ktest_test_kfifo, 0),
  407. ktest_start(ktest_test_mutex, 0),
  408. usb_pid,
  409. };
  410. kinfo("Waiting test thread exit...");
  411. // 等待测试进程退出
  412. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  413. waitpid(tpid[i], NULL, NULL);
  414. kinfo("All test done.");
  415. // 准备切换到用户态
  416. struct pt_regs *regs;
  417. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  418. cli();
  419. current_pcb->thread->rip = (ul)ret_from_system_call;
  420. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  421. current_pcb->thread->fs = USER_DS | 0x3;
  422. barrier();
  423. current_pcb->thread->gs = USER_DS | 0x3;
  424. // 主动放弃内核线程身份
  425. current_pcb->flags &= (~PF_KTHREAD);
  426. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  427. regs = (struct pt_regs *)current_pcb->thread->rsp;
  428. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  429. current_pcb->flags = 0;
  430. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  431. // 加载用户态程序:shell.elf
  432. char init_path[] = "/shell.elf";
  433. uint64_t addr = (uint64_t)&init_path;
  434. __asm__ __volatile__("movq %1, %%rsp \n\t"
  435. "pushq %2 \n\t"
  436. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  437. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  438. : "memory");
  439. return 1;
  440. }
  441. #pragma GCC pop_options
  442. /**
  443. * @brief 当子进程退出后向父进程发送通知
  444. *
  445. */
  446. void process_exit_notify()
  447. {
  448. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  449. }
  450. /**
  451. * @brief 进程退出时执行的函数
  452. *
  453. * @param code 返回码
  454. * @return ul
  455. */
  456. ul process_do_exit(ul code)
  457. {
  458. // kinfo("process exiting..., code is %ld.", (long)code);
  459. cli();
  460. struct process_control_block *pcb = current_pcb;
  461. // 进程退出时释放资源
  462. process_exit_files(pcb);
  463. process_exit_thread(pcb);
  464. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  465. pcb->state = PROC_ZOMBIE;
  466. pcb->exit_code = code;
  467. sti();
  468. process_exit_notify();
  469. sched();
  470. while (1)
  471. pause();
  472. }
  473. /**
  474. * @brief 初始化内核进程
  475. *
  476. * @param fn 目标程序的地址
  477. * @param arg 向目标程序传入的参数
  478. * @param flags
  479. * @return int
  480. */
  481. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  482. {
  483. struct pt_regs regs;
  484. barrier();
  485. memset(&regs, 0, sizeof(regs));
  486. barrier();
  487. // 在rbx寄存器中保存进程的入口地址
  488. regs.rbx = (ul)fn;
  489. // 在rdx寄存器中保存传入的参数
  490. regs.rdx = (ul)arg;
  491. barrier();
  492. regs.ds = KERNEL_DS;
  493. barrier();
  494. regs.es = KERNEL_DS;
  495. barrier();
  496. regs.cs = KERNEL_CS;
  497. barrier();
  498. regs.ss = KERNEL_DS;
  499. barrier();
  500. // 置位中断使能标志位
  501. regs.rflags = (1 << 9);
  502. barrier();
  503. // rip寄存器指向内核线程的引导程序
  504. regs.rip = (ul)kernel_thread_func;
  505. barrier();
  506. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  507. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  508. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  509. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  510. }
  511. /**
  512. * @brief 初始化进程模块
  513. * ☆前置条件:已完成系统调用模块的初始化
  514. */
  515. void process_init()
  516. {
  517. kinfo("Initializing process...");
  518. initial_mm.pgd = (pml4t_t *)get_CR3();
  519. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  520. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  521. initial_mm.data_addr_start = (ul)&_data;
  522. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  523. initial_mm.rodata_addr_start = (ul)&_rodata;
  524. initial_mm.rodata_addr_end = (ul)&_erodata;
  525. initial_mm.bss_start = (uint64_t)&_bss;
  526. initial_mm.bss_end = (uint64_t)&_ebss;
  527. initial_mm.brk_start = memory_management_struct.start_brk;
  528. initial_mm.brk_end = current_pcb->addr_limit;
  529. initial_mm.stack_start = _stack_start;
  530. initial_mm.vmas = NULL;
  531. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  532. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  533. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  534. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  535. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  536. for (int i = 256; i < 512; ++i)
  537. {
  538. uint64_t *tmp = idle_pml4t_vaddr + i;
  539. barrier();
  540. if (*tmp == 0)
  541. {
  542. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  543. barrier();
  544. memset(pdpt, 0, PAGE_4K_SIZE);
  545. barrier();
  546. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  547. }
  548. }
  549. barrier();
  550. flush_tlb();
  551. /*
  552. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  553. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  554. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  555. */
  556. // 初始化pid的写锁
  557. spin_init(&process_global_pid_write_lock);
  558. // 初始化进程的循环链表
  559. list_init(&initial_proc_union.pcb.list);
  560. barrier();
  561. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  562. barrier();
  563. initial_proc_union.pcb.state = PROC_RUNNING;
  564. initial_proc_union.pcb.preempt_count = 0;
  565. initial_proc_union.pcb.cpu_id = 0;
  566. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  567. current_pcb->virtual_runtime = (1UL << 60);
  568. }
  569. /**
  570. * @brief fork当前进程
  571. *
  572. * @param regs 新的寄存器值
  573. * @param clone_flags 克隆标志
  574. * @param stack_start 堆栈开始地址
  575. * @param stack_size 堆栈大小
  576. * @return unsigned long
  577. */
  578. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  579. {
  580. int retval = 0;
  581. struct process_control_block *tsk = NULL;
  582. // 为新的进程分配栈空间,并将pcb放置在底部
  583. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  584. barrier();
  585. if (tsk == NULL)
  586. {
  587. retval = -ENOMEM;
  588. return retval;
  589. }
  590. barrier();
  591. memset(tsk, 0, sizeof(struct process_control_block));
  592. io_mfence();
  593. // 将当前进程的pcb复制到新的pcb内
  594. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  595. io_mfence();
  596. // 初始化进程的循环链表结点
  597. list_init(&tsk->list);
  598. io_mfence();
  599. // 判断是否为内核态调用fork
  600. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  601. tsk->flags |= PF_KFORK;
  602. tsk->priority = 2;
  603. tsk->preempt_count = 0;
  604. // 增加全局的pid并赋值给新进程的pid
  605. spin_lock(&process_global_pid_write_lock);
  606. tsk->pid = process_global_pid++;
  607. barrier();
  608. // 加入到进程链表中
  609. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  610. barrier();
  611. initial_proc_union.pcb.next_pcb = tsk;
  612. barrier();
  613. tsk->parent_pcb = current_pcb;
  614. barrier();
  615. spin_unlock(&process_global_pid_write_lock);
  616. tsk->cpu_id = proc_current_cpu_id;
  617. tsk->state = PROC_UNINTERRUPTIBLE;
  618. tsk->parent_pcb = current_pcb;
  619. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  620. barrier();
  621. list_init(&tsk->list);
  622. retval = -ENOMEM;
  623. // 拷贝标志位
  624. if (process_copy_flags(clone_flags, tsk))
  625. goto copy_flags_failed;
  626. // 拷贝内存空间分布结构体
  627. if (process_copy_mm(clone_flags, tsk))
  628. goto copy_mm_failed;
  629. // 拷贝文件
  630. if (process_copy_files(clone_flags, tsk))
  631. goto copy_files_failed;
  632. // 拷贝线程结构体
  633. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  634. goto copy_thread_failed;
  635. // 拷贝成功
  636. retval = tsk->pid;
  637. tsk->flags &= ~PF_KFORK;
  638. // 唤醒进程
  639. process_wakeup(tsk);
  640. return retval;
  641. copy_thread_failed:;
  642. // 回收线程
  643. process_exit_thread(tsk);
  644. copy_files_failed:;
  645. // 回收文件
  646. process_exit_files(tsk);
  647. copy_mm_failed:;
  648. // 回收内存空间分布结构体
  649. process_exit_mm(tsk);
  650. copy_flags_failed:;
  651. kfree(tsk);
  652. return retval;
  653. return 0;
  654. }
  655. /**
  656. * @brief 根据pid获取进程的pcb
  657. *
  658. * @param pid
  659. * @return struct process_control_block*
  660. */
  661. struct process_control_block *process_get_pcb(long pid)
  662. {
  663. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  664. // 使用蛮力法搜索指定pid的pcb
  665. // todo: 使用哈希表来管理pcb
  666. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  667. {
  668. if (pcb->pid == pid)
  669. return pcb;
  670. }
  671. return NULL;
  672. }
  673. /**
  674. * @brief 将进程加入到调度器的就绪队列中
  675. *
  676. * @param pcb 进程的pcb
  677. */
  678. void process_wakeup(struct process_control_block *pcb)
  679. {
  680. pcb->state = PROC_RUNNING;
  681. sched_enqueue(pcb);
  682. }
  683. /**
  684. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  685. *
  686. * @param pcb 进程的pcb
  687. */
  688. void process_wakeup_immediately(struct process_control_block *pcb)
  689. {
  690. pcb->state = PROC_RUNNING;
  691. sched_enqueue(pcb);
  692. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  693. current_pcb->flags |= PF_NEED_SCHED;
  694. }
  695. /**
  696. * @brief 拷贝当前进程的标志位
  697. *
  698. * @param clone_flags 克隆标志位
  699. * @param pcb 新的进程的pcb
  700. * @return uint64_t
  701. */
  702. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  703. {
  704. if (clone_flags & CLONE_VM)
  705. pcb->flags |= PF_VFORK;
  706. return 0;
  707. }
  708. /**
  709. * @brief 拷贝当前进程的文件描述符等信息
  710. *
  711. * @param clone_flags 克隆标志位
  712. * @param pcb 新的进程的pcb
  713. * @return uint64_t
  714. */
  715. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  716. {
  717. int retval = 0;
  718. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  719. // 文件描述符已经在复制pcb时被拷贝
  720. if (clone_flags & CLONE_FS)
  721. return retval;
  722. // 为新进程拷贝新的文件描述符
  723. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  724. {
  725. if (current_pcb->fds[i] == NULL)
  726. continue;
  727. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  728. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  729. }
  730. return retval;
  731. }
  732. /**
  733. * @brief 回收进程的所有文件描述符
  734. *
  735. * @param pcb 要被回收的进程的pcb
  736. * @return uint64_t
  737. */
  738. uint64_t process_exit_files(struct process_control_block *pcb)
  739. {
  740. // 不与父进程共享文件描述符
  741. if (!(pcb->flags & PF_VFORK))
  742. {
  743. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  744. {
  745. if (pcb->fds[i] == NULL)
  746. continue;
  747. kfree(pcb->fds[i]);
  748. }
  749. }
  750. // 清空当前进程的文件描述符列表
  751. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  752. }
  753. /**
  754. * @brief 拷贝当前进程的内存空间分布结构体信息
  755. *
  756. * @param clone_flags 克隆标志位
  757. * @param pcb 新的进程的pcb
  758. * @return uint64_t
  759. */
  760. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  761. {
  762. int retval = 0;
  763. // 与父进程共享内存空间
  764. if (clone_flags & CLONE_VM)
  765. {
  766. pcb->mm = current_pcb->mm;
  767. return retval;
  768. }
  769. // 分配新的内存空间分布结构体
  770. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  771. memset(new_mms, 0, sizeof(struct mm_struct));
  772. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  773. new_mms->vmas = NULL;
  774. pcb->mm = new_mms;
  775. // 分配顶层页表, 并设置顶层页表的物理地址
  776. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  777. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  778. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  779. // 拷贝内核空间的页表指针
  780. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  781. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  782. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  783. // 拷贝用户空间的vma
  784. struct vm_area_struct *vma = current_pcb->mm->vmas;
  785. while (vma != NULL)
  786. {
  787. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  788. {
  789. vma = vma->vm_next;
  790. continue;
  791. }
  792. int64_t vma_size = vma->vm_end - vma->vm_start;
  793. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  794. if (vma_size > PAGE_2M_SIZE / 2)
  795. {
  796. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  797. for (int i = 0; i < page_to_alloc; ++i)
  798. {
  799. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  800. struct vm_area_struct *new_vma = NULL;
  801. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  802. // 防止内存泄露
  803. if (unlikely(ret == -EEXIST))
  804. free_pages(Phy_to_2M_Page(pa), 1);
  805. else
  806. mm_map_vma(new_vma, pa);
  807. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  808. vma_size -= PAGE_2M_SIZE;
  809. }
  810. }
  811. else
  812. {
  813. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  814. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  815. struct vm_area_struct *new_vma = NULL;
  816. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  817. // 防止内存泄露
  818. if (unlikely(ret == -EEXIST))
  819. kfree((void *)va);
  820. else
  821. mm_map_vma(new_vma, virt_2_phys(va));
  822. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  823. }
  824. vma = vma->vm_next;
  825. }
  826. return retval;
  827. }
  828. /**
  829. * @brief 释放进程的页表
  830. *
  831. * @param pcb 要被释放页表的进程
  832. * @return uint64_t
  833. */
  834. uint64_t process_exit_mm(struct process_control_block *pcb)
  835. {
  836. if (pcb->flags & CLONE_VM)
  837. return 0;
  838. if (pcb->mm == NULL)
  839. {
  840. kdebug("pcb->mm==NULL");
  841. return 0;
  842. }
  843. if (pcb->mm->pgd == NULL)
  844. {
  845. kdebug("pcb->mm->pgd==NULL");
  846. return 0;
  847. }
  848. // // 获取顶层页表
  849. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  850. // 循环释放VMA中的内存
  851. struct vm_area_struct *vma = pcb->mm->vmas;
  852. while (vma != NULL)
  853. {
  854. struct vm_area_struct *cur_vma = vma;
  855. vma = cur_vma->vm_next;
  856. uint64_t pa;
  857. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  858. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  859. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  860. // 释放内存
  861. switch (size)
  862. {
  863. case PAGE_4K_SIZE:
  864. kfree(phys_2_virt(pa));
  865. break;
  866. default:
  867. break;
  868. }
  869. vm_area_del(cur_vma);
  870. vm_area_free(cur_vma);
  871. }
  872. // 释放顶层页表
  873. kfree(current_pgd);
  874. if (unlikely(pcb->mm->vmas != NULL))
  875. {
  876. kwarn("pcb.mm.vmas!=NULL");
  877. }
  878. // 释放内存空间分布结构体
  879. kfree(pcb->mm);
  880. return 0;
  881. }
  882. /**
  883. * @brief 重写内核栈中的rbp地址
  884. *
  885. * @param new_regs 子进程的reg
  886. * @param new_pcb 子进程的pcb
  887. * @return int
  888. */
  889. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  890. {
  891. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  892. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  893. uint64_t *rbp = &new_regs->rbp;
  894. uint64_t *tmp = rbp;
  895. // 超出内核栈范围
  896. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  897. return 0;
  898. while (1)
  899. {
  900. // 计算delta
  901. uint64_t delta = old_top - *rbp;
  902. // 计算新的rbp值
  903. uint64_t newVal = new_top - delta;
  904. // 新的值不合法
  905. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  906. break;
  907. // 将新的值写入对应位置
  908. *rbp = newVal;
  909. // 跳转栈帧
  910. rbp = (uint64_t *)*rbp;
  911. }
  912. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  913. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  914. return 0;
  915. }
  916. /**
  917. * @brief 拷贝当前进程的线程结构体
  918. *
  919. * @param clone_flags 克隆标志位
  920. * @param pcb 新的进程的pcb
  921. * @return uint64_t
  922. */
  923. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  924. {
  925. // 将线程结构体放置在pcb后方
  926. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  927. memset(thd, 0, sizeof(struct thread_struct));
  928. pcb->thread = thd;
  929. struct pt_regs *child_regs = NULL;
  930. // 拷贝栈空间
  931. if (pcb->flags & PF_KFORK) // 内核态下的fork
  932. {
  933. // 内核态下则拷贝整个内核栈
  934. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  935. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  936. memcpy(child_regs, (void *)current_regs, size);
  937. barrier();
  938. // 然后重写新的栈中,每个栈帧的rbp值
  939. process_rewrite_rbp(child_regs, pcb);
  940. }
  941. else
  942. {
  943. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  944. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  945. barrier();
  946. child_regs->rsp = stack_start;
  947. }
  948. // 设置子进程的返回值为0
  949. child_regs->rax = 0;
  950. if (pcb->flags & PF_KFORK)
  951. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  952. else
  953. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  954. // 设置新的内核线程开始执行的时候的rsp
  955. thd->rsp = (uint64_t)child_regs;
  956. thd->fs = current_pcb->thread->fs;
  957. thd->gs = current_pcb->thread->gs;
  958. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  959. if (pcb->flags & PF_KFORK)
  960. thd->rip = (uint64_t)ret_from_system_call;
  961. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  962. thd->rip = (uint64_t)kernel_thread_func;
  963. else
  964. thd->rip = (uint64_t)ret_from_system_call;
  965. return 0;
  966. }
  967. /**
  968. * @brief todo: 回收线程结构体
  969. *
  970. * @param pcb
  971. */
  972. void process_exit_thread(struct process_control_block *pcb)
  973. {
  974. }
  975. /**
  976. * @brief 申请可用的文件句柄
  977. *
  978. * @return int
  979. */
  980. int process_fd_alloc(struct vfs_file_t *file)
  981. {
  982. int fd_num = -1;
  983. struct vfs_file_t **f = current_pcb->fds;
  984. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  985. {
  986. /* 找到指针数组中的空位 */
  987. if (f[i] == NULL)
  988. {
  989. fd_num = i;
  990. f[i] = file;
  991. break;
  992. }
  993. }
  994. return fd_num;
  995. }