xhci.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. #include "xhci.h"
  2. #include <common/kprint.h>
  3. #include <debug/bug.h>
  4. #include <common/spinlock.h>
  5. #include <mm/mm.h>
  6. #include <mm/slab.h>
  7. #include <debug/traceback/traceback.h>
  8. #include <common/time.h>
  9. #include <exception/irq.h>
  10. #include <driver/interrupt/apic/apic.h>
  11. // 由于xhci寄存器读取需要对齐,因此禁用GCC优化选项
  12. #pragma GCC optimize("O0")
  13. spinlock_t xhci_controller_init_lock = {0}; // xhci控制器初始化锁(在usb_init中被初始化)
  14. static int xhci_ctrl_count = 0; // xhci控制器计数
  15. static struct xhci_host_controller_t xhci_hc[XHCI_MAX_HOST_CONTROLLERS] = {0};
  16. void xhci_hc_irq_enable(uint64_t irq_num);
  17. void xhci_hc_irq_disable(uint64_t irq_num);
  18. uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg);
  19. void xhci_hc_irq_uninstall(uint64_t irq_num);
  20. static int xhci_hc_find_available_id();
  21. static int xhci_hc_stop(int id);
  22. static int xhci_hc_reset(int id);
  23. static int xhci_hc_stop_legacy(int id);
  24. static int xhci_hc_start_sched(int id);
  25. static int xhci_hc_stop_sched(int id);
  26. static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag);
  27. static int xhci_hc_pair_ports(int id);
  28. static uint64_t xhci_create_ring(int trbs);
  29. static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr);
  30. void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs);
  31. static int xhci_hc_init_intr(int id);
  32. static int xhci_hc_start_ports(int id);
  33. hardware_intr_controller xhci_hc_intr_controller =
  34. {
  35. .enable = xhci_hc_irq_enable,
  36. .disable = xhci_hc_irq_disable,
  37. .install = xhci_hc_irq_install,
  38. .uninstall = xhci_hc_irq_uninstall,
  39. .ack = apic_local_apic_edge_ack,
  40. };
  41. /*
  42. 注意!!!
  43. 尽管采用MMI/O的方式访问寄存器,但是对于指定大小的寄存器,
  44. 在发起读请求的时候,只能从寄存器的起始地址位置开始读取。
  45. 例子:不能在一个32bit的寄存器中的偏移量8的位置开始读取1个字节
  46. 这种情况下,我们必须从32bit的寄存器的0地址处开始读取32bit,然后通过移位的方式得到其中的字节。
  47. */
  48. #define xhci_read_cap_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase + offset))
  49. #define xhci_get_ptr_cap_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase + offset))
  50. #define xhci_write_cap_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase + offset) = (uint8_t)value)
  51. #define xhci_read_cap_reg32(id, offset) (*(uint32_t *)(xhci_hc[id].vbase + offset))
  52. #define xhci_get_ptr_cap_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase + offset))
  53. #define xhci_write_cap_reg32(id, offset, value) (*(uint32_t *)(xhci_hc[id].vbase + offset) = (uint32_t)value)
  54. #define xhci_read_cap_reg64(id, offset) (*(uint64_t *)(xhci_hc[id].vbase + offset))
  55. #define xhci_get_ptr_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase + offset))
  56. #define xhci_write_cap_reg64(id, offset, value) (*(uint64_t *)(xhci_hc[id].vbase + offset) = (uint64_t)value)
  57. #define xhci_read_op_reg8(id, offset) (*(uint8_t *)(xhci_hc[id].vbase_op + offset))
  58. #define xhci_get_ptr_op_reg8(id, offset) ((uint8_t *)(xhci_hc[id].vbase_op + offset))
  59. #define xhci_write_op_reg8(id, offset, value) (*(uint8_t *)(xhci_hc[id].vbase_op + offset) = (uint8_t)value)
  60. #define xhci_read_op_reg32(id, offset) (*(uint32_t *)(xhci_hc[id].vbase_op + offset))
  61. #define xhci_get_ptr_op_reg32(id, offset) ((uint32_t *)(xhci_hc[id].vbase_op + offset))
  62. #define xhci_write_op_reg32(id, offset, value) (*(uint32_t *)(xhci_hc[id].vbase_op + offset) = (uint32_t)value)
  63. #define xhci_read_op_reg64(id, offset) (*(uint64_t *)(xhci_hc[id].vbase_op + offset))
  64. #define xhci_get_ptr_op_reg64(id, offset) ((uint64_t *)(xhci_hc[id].vbase_op + offset))
  65. #define xhci_write_op_reg64(id, offset, value) (*(uint64_t *)(xhci_hc[id].vbase_op + offset) = (uint64_t)value)
  66. /**
  67. * @brief 计算中断寄存器组虚拟地址
  68. * @param id 主机控制器id
  69. * @param num xhci中断寄存器组号
  70. */
  71. #define xhci_calc_intr_vaddr(id, num) (xhci_hc[id].vbase + xhci_hc[id].rts_offset + XHCI_RT_IR0 + num * XHCI_IR_SIZE)
  72. /**
  73. * @brief 读取/写入中断寄存器
  74. * @param id 主机控制器id
  75. * @param num xhci中断寄存器组号
  76. * @param intr_offset 寄存器在当前寄存器组中的偏移量
  77. */
  78. #define xhci_read_intr_reg32(id, num, intr_offset) (*(uint32_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset))
  79. #define xhci_write_intr_reg32(id, num, intr_offset, value) (*(uint32_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset) = value)
  80. #define xhci_read_intr_reg64(id, num, intr_offset) (*(uint64_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset))
  81. #define xhci_write_intr_reg64(id, num, intr_offset, value) (*(uint64_t *)(xhci_calc_intr_vaddr(id, num) + intr_offset) = value)
  82. #define xhci_is_aligned64(addr) ((addr & 0x3f) == 0) // 是否64bytes对齐
  83. /**
  84. * @brief 判断端口信息
  85. * @param cid 主机控制器id
  86. * @param pid 端口id
  87. */
  88. #define XHCI_PORT_IS_USB2(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB2)
  89. #define XHCI_PORT_IS_USB3(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_INFO) == XHCI_PROTOCOL_USB3)
  90. #define XHCI_PORT_IS_USB2_HSO(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HSO) == XHCI_PROTOCOL_HSO)
  91. #define XHCI_PORT_HAS_PAIR(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_HAS_PAIR) == XHCI_PROTOCOL_HAS_PAIR)
  92. #define XHCI_PORT_IS_ACTIVE(cid, pid) ((xhci_hc[cid].ports[pid].flags & XHCI_PROTOCOL_ACTIVE) == XHCI_PROTOCOL_ACTIVE)
  93. /**
  94. * @brief 设置link TRB的命令(dword3)
  95. *
  96. */
  97. #define xhci_TRB_set_link_cmd(trb_vaddr) \
  98. do \
  99. { \
  100. struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(trb_vaddr); \
  101. ptr->TRB_type = TRB_TYPE_LINK; \
  102. ptr->ioc = 0; \
  103. ptr->chain = 0; \
  104. ptr->ent = 0; \
  105. ptr->cycle = 1; \
  106. } while (0)
  107. // Common TRB types
  108. enum
  109. {
  110. TRB_TYPE_NORMAL = 1,
  111. TRB_TYPE_SETUP_STAGE,
  112. TRB_TYPE_DATA_STAGE,
  113. TRB_TYPE_STATUS_STAGE,
  114. TRB_TYPE_ISOCH,
  115. TRB_TYPE_LINK,
  116. TRB_TYPE_EVENT_DATA,
  117. TRB_TYPE_NO_OP,
  118. TRB_TYPE_ENABLE_SLOT,
  119. TRB_TYPE_DISABLE_SLOT = 10,
  120. TRB_TYPE_ADDRESS_DEVICE = 11,
  121. TRB_TYPE_CONFIG_EP,
  122. TRB_TYPE_EVALUATE_CONTEXT,
  123. TRB_TYPE_RESET_EP,
  124. TRB_TYPE_STOP_EP = 15,
  125. TRB_TYPE_SET_TR_DEQUEUE,
  126. TRB_TYPE_RESET_DEVICE,
  127. TRB_TYPE_FORCE_EVENT,
  128. TRB_TYPE_DEG_BANDWIDTH,
  129. TRB_TYPE_SET_LAT_TOLERANCE = 20,
  130. TRB_TYPE_GET_PORT_BAND = 21,
  131. TRB_TYPE_FORCE_HEADER,
  132. TRB_TYPE_NO_OP_CMD, // 24 - 31 = reserved
  133. TRB_TYPE_TRANS_EVENT = 32,
  134. TRB_TYPE_COMMAND_COMPLETION,
  135. TRB_TYPE_PORT_STATUS_CHANGE,
  136. TRB_TYPE_BANDWIDTH_REQUEST,
  137. TRB_TYPE_DOORBELL_EVENT,
  138. TRB_TYPE_HOST_CONTROLLER_EVENT = 37,
  139. TRB_TYPE_DEVICE_NOTIFICATION,
  140. TRB_TYPE_MFINDEX_WRAP,
  141. // 40 - 47 = reserved
  142. // 48 - 63 = Vendor Defined
  143. };
  144. /**
  145. * @brief 在controller数组之中寻找可用插槽
  146. *
  147. * 注意:该函数只能被获得init锁的进程所调用
  148. * @return int 可用id(无空位时返回-1)
  149. */
  150. static int xhci_hc_find_available_id()
  151. {
  152. if (unlikely(xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS))
  153. return -1;
  154. for (int i = 0; i < XHCI_MAX_HOST_CONTROLLERS; ++i)
  155. {
  156. if (xhci_hc[i].pci_dev_hdr == NULL)
  157. return i;
  158. }
  159. return -1;
  160. }
  161. /**
  162. * @brief 停止xhci主机控制器
  163. *
  164. * @param id 主机控制器id
  165. * @return int
  166. */
  167. static int xhci_hc_stop(int id)
  168. {
  169. // 判断是否已经停止
  170. if (unlikely((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 1))
  171. return 0;
  172. io_mfence();
  173. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00000000);
  174. io_mfence();
  175. char timeout = 17;
  176. while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
  177. {
  178. io_mfence();
  179. usleep(1000);
  180. if (--timeout == 0)
  181. return -ETIMEDOUT;
  182. }
  183. return 0;
  184. }
  185. /**
  186. * @brief reset xHCI主机控制器
  187. *
  188. * @param id 主机控制器id
  189. * @return int
  190. */
  191. static int xhci_hc_reset(int id)
  192. {
  193. int retval = 0;
  194. kdebug("usbsts=%#010lx", xhci_read_op_reg32(id, XHCI_OPS_USBSTS));
  195. io_mfence();
  196. // 判断HCHalted是否置位
  197. if ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
  198. {
  199. io_mfence();
  200. kdebug("stopping usb hc...");
  201. // 未置位,需要先尝试停止usb主机控制器
  202. retval = xhci_hc_stop(id);
  203. if (unlikely(retval))
  204. return retval;
  205. }
  206. int timeout = 500; // wait 500ms
  207. // reset
  208. uint32_t cmd = xhci_read_op_reg32(id, XHCI_OPS_USBCMD);
  209. io_mfence();
  210. kdebug("cmd=%#010lx", cmd);
  211. cmd |= (1 << 1);
  212. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, cmd);
  213. io_mfence();
  214. kdebug("after rst, sts=%#010lx", xhci_read_op_reg32(id, XHCI_OPS_USBSTS));
  215. io_mfence();
  216. while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1))
  217. {
  218. io_mfence();
  219. usleep(1000);
  220. if (--timeout == 0)
  221. return -ETIMEDOUT;
  222. }
  223. // kdebug("reset done!, timeout=%d", timeout);
  224. return retval;
  225. }
  226. /**
  227. * @brief 停止指定xhci控制器的legacy support
  228. *
  229. * @param id 控制器id
  230. * @return int
  231. */
  232. static int xhci_hc_stop_legacy(int id)
  233. {
  234. uint64_t current_offset = xhci_hc[id].ext_caps_off;
  235. do
  236. {
  237. // 判断当前entry是否为legacy support entry
  238. if (xhci_read_cap_reg8(id, current_offset) == XHCI_XECP_ID_LEGACY)
  239. {
  240. io_mfence();
  241. // 接管控制权
  242. xhci_write_cap_reg32(id, current_offset, xhci_read_cap_reg32(id, current_offset) | XHCI_XECP_LEGACY_OS_OWNED);
  243. io_mfence();
  244. // 等待响应完成
  245. int timeout = XHCI_XECP_LEGACY_TIMEOUT;
  246. while ((xhci_read_cap_reg32(id, current_offset) & XHCI_XECP_LEGACY_OWNING_MASK) != XHCI_XECP_LEGACY_OS_OWNED)
  247. {
  248. io_mfence();
  249. usleep(1000);
  250. if (--timeout == 0)
  251. {
  252. kerror("The BIOS doesn't stop legacy support.");
  253. return -ETIMEDOUT;
  254. }
  255. }
  256. // 处理完成
  257. return 0;
  258. }
  259. io_mfence();
  260. // 读取下一个entry的偏移增加量
  261. int next_off = ((xhci_read_cap_reg32(id, current_offset) & 0xff00) >> 8) << 2;
  262. io_mfence();
  263. // 将指针跳转到下一个entry
  264. current_offset = next_off ? (current_offset + next_off) : 0;
  265. } while (current_offset);
  266. // 当前controller不存在legacy支持,也问题不大,不影响
  267. return 0;
  268. }
  269. /**
  270. * @brief 启用指定xhci控制器的调度
  271. *
  272. * @param id 控制器id
  273. * @return int
  274. */
  275. static int xhci_hc_start_sched(int id)
  276. {
  277. io_mfence();
  278. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 >> 2) | (1 << 3));
  279. io_mfence();
  280. usleep(100 * 1000);
  281. }
  282. /**
  283. * @brief 停止指定xhci控制器的调度
  284. *
  285. * @param id 控制器id
  286. * @return int
  287. */
  288. static int xhci_hc_stop_sched(int id)
  289. {
  290. io_mfence();
  291. xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00);
  292. io_mfence();
  293. }
  294. /**
  295. * @brief
  296. *
  297. * @return uint32_t
  298. */
  299. /**
  300. * @brief 在Ex capability list中寻找符合指定的协议号的寄存器offset、count、flag信息
  301. *
  302. * @param id 主机控制器id
  303. * @param list_off 列表项位置距离控制器虚拟基地址的偏移量
  304. * @param version 要寻找的端口版本号(2或3)
  305. * @param offset 返回的 Compatible Port Offset
  306. * @param count 返回的 Compatible Port Count
  307. * @param protocol_flag 返回的与协议相关的flag
  308. * @return uint32_t 下一个列表项的偏移量
  309. */
  310. static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset, uint32_t *count, uint16_t *protocol_flag)
  311. {
  312. if (count)
  313. *count = 0;
  314. do
  315. {
  316. uint32_t dw0 = xhci_read_cap_reg32(id, list_off);
  317. io_mfence();
  318. uint32_t next_list_off = (dw0 >> 8) & 0xff;
  319. next_list_off = next_list_off ? (list_off + (next_list_off << 2)) : 0;
  320. if ((dw0 & 0xff) == XHCI_XECP_ID_PROTOCOL && ((dw0 & 0xff000000) >> 24) == version)
  321. {
  322. uint32_t dw2 = xhci_read_cap_reg32(id, list_off + 8);
  323. io_mfence();
  324. if (offset != NULL)
  325. *offset = (uint32_t)(dw2 & 0xff) - 1; // 使其转换为zero based
  326. if (count != NULL)
  327. *count = (uint32_t)((dw2 & 0xff00) >> 8);
  328. if (protocol_flag != NULL && version == 2)
  329. *protocol_flag = (uint16_t)((dw2 >> 16) & 0x0fff);
  330. return next_list_off;
  331. }
  332. list_off = next_list_off;
  333. } while (list_off);
  334. return 0;
  335. }
  336. /**
  337. * @brief 配对xhci主机控制器的usb2、usb3端口
  338. *
  339. * @param id 主机控制器id
  340. * @return int 返回码
  341. */
  342. static int xhci_hc_pair_ports(int id)
  343. {
  344. struct xhci_caps_HCSPARAMS1_reg_t hcs1;
  345. io_mfence();
  346. memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
  347. io_mfence();
  348. // 从hcs1获取端口数量
  349. xhci_hc[id].port_num = hcs1.max_ports;
  350. // 找到所有的端口并标记其端口信息
  351. xhci_hc[id].port_num_u2 = 0;
  352. xhci_hc[id].port_num_u3 = 0;
  353. uint32_t next_off = xhci_hc[id].ext_caps_off;
  354. uint32_t offset, cnt;
  355. uint16_t protocol_flags = 0;
  356. // 寻找所有的usb2端口
  357. while (next_off)
  358. {
  359. io_mfence();
  360. next_off = xhci_hc_get_protocol_offset(id, next_off, 2, &offset, &cnt, &protocol_flags);
  361. io_mfence();
  362. if (cnt)
  363. {
  364. for (int i = 0; i < cnt; ++i)
  365. {
  366. io_mfence();
  367. xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u2++;
  368. xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB2;
  369. io_mfence();
  370. // usb2 high speed only
  371. if (protocol_flags & 2)
  372. xhci_hc[id].ports[offset + i].flags |= XHCI_PROTOCOL_HSO;
  373. }
  374. }
  375. }
  376. // 寻找所有的usb3端口
  377. next_off = xhci_hc[id].ext_caps_off;
  378. while (next_off)
  379. {
  380. io_mfence();
  381. next_off = xhci_hc_get_protocol_offset(id, next_off, 3, &offset, &cnt, &protocol_flags);
  382. io_mfence();
  383. if (cnt)
  384. {
  385. for (int i = 0; i < cnt; ++i)
  386. {
  387. io_mfence();
  388. xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u3++;
  389. xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB3;
  390. }
  391. }
  392. }
  393. // 将对应的USB2端口和USB3端口进行配对
  394. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  395. {
  396. for (int j = 0; j < xhci_hc[id].port_num; ++j)
  397. {
  398. if (unlikely(i == j))
  399. continue;
  400. io_mfence();
  401. if ((xhci_hc[id].ports[i].offset == xhci_hc[id].ports[j].offset) &&
  402. ((xhci_hc[id].ports[i].flags & XHCI_PROTOCOL_INFO) != (xhci_hc[id].ports[j].flags & XHCI_PROTOCOL_INFO)))
  403. {
  404. xhci_hc[id].ports[i].paired_port_num = j;
  405. xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_HAS_PAIR;
  406. io_mfence();
  407. xhci_hc[id].ports[j].paired_port_num = i;
  408. xhci_hc[id].ports[j].flags |= XHCI_PROTOCOL_HAS_PAIR;
  409. }
  410. }
  411. }
  412. // 标记所有的usb3、单独的usb2端口为激活状态
  413. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  414. {
  415. io_mfence();
  416. if (XHCI_PORT_IS_USB3(id, i) ||
  417. (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))))
  418. xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_ACTIVE;
  419. }
  420. kinfo("Found %d ports on root hub, usb2 ports:%d, usb3 ports:%d", xhci_hc[id].port_num, xhci_hc[id].port_num_u2, xhci_hc[id].port_num_u3);
  421. /*
  422. // 打印配对结果
  423. for (int i = 1; i <= xhci_hc[id].port_num; ++i)
  424. {
  425. if (XHCI_PORT_IS_USB3(id, i))
  426. {
  427. kdebug("USB3 port %d, offset=%d, pair with usb2 port %d, current port is %s", i, xhci_hc[id].ports[i].offset,
  428. xhci_hc[id].ports[i].paired_port_num, XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive");
  429. }
  430. else if (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))) // 单独的2.0接口
  431. {
  432. kdebug("Stand alone USB2 port %d, offset=%d, current port is %s", i, xhci_hc[id].ports[i].offset,
  433. XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive");
  434. }
  435. else if (XHCI_PORT_IS_USB2(id, i))
  436. {
  437. kdebug("USB2 port %d, offset=%d, current port is %s, has pair=%s", i, xhci_hc[id].ports[i].offset,
  438. XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive", XHCI_PORT_HAS_PAIR(id, i) ? "true" : "false");
  439. }
  440. }
  441. */
  442. return 0;
  443. }
  444. /**
  445. * @brief 创建ring,并将最后一个trb指向头一个trb
  446. *
  447. * @param trbs 要创建的trb数量
  448. * @return uint64_t trb数组的起始虚拟地址
  449. */
  450. static uint64_t xhci_create_ring(int trbs)
  451. {
  452. int total_size = trbs * sizeof(struct xhci_TRB_t);
  453. const uint64_t vaddr = (uint64_t)kmalloc(total_size, 0);
  454. io_mfence();
  455. memset((void *)vaddr, 0, total_size);
  456. io_mfence();
  457. // 设置最后一个trb为link trb
  458. xhci_TRB_set_link_cmd(vaddr + total_size - sizeof(struct xhci_TRB_t));
  459. io_mfence();
  460. return vaddr;
  461. }
  462. /**
  463. * @brief 创建新的event ring table和对应的ring segment
  464. *
  465. * @param trbs 包含的trb的数量
  466. * @param ret_ring_addr 返回的第一个event ring segment的基地址(虚拟)
  467. * @return uint64_t trb table的虚拟地址
  468. */
  469. static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr)
  470. {
  471. const uint64_t table_vaddr = (const uint64_t)kmalloc(64, 0); // table支持8个segment
  472. io_mfence();
  473. if (unlikely(table_vaddr == NULL))
  474. return -ENOMEM;
  475. memset((void *)table_vaddr, 0, 64);
  476. // 暂时只创建1个segment
  477. const uint64_t seg_vaddr = (const uint64_t)kmalloc(trbs * sizeof(struct xhci_TRB_t), 0);
  478. io_mfence();
  479. if (unlikely(seg_vaddr == NULL))
  480. return -ENOMEM;
  481. memset((void *)seg_vaddr, 0, trbs * sizeof(struct xhci_TRB_t));
  482. io_mfence();
  483. // 将segment地址和大小写入table
  484. *(uint64_t *)(table_vaddr) = virt_2_phys(seg_vaddr);
  485. *(uint64_t *)(table_vaddr + 8) = trbs;
  486. *ret_ring_addr = seg_vaddr;
  487. return table_vaddr;
  488. }
  489. void xhci_hc_irq_enable(uint64_t irq_num)
  490. {
  491. int cid = xhci_find_hcid_by_irq_num(irq_num);
  492. io_mfence();
  493. if (WARN_ON(cid == -1))
  494. return;
  495. kdebug("start msi");
  496. io_mfence();
  497. pci_start_msi(xhci_hc[cid].pci_dev_hdr);
  498. kdebug("start sched");
  499. io_mfence();
  500. xhci_hc_start_sched(cid);
  501. kdebug("start ports");
  502. io_mfence();
  503. xhci_hc_start_ports(cid);
  504. kdebug("enabled");
  505. }
  506. void xhci_hc_irq_disable(uint64_t irq_num)
  507. {
  508. int cid = xhci_find_hcid_by_irq_num(irq_num);
  509. io_mfence();
  510. if (WARN_ON(cid == -1))
  511. return;
  512. xhci_hc_stop_sched(cid);
  513. io_mfence();
  514. pci_disable_msi(xhci_hc[cid].pci_dev_hdr);
  515. io_mfence();
  516. }
  517. uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg)
  518. {
  519. int cid = xhci_find_hcid_by_irq_num(irq_num);
  520. io_mfence();
  521. if (WARN_ON(cid == -1))
  522. return -EINVAL;
  523. struct xhci_hc_irq_install_info_t *info = (struct xhci_hc_irq_install_info_t *)arg;
  524. struct msi_desc_t msi_desc;
  525. memset(&msi_desc, 0, sizeof(struct msi_desc_t));
  526. io_mfence();
  527. msi_desc.pci_dev = (struct pci_device_structure_header_t *)xhci_hc[cid].pci_dev_hdr;
  528. msi_desc.assert = info->assert;
  529. msi_desc.edge_trigger = info->edge_trigger;
  530. msi_desc.processor = info->processor;
  531. msi_desc.pci.msi_attribute.is_64 = 1;
  532. // todo: QEMU是使用msix的,因此要先在pci中实现msix
  533. io_mfence();
  534. int retval = pci_enable_msi(&msi_desc);
  535. kdebug("pci retval = %d", retval);
  536. kdebug("xhci irq %d installed.", irq_num);
  537. return 0;
  538. }
  539. void xhci_hc_irq_uninstall(uint64_t irq_num)
  540. {
  541. // todo
  542. int cid = xhci_find_hcid_by_irq_num(irq_num);
  543. io_mfence();
  544. if (WARN_ON(cid == -1))
  545. return;
  546. xhci_hc_stop(cid);
  547. io_mfence();
  548. }
  549. /**
  550. * @brief xhci主机控制器的中断处理函数
  551. *
  552. * @param irq_num 中断向量号
  553. * @param cid 控制器号
  554. * @param regs 寄存器值
  555. */
  556. void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs)
  557. {
  558. // todo: handle irq
  559. kdebug("USB irq received.");
  560. }
  561. /**
  562. * @brief 重置端口
  563. *
  564. * @param id 控制器id
  565. * @param port 端口id
  566. * @return int
  567. */
  568. static int xhci_reset_port(const int id, const int port)
  569. {
  570. int retval = 0;
  571. // 相对于op寄存器基地址的偏移量
  572. uint64_t port_status_offset = XHCI_OPS_PRS + port * 16;
  573. // kdebug("to reset %d, offset=%#018lx", port, port_status_offset);
  574. io_mfence();
  575. // 检查端口电源状态
  576. if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
  577. {
  578. kdebug("port is power off, starting...");
  579. io_mfence();
  580. xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9));
  581. io_mfence();
  582. usleep(2000);
  583. // 检测端口是否被启用, 若未启用,则报错
  584. if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
  585. {
  586. kdebug("cannot power on %d", port);
  587. return -EAGAIN;
  588. }
  589. }
  590. // kdebug("port:%d, power check ok", port);
  591. io_mfence();
  592. // 确保端口的status被清0
  593. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
  594. io_mfence();
  595. // 重置当前端口
  596. if (XHCI_PORT_IS_USB3(id, port))
  597. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 31));
  598. else
  599. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 4));
  600. retval = -ETIMEDOUT;
  601. // 等待portsc的port reset change位被置位,说明reset完成
  602. int timeout = 200;
  603. while (timeout)
  604. {
  605. io_mfence();
  606. uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
  607. io_mfence();
  608. if (XHCI_PORT_IS_USB3(id, port) && (val & (1 << 31)) == 0)
  609. break;
  610. else if (XHCI_PORT_IS_USB2(id, port) && (val & (1 << 4)) == 0)
  611. break;
  612. else if (val & (1 << 21))
  613. break;
  614. --timeout;
  615. usleep(500);
  616. }
  617. // kdebug("timeout= %d", timeout);
  618. if (timeout > 0)
  619. {
  620. // 等待恢复
  621. usleep(USB_TIME_RST_REC * 1000);
  622. uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
  623. io_mfence();
  624. // 如果reset之后,enable bit仍然是1,那么说明reset成功
  625. if (val & (1 << 1))
  626. {
  627. io_mfence();
  628. // 清除status change bit
  629. xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
  630. io_mfence();
  631. }
  632. retval = 0;
  633. }
  634. // 如果usb2端口成功reset,则处理该端口的active状态
  635. if (retval == 0 && XHCI_PORT_IS_USB2(id, port))
  636. {
  637. xhci_hc[id].ports[port].flags |= XHCI_PROTOCOL_ACTIVE;
  638. if (XHCI_PORT_HAS_PAIR(id, port)) // 如果有对应的usb3端口,则将usb3端口设置为未激活
  639. xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags &= ~(XHCI_PROTOCOL_ACTIVE);
  640. }
  641. // 如果usb3端口reset失败,则启用与之配对的usb2端口
  642. if (retval != 0 && XHCI_PORT_IS_USB3(id, port))
  643. {
  644. xhci_hc[id].ports[port].flags &= ~XHCI_PROTOCOL_ACTIVE;
  645. xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags |= XHCI_PROTOCOL_ACTIVE;
  646. }
  647. return retval;
  648. }
  649. /**
  650. * @brief 启用xhci控制器的端口
  651. *
  652. * @param id 控制器id
  653. * @return int
  654. */
  655. static int xhci_hc_start_ports(int id)
  656. {
  657. int cnt = 0;
  658. // 注意,这两个循环应该不能合并到一起,因为可能存在usb2端口offset在前,usb3端口在后的情况,那样的话就会出错
  659. // 循环启动所有的usb3端口
  660. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  661. {
  662. if (XHCI_PORT_IS_USB3(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
  663. {
  664. io_mfence();
  665. // reset该端口
  666. if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符
  667. // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
  668. {
  669. // xhci_hc_get_descriptor(id, i);
  670. ++cnt;
  671. }
  672. }
  673. }
  674. kdebug("active usb3 ports:%d", cnt);
  675. // 循环启动所有的usb2端口
  676. for (int i = 0; i < xhci_hc[id].port_num; ++i)
  677. {
  678. if (XHCI_PORT_IS_USB2(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
  679. {
  680. // reset该端口
  681. if (likely(xhci_reset_port(id, i) == 0)) // 如果端口reset成功,就获取它的描述符
  682. // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
  683. {
  684. // xhci_hc_get_descriptor(id, i);
  685. ++cnt;
  686. }
  687. }
  688. }
  689. kinfo("xHCI controller %d: Started %d ports.", id, cnt);
  690. }
  691. /**
  692. * @brief 初始化xhci主机控制器的中断控制
  693. *
  694. * @param id 主机控制器id
  695. * @return int 返回码
  696. */
  697. static int xhci_hc_init_intr(int id)
  698. {
  699. uint64_t retval = 0;
  700. struct xhci_caps_HCSPARAMS1_reg_t hcs1;
  701. struct xhci_caps_HCSPARAMS2_reg_t hcs2;
  702. io_mfence();
  703. memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
  704. io_mfence();
  705. memcpy(&hcs2, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
  706. io_mfence();
  707. uint32_t max_segs = (1 << (uint32_t)(hcs2.ERST_Max));
  708. uint32_t max_interrupters = hcs1.max_intrs;
  709. // 创建 event ring
  710. retval = xhci_create_event_ring(4096, &xhci_hc[id].event_ring_vaddr);
  711. io_mfence();
  712. if (unlikely((int64_t)(retval) == -ENOMEM))
  713. return -ENOMEM;
  714. xhci_hc[id].event_ring_table_vaddr = retval;
  715. retval = 0;
  716. xhci_hc[id].current_event_ring_cycle = 1;
  717. // 写入第0个中断寄存器组
  718. io_mfence();
  719. xhci_write_intr_reg32(id, 0, XHCI_IR_MAN, 0x3); // 使能中断并清除pending位(这个pending位是写入1就清0的)
  720. io_mfence();
  721. xhci_write_intr_reg32(id, 0, XHCI_IR_MOD, 0); // 关闭中断管制
  722. io_mfence();
  723. xhci_write_intr_reg32(id, 0, XHCI_IR_TABLE_SIZE, 1); // 当前只有1个segment
  724. io_mfence();
  725. xhci_write_intr_reg64(id, 0, XHCI_IR_DEQUEUE, virt_2_phys(xhci_hc[id].event_ring_vaddr) | (1 << 3)); // 写入dequeue寄存器,并清除busy位(写1就会清除)
  726. io_mfence();
  727. xhci_write_intr_reg64(id, 0, XHCI_IR_TABLE_ADDR, virt_2_phys(xhci_hc[id].event_ring_table_vaddr)); // 写入table地址
  728. io_mfence();
  729. // 清除状态位
  730. xhci_write_op_reg32(id, XHCI_OPS_USBSTS, (1 << 10) | (1 << 4) | (1 << 3) | (1 << 2));
  731. io_mfence();
  732. // 开启usb中断
  733. // 注册中断处理程序
  734. struct xhci_hc_irq_install_info_t install_info;
  735. install_info.assert = 1;
  736. install_info.edge_trigger = 1;
  737. install_info.processor = 0; // 投递到bsp
  738. char *buf = (char *)kmalloc(16, 0);
  739. memset(buf, 0, 16);
  740. sprintk(buf, "xHCI HC%d", id);
  741. io_mfence();
  742. irq_register(xhci_controller_irq_num[id], &install_info, &xhci_hc_irq_handler, id, &xhci_hc_intr_controller, buf);
  743. io_mfence();
  744. kfree(buf);
  745. kdebug("xhci host controller %d: interrupt registered. irq num=%d", id, xhci_controller_irq_num[id]);
  746. return 0;
  747. }
  748. /**
  749. * @brief 初始化xhci控制器
  750. *
  751. * @param header 指定控制器的pci device头部
  752. */
  753. void xhci_init(struct pci_device_structure_general_device_t *dev_hdr)
  754. {
  755. if (xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS)
  756. {
  757. kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
  758. return;
  759. }
  760. spin_lock(&xhci_controller_init_lock);
  761. kinfo("Initializing xhci host controller: bus=%#02x, device=%#02x, func=%#02x, VendorID=%#04x, irq_line=%d, irq_pin=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, dev_hdr->header.Vendor_ID, dev_hdr->Interrupt_Line, dev_hdr->Interrupt_PIN);
  762. io_mfence();
  763. int cid = xhci_hc_find_available_id();
  764. if (cid < 0)
  765. {
  766. kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
  767. goto failed_exceed_max;
  768. }
  769. memset(&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
  770. xhci_hc[cid].controller_id = cid;
  771. xhci_hc[cid].pci_dev_hdr = dev_hdr;
  772. io_mfence();
  773. pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4, 0x0006); // mem I/O access enable and bus master enable
  774. io_mfence();
  775. // 为当前控制器映射寄存器地址空间
  776. xhci_hc[cid].vbase = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + XHCI_MAPPING_OFFSET + 65536 * xhci_hc[cid].controller_id;
  777. // kdebug("dev_hdr->BAR0 & (~0xf)=%#018lx", dev_hdr->BAR0 & (~0xf));
  778. mm_map_phys_addr(xhci_hc[cid].vbase, dev_hdr->BAR0 & (~0xf), 65536, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, true);
  779. io_mfence();
  780. // 读取xhci控制寄存器
  781. uint16_t iversion = *(uint16_t *)(xhci_hc[cid].vbase + XHCI_CAPS_HCIVERSION);
  782. struct xhci_caps_HCCPARAMS1_reg_t hcc1;
  783. struct xhci_caps_HCCPARAMS2_reg_t hcc2;
  784. struct xhci_caps_HCSPARAMS1_reg_t hcs1;
  785. struct xhci_caps_HCSPARAMS2_reg_t hcs2;
  786. memcpy(&hcc1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS1), sizeof(struct xhci_caps_HCCPARAMS1_reg_t));
  787. memcpy(&hcc2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS2), sizeof(struct xhci_caps_HCCPARAMS2_reg_t));
  788. memcpy(&hcs1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
  789. memcpy(&hcs2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
  790. // kdebug("hcc1.xECP=%#010lx", hcc1.xECP);
  791. // 计算operational registers的地址
  792. xhci_hc[cid].vbase_op = xhci_hc[cid].vbase + xhci_read_cap_reg8(cid, XHCI_CAPS_CAPLENGTH);
  793. io_mfence();
  794. xhci_hc[cid].db_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_DBOFF) & (~0x3); // bits [1:0] reserved
  795. io_mfence();
  796. xhci_hc[cid].rts_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_RTSOFF) & (~0x1f); // bits [4:0] reserved.
  797. io_mfence();
  798. xhci_hc[cid].ext_caps_off = 1UL * (hcc1.xECP) * 4;
  799. xhci_hc[cid].context_size = (hcc1.csz) ? 64 : 32;
  800. if (iversion < 0x95)
  801. {
  802. kwarn("Unsupported/Unknowned xHCI controller version: %#06x. This may cause unexpected behavior.", iversion);
  803. }
  804. // if it is a Panther Point device, make sure sockets are xHCI controlled.
  805. if (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) & 0xffff) == 0x8086) &&
  806. ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 2) & 0xffff) == 0x1E31) &&
  807. ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 8) & 0xff) == 4))
  808. {
  809. kdebug("Is a Panther Point device");
  810. pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd8, 0xffffffff);
  811. pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd0, 0xffffffff);
  812. }
  813. io_mfence();
  814. // 关闭legacy支持
  815. FAIL_ON_TO(xhci_hc_stop_legacy(cid), failed);
  816. io_mfence();
  817. // 重置xhci控制器
  818. FAIL_ON_TO(xhci_hc_reset(cid), failed);
  819. io_mfence();
  820. // 端口配对
  821. FAIL_ON_TO(xhci_hc_pair_ports(cid), failed);
  822. io_mfence();
  823. // ========== 设置USB host controller =========
  824. // 获取页面大小
  825. kdebug("ops pgsize=%#010lx", xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE));
  826. xhci_hc[cid].page_size = (xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE) & 0xffff) << 12;
  827. kdebug("page size=%d", xhci_hc[cid].page_size);
  828. io_mfence();
  829. // 获取设备上下文空间
  830. xhci_hc[cid].dcbaap_vaddr = (uint64_t)kmalloc(2048, 0); // 分配2KB的设备上下文地址数组空间
  831. memset((void *)xhci_hc[cid].dcbaap_vaddr, 0, 2048);
  832. io_mfence();
  833. kdebug("dcbaap_vaddr=%#018lx", xhci_hc[cid].dcbaap_vaddr);
  834. if (unlikely(!xhci_is_aligned64(xhci_hc[cid].dcbaap_vaddr))) // 地址不是按照64byte对齐
  835. {
  836. kerror("dcbaap isn't 64 byte aligned.");
  837. goto failed_free_dyn;
  838. }
  839. // 写入dcbaap
  840. xhci_write_op_reg64(cid, XHCI_OPS_DCBAAP, virt_2_phys(xhci_hc[cid].dcbaap_vaddr));
  841. io_mfence();
  842. // 创建command ring
  843. xhci_hc[cid].cmd_ring_vaddr = xhci_create_ring(XHCI_CMND_RING_TRBS);
  844. if (unlikely(!xhci_is_aligned64(xhci_hc[cid].cmd_ring_vaddr))) // 地址不是按照64byte对齐
  845. {
  846. kerror("cmd ring isn't 64 byte aligned.");
  847. goto failed_free_dyn;
  848. }
  849. // 设置初始cycle bit为1
  850. xhci_hc[cid].cmd_trb_cycle = XHCI_TRB_CYCLE_ON;
  851. io_mfence();
  852. // 写入command ring控制寄存器
  853. xhci_write_op_reg64(cid, XHCI_OPS_CRCR, virt_2_phys(xhci_hc[cid].cmd_ring_vaddr) | xhci_hc[cid].cmd_trb_cycle);
  854. // 写入配置寄存器
  855. uint32_t max_slots = hcs1.max_slots;
  856. kdebug("max slots = %d", max_slots);
  857. io_mfence();
  858. xhci_write_op_reg32(cid, XHCI_OPS_CONFIG, max_slots);
  859. io_mfence();
  860. // 写入设备通知控制寄存器
  861. xhci_write_op_reg32(cid, XHCI_OPS_DNCTRL, (1 << 1)); // 目前只有N1被支持
  862. io_mfence();
  863. FAIL_ON_TO(xhci_hc_init_intr(cid), failed_free_dyn);
  864. io_mfence();
  865. ++xhci_ctrl_count;
  866. io_mfence();
  867. spin_unlock(&xhci_controller_init_lock);
  868. io_mfence();
  869. return;
  870. failed_free_dyn:; // 释放动态申请的内存
  871. if (xhci_hc[cid].dcbaap_vaddr)
  872. kfree((void *)xhci_hc[cid].dcbaap_vaddr);
  873. if (xhci_hc[cid].cmd_ring_vaddr)
  874. kfree((void *)xhci_hc[cid].cmd_ring_vaddr);
  875. if (xhci_hc[cid].event_ring_table_vaddr)
  876. kfree((void *)xhci_hc[cid].event_ring_table_vaddr);
  877. if (xhci_hc[cid].event_ring_vaddr)
  878. kfree((void *)xhci_hc[cid].event_ring_vaddr);
  879. failed:;
  880. io_mfence();
  881. // 取消地址映射
  882. mm_unmap(xhci_hc[cid].vbase, 65536);
  883. io_mfence();
  884. // 清空数组
  885. memset((void *)&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
  886. failed_exceed_max:;
  887. kerror("Failed to initialize controller: bus=%d, dev=%d, func=%d", dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func);
  888. spin_unlock(&xhci_controller_init_lock);
  889. }