page.rs 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931
  1. use alloc::{string::ToString, vec::Vec};
  2. use core::{
  3. fmt::{self, Debug, Error, Formatter},
  4. marker::PhantomData,
  5. mem,
  6. ops::Add,
  7. sync::atomic::{compiler_fence, Ordering},
  8. };
  9. use system_error::SystemError;
  10. use unified_init::macros::unified_init;
  11. use alloc::sync::Arc;
  12. use hashbrown::{HashMap, HashSet};
  13. use log::{error, info};
  14. use lru::LruCache;
  15. use crate::{
  16. arch::{interrupt::ipi::send_ipi, mm::LockedFrameAllocator, MMArch},
  17. exception::ipi::{IpiKind, IpiTarget},
  18. filesystem::{page_cache::PageCache, vfs::FilePrivateData},
  19. init::initcall::INITCALL_CORE,
  20. ipc::shm::ShmId,
  21. libs::{
  22. rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
  23. spinlock::{SpinLock, SpinLockGuard},
  24. },
  25. process::{ProcessControlBlock, ProcessManager},
  26. time::{sleep::nanosleep, PosixTimeSpec},
  27. };
  28. use super::{
  29. allocator::page_frame::{
  30. deallocate_page_frames, FrameAllocator, PageFrameCount, PhysPageFrame,
  31. },
  32. syscall::ProtFlags,
  33. ucontext::LockedVMA,
  34. MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr,
  35. };
  36. pub const PAGE_4K_SHIFT: usize = 12;
  37. #[allow(dead_code)]
  38. pub const PAGE_2M_SHIFT: usize = 21;
  39. pub const PAGE_1G_SHIFT: usize = 30;
  40. pub const PAGE_4K_SIZE: usize = 1 << PAGE_4K_SHIFT;
  41. pub const PAGE_2M_SIZE: usize = 1 << PAGE_2M_SHIFT;
  42. /// 全局物理页信息管理器
  43. pub static mut PAGE_MANAGER: Option<SpinLock<PageManager>> = None;
  44. /// 初始化PAGE_MANAGER
  45. pub fn page_manager_init() {
  46. info!("page_manager_init");
  47. let page_manager = SpinLock::new(PageManager::new());
  48. compiler_fence(Ordering::SeqCst);
  49. unsafe { PAGE_MANAGER = Some(page_manager) };
  50. compiler_fence(Ordering::SeqCst);
  51. info!("page_manager_init done");
  52. }
  53. pub fn page_manager_lock_irqsave() -> SpinLockGuard<'static, PageManager> {
  54. unsafe { PAGE_MANAGER.as_ref().unwrap().lock_irqsave() }
  55. }
  56. // 物理页管理器
  57. pub struct PageManager {
  58. phys2page: HashMap<PhysAddr, Arc<Page>>,
  59. }
  60. impl PageManager {
  61. pub fn new() -> Self {
  62. Self {
  63. phys2page: HashMap::new(),
  64. }
  65. }
  66. #[allow(dead_code)]
  67. pub fn contains(&self, paddr: &PhysAddr) -> bool {
  68. self.phys2page.contains_key(paddr)
  69. }
  70. pub fn get(&mut self, paddr: &PhysAddr) -> Option<Arc<Page>> {
  71. page_reclaimer_lock_irqsave().get(paddr);
  72. self.phys2page.get(paddr).cloned()
  73. }
  74. pub fn get_unwrap(&mut self, paddr: &PhysAddr) -> Arc<Page> {
  75. page_reclaimer_lock_irqsave().get(paddr);
  76. self.phys2page
  77. .get(paddr)
  78. .unwrap_or_else(|| panic!("Phys Page not found, {:?}", paddr))
  79. .clone()
  80. }
  81. fn insert(&mut self, page: &Arc<Page>) -> Result<Arc<Page>, SystemError> {
  82. let phys = page.phys_address();
  83. if !self.phys2page.contains_key(&phys) {
  84. self.phys2page.insert(phys, page.clone());
  85. Ok(page.clone())
  86. } else {
  87. log::error!("phys page: {phys:?} already exists.");
  88. Err(SystemError::EINVAL)
  89. }
  90. }
  91. pub fn remove_page(&mut self, paddr: &PhysAddr) {
  92. self.phys2page.remove(paddr);
  93. }
  94. /// # 创建一个新页面并加入管理器
  95. ///
  96. /// ## 参数
  97. ///
  98. /// - `shared`: 是否共享
  99. /// - `page_type`: 页面类型
  100. /// - `flags`: 页面标志
  101. /// - `allocator`: 物理页帧分配器
  102. ///
  103. /// ## 返回值
  104. ///
  105. /// - `Ok(Arc<Page>)`: 新页面
  106. /// - `Err(SystemError)`: 错误码
  107. pub fn create_one_page(
  108. &mut self,
  109. page_type: PageType,
  110. flags: PageFlags,
  111. allocator: &mut dyn FrameAllocator,
  112. ) -> Result<Arc<Page>, SystemError> {
  113. self.create_pages(page_type, flags, allocator, PageFrameCount::ONE)?
  114. .1
  115. .first()
  116. .ok_or(SystemError::ENOMEM)
  117. .cloned()
  118. }
  119. /// # 创建新页面并加入管理器
  120. ///
  121. /// ## 参数
  122. ///
  123. /// - `shared`: 是否共享
  124. /// - `page_type`: 页面类型
  125. /// - `flags`: 页面标志
  126. /// - `allocator`: 物理页帧分配器
  127. /// - `count`: 页面数量
  128. ///
  129. /// ## 返回值
  130. ///
  131. /// - `Ok((PhysAddr, Vec<Arc<Page>>))`: 页面起始物理地址,新页面集合
  132. /// - `Err(SystemError)`: 错误码
  133. pub fn create_pages(
  134. &mut self,
  135. page_type: PageType,
  136. flags: PageFlags,
  137. allocator: &mut dyn FrameAllocator,
  138. count: PageFrameCount,
  139. ) -> Result<(PhysAddr, Vec<Arc<Page>>), SystemError> {
  140. compiler_fence(Ordering::SeqCst);
  141. let (start_paddr, count) = unsafe { allocator.allocate(count).ok_or(SystemError::ENOMEM)? };
  142. compiler_fence(Ordering::SeqCst);
  143. unsafe {
  144. let vaddr = MMArch::phys_2_virt(start_paddr).unwrap();
  145. MMArch::write_bytes(vaddr, 0, MMArch::PAGE_SIZE * count.data());
  146. }
  147. let mut cur_phys = PhysPageFrame::new(start_paddr);
  148. let mut ret: Vec<Arc<Page>> = Vec::new();
  149. for _ in 0..count.data() {
  150. let page = Page::new(cur_phys.phys_address(), page_type.clone(), flags);
  151. if let Err(e) = self.insert(&page) {
  152. for insert_page in ret {
  153. self.remove_page(&insert_page.read_irqsave().phys_addr);
  154. }
  155. return Err(e);
  156. }
  157. ret.push(page);
  158. cur_phys = cur_phys.next();
  159. }
  160. Ok((start_paddr, ret))
  161. }
  162. /// # 拷贝管理器中原有页面并加入管理器,同时拷贝原页面内容
  163. ///
  164. /// ## 参数
  165. ///
  166. /// - `old_phys`: 原页面的物理地址
  167. /// - `allocator`: 物理页帧分配器
  168. ///
  169. /// ## 返回值
  170. ///
  171. /// - `Ok(Arc<Page>)`: 新页面
  172. /// - `Err(SystemError)`: 错误码
  173. pub fn copy_page(
  174. &mut self,
  175. old_phys: &PhysAddr,
  176. allocator: &mut dyn FrameAllocator,
  177. ) -> Result<Arc<Page>, SystemError> {
  178. let old_page = self.get(old_phys).ok_or(SystemError::EINVAL)?;
  179. let paddr = unsafe { allocator.allocate_one().ok_or(SystemError::ENOMEM)? };
  180. assert!(!self.contains(&paddr), "phys page: {paddr:?} already exist");
  181. let page = Page::copy(old_page.read_irqsave(), paddr)
  182. .inspect_err(|_| unsafe { allocator.free_one(paddr) })?;
  183. self.insert(&page)?;
  184. Ok(page)
  185. }
  186. }
  187. pub static mut PAGE_RECLAIMER: Option<SpinLock<PageReclaimer>> = None;
  188. pub fn page_reclaimer_init() {
  189. info!("page_reclaimer_init");
  190. let page_reclaimer = SpinLock::new(PageReclaimer::new());
  191. compiler_fence(Ordering::SeqCst);
  192. unsafe { PAGE_RECLAIMER = Some(page_reclaimer) };
  193. compiler_fence(Ordering::SeqCst);
  194. info!("page_reclaimer_init done");
  195. }
  196. /// 页面回收线程
  197. static mut PAGE_RECLAIMER_THREAD: Option<Arc<ProcessControlBlock>> = None;
  198. /// 页面回收线程初始化函数
  199. #[unified_init(INITCALL_CORE)]
  200. fn page_reclaimer_thread_init() -> Result<(), SystemError> {
  201. let closure = crate::process::kthread::KernelThreadClosure::StaticEmptyClosure((
  202. &(page_reclaim_thread as fn() -> i32),
  203. (),
  204. ));
  205. let pcb = crate::process::kthread::KernelThreadMechanism::create_and_run(
  206. closure,
  207. "page_reclaim".to_string(),
  208. )
  209. .ok_or("")
  210. .expect("create tty_refresh thread failed");
  211. unsafe {
  212. PAGE_RECLAIMER_THREAD = Some(pcb);
  213. }
  214. Ok(())
  215. }
  216. /// 页面回收线程执行的函数
  217. fn page_reclaim_thread() -> i32 {
  218. loop {
  219. let usage = unsafe { LockedFrameAllocator.usage() };
  220. // log::info!("usage{:?}", usage);
  221. // 保留4096个页面,总计16MB的空闲空间
  222. if usage.free().data() < 4096 {
  223. let page_to_free = 4096;
  224. page_reclaimer_lock_irqsave().shrink_list(PageFrameCount::new(page_to_free));
  225. } else {
  226. //TODO 暂时让页面回收线程负责脏页回写任务,后续需要分离
  227. page_reclaimer_lock_irqsave().flush_dirty_pages();
  228. // 休眠5秒
  229. // log::info!("sleep");
  230. let _ = nanosleep(PosixTimeSpec::new(0, 500_000_000));
  231. }
  232. }
  233. }
  234. /// 获取页面回收器
  235. pub fn page_reclaimer_lock_irqsave() -> SpinLockGuard<'static, PageReclaimer> {
  236. unsafe { PAGE_RECLAIMER.as_ref().unwrap().lock_irqsave() }
  237. }
  238. /// 页面回收器
  239. pub struct PageReclaimer {
  240. lru: LruCache<PhysAddr, Arc<Page>>,
  241. }
  242. impl PageReclaimer {
  243. pub fn new() -> Self {
  244. Self {
  245. lru: LruCache::unbounded(),
  246. }
  247. }
  248. pub fn get(&mut self, paddr: &PhysAddr) -> Option<Arc<Page>> {
  249. self.lru.get(paddr).cloned()
  250. }
  251. pub fn insert_page(&mut self, paddr: PhysAddr, page: &Arc<Page>) {
  252. self.lru.put(paddr, page.clone());
  253. }
  254. pub fn remove_page(&mut self, paddr: &PhysAddr) -> Option<Arc<Page>> {
  255. self.lru.pop(paddr)
  256. }
  257. /// lru链表缩减
  258. /// ## 参数
  259. ///
  260. /// - `count`: 需要缩减的页面数量
  261. pub fn shrink_list(&mut self, count: PageFrameCount) {
  262. for _ in 0..count.data() {
  263. let (_, page) = self.lru.pop_lru().expect("pagecache is empty");
  264. let mut guard = page.write_irqsave();
  265. if let PageType::File(info) = guard.page_type().clone() {
  266. let page_cache = &info.page_cache;
  267. let page_index = info.index;
  268. let paddr = guard.phys_address();
  269. if guard.flags().contains(PageFlags::PG_DIRTY) {
  270. // 先回写脏页
  271. Self::page_writeback(&mut guard, true);
  272. }
  273. // 删除页面
  274. page_cache.lock_irqsave().remove_page(page_index);
  275. page_manager_lock_irqsave().remove_page(&paddr);
  276. self.remove_page(&paddr);
  277. }
  278. }
  279. }
  280. /// 唤醒页面回收线程
  281. pub fn wakeup_claim_thread() {
  282. // log::info!("wakeup_claim_thread");
  283. let _ = ProcessManager::wakeup(unsafe { PAGE_RECLAIMER_THREAD.as_ref().unwrap() });
  284. }
  285. /// 脏页回写函数
  286. /// ## 参数
  287. ///
  288. /// - `guard`: 需要回写的脏页
  289. /// - `unmap`: 是否取消映射
  290. ///
  291. /// ## 返回值
  292. /// - VmFaultReason: 页面错误处理信息标志
  293. pub fn page_writeback(guard: &mut RwLockWriteGuard<InnerPage>, unmap: bool) {
  294. // log::debug!("page writeback: {:?}", guard.phys_addr);
  295. let (page_cache, page_index) = match guard.page_type() {
  296. PageType::File(info) => (info.page_cache.clone(), info.index),
  297. _ => {
  298. log::warn!("try to writeback a non-file page");
  299. return;
  300. }
  301. };
  302. let paddr = guard.phys_address();
  303. let inode = page_cache.inode().clone().unwrap().upgrade().unwrap();
  304. for vma in guard.vma_set() {
  305. let address_space = vma.lock_irqsave().address_space().unwrap();
  306. let address_space = address_space.upgrade().unwrap();
  307. let mut guard = address_space.write();
  308. let mapper = &mut guard.user_mapper.utable;
  309. let virt = vma.lock_irqsave().page_address(page_index).unwrap();
  310. if unmap {
  311. unsafe {
  312. // 取消页表映射
  313. mapper.unmap(virt, false).unwrap().flush();
  314. }
  315. } else {
  316. unsafe {
  317. // 保护位设为只读
  318. mapper.remap(
  319. virt,
  320. mapper.get_entry(virt, 0).unwrap().flags().set_write(false),
  321. )
  322. };
  323. }
  324. }
  325. let len = if let Ok(metadata) = inode.metadata() {
  326. let size = metadata.size as usize;
  327. if size < page_index * MMArch::PAGE_SIZE {
  328. 0
  329. } else {
  330. size - page_index * MMArch::PAGE_SIZE
  331. }
  332. } else {
  333. MMArch::PAGE_SIZE
  334. };
  335. inode
  336. .write_direct(
  337. page_index * MMArch::PAGE_SIZE,
  338. len,
  339. unsafe {
  340. core::slice::from_raw_parts(
  341. MMArch::phys_2_virt(paddr).unwrap().data() as *mut u8,
  342. len,
  343. )
  344. },
  345. SpinLock::new(FilePrivateData::Unused).lock(),
  346. )
  347. .unwrap();
  348. // 清除标记
  349. guard.remove_flags(PageFlags::PG_DIRTY);
  350. }
  351. /// lru脏页刷新
  352. pub fn flush_dirty_pages(&mut self) {
  353. // log::info!("flush_dirty_pages");
  354. let iter = self.lru.iter();
  355. for (_paddr, page) in iter {
  356. let mut guard = page.write_irqsave();
  357. if guard.flags().contains(PageFlags::PG_DIRTY) {
  358. Self::page_writeback(&mut guard, false);
  359. }
  360. }
  361. }
  362. }
  363. bitflags! {
  364. pub struct PageFlags: u64 {
  365. const PG_LOCKED = 1 << 0;
  366. const PG_WRITEBACK = 1 << 1;
  367. const PG_REFERENCED = 1 << 2;
  368. const PG_UPTODATE = 1 << 3;
  369. const PG_DIRTY = 1 << 4;
  370. const PG_LRU = 1 << 5;
  371. const PG_HEAD = 1 << 6;
  372. const PG_WAITERS = 1 << 7;
  373. const PG_ACTIVE = 1 << 8;
  374. const PG_WORKINGSET = 1 << 9;
  375. const PG_ERROR = 1 << 10;
  376. const PG_SLAB = 1 << 11;
  377. const PG_RESERVED = 1 << 14;
  378. const PG_PRIVATE = 1 << 15;
  379. const PG_RECLAIM = 1 << 18;
  380. const PG_SWAPBACKED = 1 << 19;
  381. const PG_UNEVICTABLE = 1 << 20;
  382. }
  383. }
  384. #[derive(Debug)]
  385. pub struct Page {
  386. inner: RwLock<InnerPage>,
  387. /// 页面所在物理地址
  388. phys_addr: PhysAddr,
  389. }
  390. impl Page {
  391. /// # 创建新页面
  392. ///
  393. /// ## 参数
  394. ///
  395. /// - `shared`: 是否共享
  396. /// - `phys_addr`: 物理地址
  397. /// - `page_type`: 页面类型
  398. /// - `flags`: 页面标志
  399. ///
  400. /// ## 返回值
  401. ///
  402. /// - `Arc<Page>`: 新页面
  403. fn new(phys_addr: PhysAddr, page_type: PageType, flags: PageFlags) -> Arc<Page> {
  404. let inner = InnerPage::new(phys_addr, page_type, flags);
  405. let page = Arc::new(Self {
  406. inner: RwLock::new(inner),
  407. phys_addr,
  408. });
  409. if page.read_irqsave().flags == PageFlags::PG_LRU {
  410. page_reclaimer_lock_irqsave().insert_page(phys_addr, &page);
  411. };
  412. page
  413. }
  414. /// # 拷贝页面及内容
  415. ///
  416. /// ## 参数
  417. ///
  418. /// - `old_guard`: 源页面的读守卫
  419. /// - `new_phys`: 新页面的物理地址
  420. ///
  421. /// ## 返回值
  422. ///
  423. /// - `Ok(Arc<Page>)`: 新页面
  424. /// - `Err(SystemError)`: 错误码
  425. fn copy(
  426. old_guard: RwLockReadGuard<InnerPage>,
  427. new_phys: PhysAddr,
  428. ) -> Result<Arc<Page>, SystemError> {
  429. let page_type = old_guard.page_type().clone();
  430. let flags = *old_guard.flags();
  431. let inner = InnerPage::new(new_phys, page_type, flags);
  432. unsafe {
  433. let old_vaddr =
  434. MMArch::phys_2_virt(old_guard.phys_address()).ok_or(SystemError::EFAULT)?;
  435. let new_vaddr = MMArch::phys_2_virt(new_phys).ok_or(SystemError::EFAULT)?;
  436. (new_vaddr.data() as *mut u8)
  437. .copy_from_nonoverlapping(old_vaddr.data() as *mut u8, MMArch::PAGE_SIZE);
  438. }
  439. Ok(Arc::new(Self {
  440. inner: RwLock::new(inner),
  441. phys_addr: new_phys,
  442. }))
  443. }
  444. #[inline(always)]
  445. pub fn phys_address(&self) -> PhysAddr {
  446. self.phys_addr
  447. }
  448. pub fn read_irqsave(&self) -> RwLockReadGuard<InnerPage> {
  449. self.inner.read_irqsave()
  450. }
  451. pub fn write_irqsave(&self) -> RwLockWriteGuard<InnerPage> {
  452. self.inner.write_irqsave()
  453. }
  454. }
  455. #[derive(Debug)]
  456. /// 物理页面信息
  457. pub struct InnerPage {
  458. /// 映射到当前page的VMA
  459. vma_set: HashSet<Arc<LockedVMA>>,
  460. /// 标志
  461. flags: PageFlags,
  462. /// 页面所在物理地址
  463. phys_addr: PhysAddr,
  464. /// 页面类型
  465. page_type: PageType,
  466. }
  467. impl InnerPage {
  468. pub fn new(phys_addr: PhysAddr, page_type: PageType, flags: PageFlags) -> Self {
  469. Self {
  470. vma_set: HashSet::new(),
  471. flags,
  472. phys_addr,
  473. page_type,
  474. }
  475. }
  476. /// 将vma加入anon_vma
  477. pub fn insert_vma(&mut self, vma: Arc<LockedVMA>) {
  478. self.vma_set.insert(vma);
  479. }
  480. /// 将vma从anon_vma中删去
  481. pub fn remove_vma(&mut self, vma: &LockedVMA) {
  482. self.vma_set.remove(vma);
  483. }
  484. /// 判断当前物理页是否能被回
  485. pub fn can_deallocate(&self) -> bool {
  486. self.map_count() == 0 && !self.flags.contains(PageFlags::PG_UNEVICTABLE)
  487. }
  488. pub fn shared(&self) -> bool {
  489. self.map_count() > 1
  490. }
  491. pub fn page_cache(&self) -> Option<Arc<PageCache>> {
  492. match &self.page_type {
  493. PageType::File(info) => Some(info.page_cache.clone()),
  494. _ => None,
  495. }
  496. }
  497. pub fn page_type(&self) -> &PageType {
  498. &self.page_type
  499. }
  500. pub fn set_page_type(&mut self, page_type: PageType) {
  501. self.page_type = page_type;
  502. }
  503. #[inline(always)]
  504. pub fn vma_set(&self) -> &HashSet<Arc<LockedVMA>> {
  505. &self.vma_set
  506. }
  507. #[inline(always)]
  508. pub fn map_count(&self) -> usize {
  509. self.vma_set.len()
  510. }
  511. #[inline(always)]
  512. pub fn flags(&self) -> &PageFlags {
  513. &self.flags
  514. }
  515. #[inline(always)]
  516. pub fn set_flags(&mut self, flags: PageFlags) {
  517. self.flags = flags
  518. }
  519. #[inline(always)]
  520. pub fn add_flags(&mut self, flags: PageFlags) {
  521. self.flags = self.flags.union(flags);
  522. }
  523. #[inline(always)]
  524. pub fn remove_flags(&mut self, flags: PageFlags) {
  525. self.flags = self.flags.difference(flags);
  526. }
  527. #[inline(always)]
  528. fn phys_address(&self) -> PhysAddr {
  529. self.phys_addr
  530. }
  531. pub unsafe fn as_slice(&self) -> &[u8] {
  532. core::slice::from_raw_parts(
  533. MMArch::phys_2_virt(self.phys_addr).unwrap().data() as *const u8,
  534. MMArch::PAGE_SIZE,
  535. )
  536. }
  537. pub unsafe fn as_slice_mut(&mut self) -> &mut [u8] {
  538. core::slice::from_raw_parts_mut(
  539. MMArch::phys_2_virt(self.phys_addr).unwrap().data() as *mut u8,
  540. MMArch::PAGE_SIZE,
  541. )
  542. }
  543. pub unsafe fn copy_from_slice(&mut self, slice: &[u8]) {
  544. assert_eq!(
  545. slice.len(),
  546. MMArch::PAGE_SIZE,
  547. "length of slice not match PAGE_SIZE"
  548. );
  549. core::slice::from_raw_parts_mut(
  550. MMArch::phys_2_virt(self.phys_addr).unwrap().data() as *mut u8,
  551. MMArch::PAGE_SIZE,
  552. )
  553. .copy_from_slice(slice);
  554. }
  555. pub unsafe fn truncate(&mut self, len: usize) {
  556. if len > MMArch::PAGE_SIZE {
  557. return;
  558. }
  559. let vaddr = unsafe { MMArch::phys_2_virt(self.phys_addr).unwrap() };
  560. unsafe {
  561. core::slice::from_raw_parts_mut(
  562. (vaddr.data() + len) as *mut u8,
  563. MMArch::PAGE_SIZE - len,
  564. )
  565. .fill(0)
  566. };
  567. }
  568. }
  569. impl Drop for InnerPage {
  570. fn drop(&mut self) {
  571. assert!(
  572. self.map_count() == 0,
  573. "page drop when map count is non-zero"
  574. );
  575. unsafe {
  576. deallocate_page_frames(PhysPageFrame::new(self.phys_addr), PageFrameCount::new(1))
  577. };
  578. }
  579. }
  580. /// 页面类型,包含额外的页面信息
  581. #[derive(Debug, Clone)]
  582. pub enum PageType {
  583. /// 普通页面,不含额外信息
  584. Normal,
  585. /// 文件映射页,含文件映射相关信息
  586. File(FileMapInfo),
  587. /// 共享内存页,记录ShmId
  588. Shm(ShmId),
  589. }
  590. #[derive(Debug, Clone)]
  591. pub struct FileMapInfo {
  592. pub page_cache: Arc<PageCache>,
  593. /// 在pagecache中的偏移
  594. pub index: usize,
  595. }
  596. #[derive(Debug)]
  597. pub struct PageTable<Arch> {
  598. /// 当前页表表示的虚拟地址空间的起始地址
  599. base: VirtAddr,
  600. /// 当前页表所在的物理地址
  601. phys: PhysAddr,
  602. /// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
  603. level: usize,
  604. phantom: PhantomData<Arch>,
  605. }
  606. #[allow(dead_code)]
  607. impl<Arch: MemoryManagementArch> PageTable<Arch> {
  608. pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
  609. Self {
  610. base,
  611. phys,
  612. level,
  613. phantom: PhantomData,
  614. }
  615. }
  616. /// 获取顶级页表
  617. ///
  618. /// ## 参数
  619. ///
  620. /// - table_kind 页表类型
  621. ///
  622. /// ## 返回值
  623. ///
  624. /// 返回顶级页表
  625. pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
  626. return Self::new(
  627. VirtAddr::new(0),
  628. Arch::table(table_kind),
  629. Arch::PAGE_LEVELS - 1,
  630. );
  631. }
  632. /// 获取当前页表的物理地址
  633. #[inline(always)]
  634. pub fn phys(&self) -> PhysAddr {
  635. self.phys
  636. }
  637. /// 当前页表表示的虚拟地址空间的起始地址
  638. #[inline(always)]
  639. pub fn base(&self) -> VirtAddr {
  640. self.base
  641. }
  642. /// 获取当前页表的层级
  643. #[inline(always)]
  644. pub fn level(&self) -> usize {
  645. self.level
  646. }
  647. /// 获取当前页表自身所在的虚拟地址
  648. #[inline(always)]
  649. pub unsafe fn virt(&self) -> VirtAddr {
  650. return Arch::phys_2_virt(self.phys).unwrap();
  651. }
  652. /// 获取第i个页表项所表示的虚拟内存空间的起始地址
  653. pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
  654. if i < Arch::PAGE_ENTRY_NUM {
  655. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  656. return Some(self.base.add(i << shift));
  657. } else {
  658. return None;
  659. }
  660. }
  661. /// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
  662. pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
  663. if i < Arch::PAGE_ENTRY_NUM {
  664. return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
  665. } else {
  666. return None;
  667. }
  668. }
  669. /// 获取当前页表的第i个页表项
  670. pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
  671. let entry_virt = self.entry_virt(i)?;
  672. return Some(PageEntry::from_usize(Arch::read::<usize>(entry_virt)));
  673. }
  674. /// 设置当前页表的第i个页表项
  675. pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
  676. let entry_virt = self.entry_virt(i)?;
  677. Arch::write::<usize>(entry_virt, entry.data());
  678. return Some(());
  679. }
  680. /// 判断当前页表的第i个页表项是否已经填写了值
  681. ///
  682. /// ## 参数
  683. /// - Some(true) 如果已经填写了值
  684. /// - Some(false) 如果未填写值
  685. /// - None 如果i超出了页表项的范围
  686. pub fn entry_mapped(&self, i: usize) -> Option<bool> {
  687. let etv = unsafe { self.entry_virt(i) }?;
  688. if unsafe { Arch::read::<usize>(etv) } != 0 {
  689. return Some(true);
  690. } else {
  691. return Some(false);
  692. }
  693. }
  694. /// 根据虚拟地址,获取对应的页表项在页表中的下标
  695. ///
  696. /// ## 参数
  697. ///
  698. /// - addr: 虚拟地址
  699. ///
  700. /// ## 返回值
  701. ///
  702. /// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
  703. pub fn index_of(&self, addr: VirtAddr) -> Option<usize> {
  704. let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
  705. let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
  706. let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
  707. if addr < self.base || addr >= self.base.add(mask) {
  708. return None;
  709. } else {
  710. return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
  711. }
  712. }
  713. /// 获取第i个页表项指向的下一级页表
  714. pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
  715. if self.level == 0 {
  716. return None;
  717. }
  718. // 返回下一级页表
  719. return Some(PageTable::new(
  720. self.entry_base(index)?,
  721. self.entry(index)?.address().ok()?,
  722. self.level - 1,
  723. ));
  724. }
  725. /// 拷贝页表
  726. /// ## 参数
  727. ///
  728. /// - `allocator`: 物理页框分配器
  729. /// - `copy_on_write`: 是否写时复制
  730. pub unsafe fn clone(
  731. &self,
  732. allocator: &mut impl FrameAllocator,
  733. copy_on_write: bool,
  734. ) -> Option<PageTable<Arch>> {
  735. // 分配新页面作为新的页表
  736. let phys = allocator.allocate_one()?;
  737. let frame = MMArch::phys_2_virt(phys).unwrap();
  738. MMArch::write_bytes(frame, 0, MMArch::PAGE_SIZE);
  739. let new_table = PageTable::new(self.base, phys, self.level);
  740. if self.level == 0 {
  741. for i in 0..Arch::PAGE_ENTRY_NUM {
  742. if let Some(mut entry) = self.entry(i) {
  743. if entry.present() {
  744. if copy_on_write {
  745. let mut new_flags = entry.flags().set_write(false);
  746. entry.set_flags(new_flags);
  747. self.set_entry(i, entry);
  748. new_flags = new_flags.set_dirty(false);
  749. entry.set_flags(new_flags);
  750. new_table.set_entry(i, entry);
  751. } else {
  752. let phys = allocator.allocate_one()?;
  753. let mut page_manager_guard = page_manager_lock_irqsave();
  754. let old_phys = entry.address().unwrap();
  755. page_manager_guard.copy_page(&old_phys, allocator).ok()?;
  756. new_table.set_entry(i, PageEntry::new(phys, entry.flags()));
  757. }
  758. }
  759. }
  760. }
  761. } else {
  762. // 非一级页表拷贝时,对每个页表项对应的页表都进行拷贝
  763. for i in 0..MMArch::PAGE_ENTRY_NUM {
  764. if let Some(next_table) = self.next_level_table(i) {
  765. let table = next_table.clone(allocator, copy_on_write)?;
  766. let old_entry = self.entry(i).unwrap();
  767. let entry = PageEntry::new(table.phys(), old_entry.flags());
  768. new_table.set_entry(i, entry);
  769. }
  770. }
  771. }
  772. Some(new_table)
  773. }
  774. }
  775. /// 页表项
  776. #[derive(Copy, Clone)]
  777. pub struct PageEntry<Arch> {
  778. data: usize,
  779. phantom: PhantomData<Arch>,
  780. }
  781. impl<Arch> Debug for PageEntry<Arch> {
  782. fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
  783. f.write_fmt(format_args!("PageEntry({:#x})", self.data))
  784. }
  785. }
  786. impl<Arch: MemoryManagementArch> PageEntry<Arch> {
  787. #[inline(always)]
  788. pub fn new(paddr: PhysAddr, flags: EntryFlags<Arch>) -> Self {
  789. Self {
  790. data: MMArch::make_entry(paddr, flags.data()),
  791. phantom: PhantomData,
  792. }
  793. }
  794. #[inline(always)]
  795. pub fn from_usize(data: usize) -> Self {
  796. Self {
  797. data,
  798. phantom: PhantomData,
  799. }
  800. }
  801. #[inline(always)]
  802. pub fn data(&self) -> usize {
  803. self.data
  804. }
  805. /// 获取当前页表项指向的物理地址
  806. ///
  807. /// ## 返回值
  808. ///
  809. /// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
  810. /// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
  811. #[inline(always)]
  812. pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
  813. let paddr: PhysAddr = {
  814. #[cfg(target_arch = "x86_64")]
  815. {
  816. PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK)
  817. }
  818. #[cfg(target_arch = "riscv64")]
  819. {
  820. let ppn = ((self.data & (!((1 << 10) - 1))) >> 10) & ((1 << 54) - 1);
  821. super::allocator::page_frame::PhysPageFrame::from_ppn(ppn).phys_address()
  822. }
  823. };
  824. if self.present() {
  825. Ok(paddr)
  826. } else {
  827. Err(paddr)
  828. }
  829. }
  830. #[inline(always)]
  831. pub fn flags(&self) -> EntryFlags<Arch> {
  832. unsafe { EntryFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
  833. }
  834. #[inline(always)]
  835. pub fn set_flags(&mut self, flags: EntryFlags<Arch>) {
  836. self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
  837. }
  838. #[inline(always)]
  839. pub fn present(&self) -> bool {
  840. return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
  841. }
  842. #[inline(always)]
  843. pub fn empty(&self) -> bool {
  844. self.data & !(Arch::ENTRY_FLAG_DIRTY & Arch::ENTRY_FLAG_ACCESSED) == 0
  845. }
  846. #[inline(always)]
  847. pub fn protnone(&self) -> bool {
  848. return self.data & (Arch::ENTRY_FLAG_PRESENT | Arch::ENTRY_FLAG_GLOBAL)
  849. == Arch::ENTRY_FLAG_GLOBAL;
  850. }
  851. #[inline(always)]
  852. pub fn write(&self) -> bool {
  853. return self.data & Arch::ENTRY_FLAG_READWRITE != 0;
  854. }
  855. }
  856. /// 页表项的标志位
  857. #[derive(Copy, Clone, Hash)]
  858. pub struct EntryFlags<Arch> {
  859. data: usize,
  860. phantom: PhantomData<Arch>,
  861. }
  862. impl<Arch: MemoryManagementArch> Default for EntryFlags<Arch> {
  863. fn default() -> Self {
  864. Self::new()
  865. }
  866. }
  867. #[allow(dead_code)]
  868. impl<Arch: MemoryManagementArch> EntryFlags<Arch> {
  869. #[inline(always)]
  870. pub fn new() -> Self {
  871. let mut r = unsafe {
  872. Self::from_data(
  873. Arch::ENTRY_FLAG_DEFAULT_PAGE
  874. | Arch::ENTRY_FLAG_READONLY
  875. | Arch::ENTRY_FLAG_NO_EXEC,
  876. )
  877. };
  878. #[cfg(target_arch = "x86_64")]
  879. {
  880. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  881. r = r.set_execute(true);
  882. }
  883. }
  884. return r;
  885. }
  886. /// 根据ProtFlags生成EntryFlags
  887. ///
  888. /// ## 参数
  889. ///
  890. /// - prot_flags: 页的保护标志
  891. /// - user: 用户空间是否可访问
  892. pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> Self {
  893. if Arch::PAGE_FAULT_ENABLED {
  894. let vm_flags = super::VmFlags::from(prot_flags);
  895. Arch::vm_get_page_prot(vm_flags).set_user(user)
  896. } else {
  897. EntryFlags::new()
  898. .set_user(user)
  899. .set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
  900. .set_write(prot_flags.contains(ProtFlags::PROT_WRITE))
  901. }
  902. }
  903. #[inline(always)]
  904. pub fn data(&self) -> usize {
  905. self.data
  906. }
  907. #[inline(always)]
  908. pub const unsafe fn from_data(data: usize) -> Self {
  909. return Self {
  910. data,
  911. phantom: PhantomData,
  912. };
  913. }
  914. /// 为新页表的页表项设置默认值
  915. ///
  916. /// 默认值为:
  917. /// - present
  918. /// - read only
  919. /// - kernel space
  920. /// - no exec
  921. #[inline(always)]
  922. pub fn new_page_table(user: bool) -> Self {
  923. return unsafe {
  924. let r = {
  925. #[cfg(target_arch = "x86_64")]
  926. {
  927. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE)
  928. }
  929. #[cfg(target_arch = "riscv64")]
  930. {
  931. // riscv64指向下一级页表的页表项,不应设置R/W/X权限位
  932. Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE)
  933. }
  934. };
  935. #[cfg(target_arch = "x86_64")]
  936. {
  937. if user {
  938. r.set_user(true)
  939. } else {
  940. r
  941. }
  942. }
  943. #[cfg(target_arch = "riscv64")]
  944. {
  945. r
  946. }
  947. };
  948. }
  949. /// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
  950. ///
  951. /// ## 参数
  952. /// - flag 要更新的标志位的值
  953. /// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
  954. ///
  955. /// ## 返回值
  956. ///
  957. /// 更新后的页表项
  958. #[inline(always)]
  959. #[must_use]
  960. pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
  961. if value {
  962. self.data |= flag;
  963. } else {
  964. self.data &= !flag;
  965. }
  966. return self;
  967. }
  968. /// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
  969. #[inline(always)]
  970. pub fn has_flag(&self, flag: usize) -> bool {
  971. return self.data & flag == flag;
  972. }
  973. #[inline(always)]
  974. pub fn present(&self) -> bool {
  975. return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
  976. }
  977. /// 设置当前页表项的权限
  978. ///
  979. /// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
  980. #[must_use]
  981. #[inline(always)]
  982. pub fn set_user(self, value: bool) -> Self {
  983. return self.update_flags(Arch::ENTRY_FLAG_USER, value);
  984. }
  985. /// 用户态是否可以访问当前页表项
  986. #[inline(always)]
  987. pub fn has_user(&self) -> bool {
  988. return self.has_flag(Arch::ENTRY_FLAG_USER);
  989. }
  990. /// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
  991. ///
  992. /// ## 返回值
  993. ///
  994. /// 更新后的页表项.
  995. ///
  996. /// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
  997. #[must_use]
  998. #[inline(always)]
  999. pub fn set_write(self, value: bool) -> Self {
  1000. #[cfg(target_arch = "x86_64")]
  1001. {
  1002. // 有的架构同时具有可写和不可写的标志位,因此需要同时更新
  1003. return self
  1004. .update_flags(Arch::ENTRY_FLAG_READONLY, !value)
  1005. .update_flags(Arch::ENTRY_FLAG_READWRITE, value);
  1006. }
  1007. #[cfg(target_arch = "riscv64")]
  1008. {
  1009. if value {
  1010. return self.update_flags(Arch::ENTRY_FLAG_READWRITE, true);
  1011. } else {
  1012. return self
  1013. .update_flags(Arch::ENTRY_FLAG_READONLY, true)
  1014. .update_flags(Arch::ENTRY_FLAG_WRITEABLE, false);
  1015. }
  1016. }
  1017. }
  1018. /// 当前页表项是否可写
  1019. #[inline(always)]
  1020. pub fn has_write(&self) -> bool {
  1021. // 有的架构同时具有可写和不可写的标志位,因此需要同时判断
  1022. return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
  1023. == Arch::ENTRY_FLAG_READWRITE;
  1024. }
  1025. /// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
  1026. #[must_use]
  1027. #[inline(always)]
  1028. pub fn set_execute(self, mut value: bool) -> Self {
  1029. #[cfg(target_arch = "x86_64")]
  1030. {
  1031. // 如果xd位被保留,那么将可执行性设置为true
  1032. if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
  1033. value = true;
  1034. }
  1035. }
  1036. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
  1037. return self
  1038. .update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
  1039. .update_flags(Arch::ENTRY_FLAG_EXEC, value);
  1040. }
  1041. /// 当前页表项是否可执行
  1042. #[inline(always)]
  1043. pub fn has_execute(&self) -> bool {
  1044. // 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
  1045. return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
  1046. == Arch::ENTRY_FLAG_EXEC;
  1047. }
  1048. /// 设置当前页表项的缓存策略
  1049. ///
  1050. /// ## 参数
  1051. ///
  1052. /// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
  1053. #[inline(always)]
  1054. pub fn set_page_cache_disable(self, value: bool) -> Self {
  1055. return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
  1056. }
  1057. /// 获取当前页表项的缓存策略
  1058. ///
  1059. /// ## 返回值
  1060. ///
  1061. /// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
  1062. #[inline(always)]
  1063. pub fn has_page_cache_disable(&self) -> bool {
  1064. return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
  1065. }
  1066. /// 设置当前页表项的写穿策略
  1067. ///
  1068. /// ## 参数
  1069. ///
  1070. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  1071. #[inline(always)]
  1072. pub fn set_page_write_through(self, value: bool) -> Self {
  1073. return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
  1074. }
  1075. #[inline(always)]
  1076. pub fn set_page_global(self, value: bool) -> Self {
  1077. return self.update_flags(MMArch::ENTRY_FLAG_GLOBAL, value);
  1078. }
  1079. /// 获取当前页表项的写穿策略
  1080. ///
  1081. /// ## 返回值
  1082. ///
  1083. /// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
  1084. #[inline(always)]
  1085. pub fn has_page_write_through(&self) -> bool {
  1086. return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
  1087. }
  1088. /// 设置当前页表是否为脏页
  1089. ///
  1090. /// ## 参数
  1091. ///
  1092. /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
  1093. #[inline(always)]
  1094. pub fn set_dirty(self, value: bool) -> Self {
  1095. return self.update_flags(Arch::ENTRY_FLAG_DIRTY, value);
  1096. }
  1097. /// 设置当前页表被访问
  1098. ///
  1099. /// ## 参数
  1100. ///
  1101. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  1102. #[inline(always)]
  1103. pub fn set_access(self, value: bool) -> Self {
  1104. return self.update_flags(Arch::ENTRY_FLAG_ACCESSED, value);
  1105. }
  1106. /// 设置指向的页是否为大页
  1107. ///
  1108. /// ## 参数
  1109. ///
  1110. /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
  1111. #[inline(always)]
  1112. pub fn set_huge_page(self, value: bool) -> Self {
  1113. return self.update_flags(Arch::ENTRY_FLAG_HUGE_PAGE, value);
  1114. }
  1115. /// MMIO内存的页表项标志
  1116. #[inline(always)]
  1117. pub fn mmio_flags() -> Self {
  1118. #[cfg(target_arch = "x86_64")]
  1119. {
  1120. Self::new()
  1121. .set_user(false)
  1122. .set_write(true)
  1123. .set_execute(true)
  1124. .set_page_cache_disable(true)
  1125. .set_page_write_through(true)
  1126. .set_page_global(true)
  1127. }
  1128. #[cfg(target_arch = "riscv64")]
  1129. {
  1130. Self::new()
  1131. .set_user(false)
  1132. .set_write(true)
  1133. .set_execute(true)
  1134. .set_page_global(true)
  1135. }
  1136. }
  1137. }
  1138. impl<Arch: MemoryManagementArch> fmt::Debug for EntryFlags<Arch> {
  1139. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  1140. f.debug_struct("EntryFlags")
  1141. .field("bits", &format_args!("{:#0x}", self.data))
  1142. .field("present", &self.present())
  1143. .field("has_write", &self.has_write())
  1144. .field("has_execute", &self.has_execute())
  1145. .field("has_user", &self.has_user())
  1146. .finish()
  1147. }
  1148. }
  1149. /// 页表映射器
  1150. #[derive(Hash)]
  1151. pub struct PageMapper<Arch, F> {
  1152. /// 页表类型
  1153. table_kind: PageTableKind,
  1154. /// 根页表物理地址
  1155. table_paddr: PhysAddr,
  1156. /// 页分配器
  1157. frame_allocator: F,
  1158. phantom: PhantomData<fn() -> Arch>,
  1159. }
  1160. impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
  1161. /// 创建新的页面映射器
  1162. ///
  1163. /// ## 参数
  1164. /// - table_kind 页表类型
  1165. /// - table_paddr 根页表物理地址
  1166. /// - allocator 页分配器
  1167. ///
  1168. /// ## 返回值
  1169. ///
  1170. /// 页面映射器
  1171. pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
  1172. return Self {
  1173. table_kind,
  1174. table_paddr,
  1175. frame_allocator: allocator,
  1176. phantom: PhantomData,
  1177. };
  1178. }
  1179. /// 创建页表,并为这个页表创建页面映射器
  1180. pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
  1181. let table_paddr = allocator.allocate_one()?;
  1182. // 清空页表
  1183. let table_vaddr = Arch::phys_2_virt(table_paddr)?;
  1184. Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
  1185. return Some(Self::new(table_kind, table_paddr, allocator));
  1186. }
  1187. /// 获取当前页表的页面映射器
  1188. #[inline(always)]
  1189. pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
  1190. let table_paddr = Arch::table(table_kind);
  1191. return Self::new(table_kind, table_paddr, allocator);
  1192. }
  1193. /// 判断当前页表分配器所属的页表是否是当前页表
  1194. #[inline(always)]
  1195. pub fn is_current(&self) -> bool {
  1196. return unsafe { self.table().phys() == Arch::table(self.table_kind) };
  1197. }
  1198. /// 将当前页表分配器所属的页表设置为当前页表
  1199. #[inline(always)]
  1200. pub unsafe fn make_current(&self) {
  1201. Arch::set_table(self.table_kind, self.table_paddr);
  1202. }
  1203. /// 获取当前页表分配器所属的根页表的结构体
  1204. #[inline(always)]
  1205. pub fn table(&self) -> PageTable<Arch> {
  1206. // 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
  1207. return unsafe {
  1208. PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
  1209. };
  1210. }
  1211. /// 获取当前PageMapper所对应的页分配器实例的引用
  1212. #[inline(always)]
  1213. #[allow(dead_code)]
  1214. pub fn allocator_ref(&self) -> &F {
  1215. return &self.frame_allocator;
  1216. }
  1217. /// 获取当前PageMapper所对应的页分配器实例的可变引用
  1218. #[inline(always)]
  1219. pub fn allocator_mut(&mut self) -> &mut F {
  1220. return &mut self.frame_allocator;
  1221. }
  1222. /// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
  1223. pub unsafe fn map(
  1224. &mut self,
  1225. virt: VirtAddr,
  1226. flags: EntryFlags<Arch>,
  1227. ) -> Option<PageFlush<Arch>> {
  1228. let mut page_manager_guard: SpinLockGuard<'static, PageManager> =
  1229. page_manager_lock_irqsave();
  1230. let page = page_manager_guard
  1231. .create_one_page(
  1232. PageType::Normal,
  1233. PageFlags::empty(),
  1234. &mut self.frame_allocator,
  1235. )
  1236. .ok()?;
  1237. drop(page_manager_guard);
  1238. let phys = page.phys_address();
  1239. return self.map_phys(virt, phys, flags);
  1240. }
  1241. /// 映射一个物理页到指定的虚拟地址
  1242. pub unsafe fn map_phys(
  1243. &mut self,
  1244. virt: VirtAddr,
  1245. phys: PhysAddr,
  1246. flags: EntryFlags<Arch>,
  1247. ) -> Option<PageFlush<Arch>> {
  1248. // 验证虚拟地址和物理地址是否对齐
  1249. if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
  1250. error!(
  1251. "Try to map unaligned page: virt={:?}, phys={:?}",
  1252. virt, phys
  1253. );
  1254. return None;
  1255. }
  1256. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  1257. // TODO: 验证flags是否合法
  1258. // 创建页表项
  1259. let entry = PageEntry::new(phys, flags);
  1260. let mut table = self.table();
  1261. loop {
  1262. let i = table.index_of(virt)?;
  1263. assert!(i < Arch::PAGE_ENTRY_NUM);
  1264. if table.level() == 0 {
  1265. compiler_fence(Ordering::SeqCst);
  1266. table.set_entry(i, entry);
  1267. compiler_fence(Ordering::SeqCst);
  1268. return Some(PageFlush::new(virt));
  1269. } else {
  1270. let next_table = table.next_level_table(i);
  1271. if let Some(next_table) = next_table {
  1272. table = next_table;
  1273. // debug!("Mapping {:?} to next level table...", virt);
  1274. } else {
  1275. // 分配下一级页表
  1276. let frame = self.frame_allocator.allocate_one()?;
  1277. // 清空这个页帧
  1278. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  1279. // 设置页表项的flags
  1280. let flags: EntryFlags<Arch> =
  1281. EntryFlags::new_page_table(virt.kind() == PageTableKind::User);
  1282. // 把新分配的页表映射到当前页表
  1283. table.set_entry(i, PageEntry::new(frame, flags));
  1284. // 获取新分配的页表
  1285. table = table.next_level_table(i)?;
  1286. }
  1287. }
  1288. }
  1289. }
  1290. /// 进行大页映射
  1291. pub unsafe fn map_huge_page(
  1292. &mut self,
  1293. virt: VirtAddr,
  1294. flags: EntryFlags<Arch>,
  1295. ) -> Option<PageFlush<Arch>> {
  1296. // 验证虚拟地址是否对齐
  1297. if !(virt.check_aligned(Arch::PAGE_SIZE)) {
  1298. error!("Try to map unaligned page: virt={:?}", virt);
  1299. return None;
  1300. }
  1301. let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
  1302. let mut table = self.table();
  1303. loop {
  1304. let i = table.index_of(virt)?;
  1305. assert!(i < Arch::PAGE_ENTRY_NUM);
  1306. let next_table = table.next_level_table(i);
  1307. if let Some(next_table) = next_table {
  1308. table = next_table;
  1309. } else {
  1310. break;
  1311. }
  1312. }
  1313. // 支持2M、1G大页,即页表层级为1、2级的页表可以映射大页
  1314. if table.level == 0 || table.level > 2 {
  1315. return None;
  1316. }
  1317. let (phys, count) = self.frame_allocator.allocate(PageFrameCount::new(
  1318. Arch::PAGE_ENTRY_NUM.pow(table.level as u32),
  1319. ))?;
  1320. MMArch::write_bytes(
  1321. MMArch::phys_2_virt(phys).unwrap(),
  1322. 0,
  1323. MMArch::PAGE_SIZE * count.data(),
  1324. );
  1325. table.set_entry(
  1326. table.index_of(virt)?,
  1327. PageEntry::new(phys, flags.set_huge_page(true)),
  1328. )?;
  1329. Some(PageFlush::new(virt))
  1330. }
  1331. /// 为虚拟地址分配指定层级的页表
  1332. /// ## 参数
  1333. ///
  1334. /// - `virt`: 虚拟地址
  1335. /// - `level`: 指定页表层级
  1336. ///
  1337. /// ## 返回值
  1338. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  1339. /// - None: 对应页表不存在
  1340. pub unsafe fn allocate_table(
  1341. &mut self,
  1342. virt: VirtAddr,
  1343. level: usize,
  1344. ) -> Option<PageTable<Arch>> {
  1345. let table = self.get_table(virt, level + 1)?;
  1346. let i = table.index_of(virt)?;
  1347. let frame = self.frame_allocator.allocate_one()?;
  1348. // 清空这个页帧
  1349. MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
  1350. // 设置页表项的flags
  1351. let flags: EntryFlags<Arch> =
  1352. EntryFlags::new_page_table(virt.kind() == PageTableKind::User);
  1353. table.set_entry(i, PageEntry::new(frame, flags));
  1354. table.next_level_table(i)
  1355. }
  1356. /// 获取虚拟地址的指定层级页表
  1357. /// ## 参数
  1358. ///
  1359. /// - `virt`: 虚拟地址
  1360. /// - `level`: 指定页表层级
  1361. ///
  1362. /// ## 返回值
  1363. /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
  1364. /// - None: 对应页表不存在
  1365. pub fn get_table(&self, virt: VirtAddr, level: usize) -> Option<PageTable<Arch>> {
  1366. let mut table = self.table();
  1367. if level > Arch::PAGE_LEVELS - 1 {
  1368. return None;
  1369. }
  1370. unsafe {
  1371. loop {
  1372. if table.level == level {
  1373. return Some(table);
  1374. }
  1375. let i = table.index_of(virt)?;
  1376. assert!(i < Arch::PAGE_ENTRY_NUM);
  1377. table = table.next_level_table(i)?;
  1378. }
  1379. }
  1380. }
  1381. /// 获取虚拟地址在指定层级页表的PageEntry
  1382. /// ## 参数
  1383. ///
  1384. /// - `virt`: 虚拟地址
  1385. /// - `level`: 指定页表层级
  1386. ///
  1387. /// ## 返回值
  1388. /// - Some(PageEntry<Arch>): 虚拟地址在指定层级的页表的有效PageEntry
  1389. /// - None: 无对应的有效PageEntry
  1390. pub fn get_entry(&self, virt: VirtAddr, level: usize) -> Option<PageEntry<Arch>> {
  1391. let table = self.get_table(virt, level)?;
  1392. let i = table.index_of(virt)?;
  1393. let entry = unsafe { table.entry(i) }?;
  1394. if !entry.empty() {
  1395. Some(entry)
  1396. } else {
  1397. None
  1398. }
  1399. // let mut table = self.table();
  1400. // if level > Arch::PAGE_LEVELS - 1 {
  1401. // return None;
  1402. // }
  1403. // unsafe {
  1404. // loop {
  1405. // let i = table.index_of(virt)?;
  1406. // assert!(i < Arch::PAGE_ENTRY_NUM);
  1407. // if table.level == level {
  1408. // let entry = table.entry(i)?;
  1409. // if !entry.empty() {
  1410. // return Some(entry);
  1411. // } else {
  1412. // return None;
  1413. // }
  1414. // }
  1415. // table = table.next_level_table(i)?;
  1416. // }
  1417. // }
  1418. }
  1419. /// 拷贝用户空间映射
  1420. /// ## 参数
  1421. ///
  1422. /// - `umapper`: 要拷贝的用户空间
  1423. /// - `copy_on_write`: 是否写时复制
  1424. pub unsafe fn clone_user_mapping(&mut self, umapper: &mut Self, copy_on_write: bool) {
  1425. let old_table = umapper.table();
  1426. let new_table = self.table();
  1427. let allocator = self.allocator_mut();
  1428. // 顶级页表的[0, PAGE_KERNEL_INDEX)项为用户空间映射
  1429. for entry_index in 0..Arch::PAGE_KERNEL_INDEX {
  1430. if let Some(next_table) = old_table.next_level_table(entry_index) {
  1431. let table = next_table.clone(allocator, copy_on_write).unwrap();
  1432. let old_entry = old_table.entry(entry_index).unwrap();
  1433. let entry = PageEntry::new(table.phys(), old_entry.flags());
  1434. new_table.set_entry(entry_index, entry);
  1435. }
  1436. }
  1437. }
  1438. /// 将物理地址映射到具有线性偏移量的虚拟地址
  1439. #[allow(dead_code)]
  1440. pub unsafe fn map_linearly(
  1441. &mut self,
  1442. phys: PhysAddr,
  1443. flags: EntryFlags<Arch>,
  1444. ) -> Option<(VirtAddr, PageFlush<Arch>)> {
  1445. let virt: VirtAddr = Arch::phys_2_virt(phys)?;
  1446. return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
  1447. }
  1448. /// 修改虚拟地址的页表项的flags,并返回页表项刷新器
  1449. ///
  1450. /// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
  1451. ///
  1452. /// ## 参数
  1453. /// - virt 虚拟地址
  1454. /// - flags 新的页表项的flags
  1455. ///
  1456. /// ## 返回值
  1457. ///
  1458. /// 如果修改成功,返回刷新器,否则返回None
  1459. pub unsafe fn remap(
  1460. &mut self,
  1461. virt: VirtAddr,
  1462. flags: EntryFlags<Arch>,
  1463. ) -> Option<PageFlush<Arch>> {
  1464. return self
  1465. .visit(virt, |p1, i| {
  1466. let mut entry = p1.entry(i)?;
  1467. entry.set_flags(flags);
  1468. p1.set_entry(i, entry);
  1469. Some(PageFlush::new(virt))
  1470. })
  1471. .flatten();
  1472. }
  1473. /// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
  1474. ///
  1475. /// ## 参数
  1476. ///
  1477. /// - virt 虚拟地址
  1478. ///
  1479. /// ## 返回值
  1480. ///
  1481. /// 如果查找成功,返回物理地址和页表项的flags,否则返回None
  1482. pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, EntryFlags<Arch>)> {
  1483. let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
  1484. let paddr = entry.address().ok()?;
  1485. let flags = entry.flags();
  1486. return Some((paddr, flags));
  1487. }
  1488. /// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
  1489. ///
  1490. /// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
  1491. ///
  1492. /// ## 参数
  1493. ///
  1494. /// - virt 虚拟地址
  1495. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1496. ///
  1497. /// ## 返回值
  1498. /// 如果取消成功,返回刷新器,否则返回None
  1499. #[allow(dead_code)]
  1500. pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
  1501. let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
  1502. self.frame_allocator.free_one(paddr);
  1503. return Some(flusher);
  1504. }
  1505. /// 取消虚拟地址的映射,并返回物理地址和页表项的flags
  1506. ///
  1507. /// ## 参数
  1508. ///
  1509. /// - vaddr 虚拟地址
  1510. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1511. ///
  1512. /// ## 返回值
  1513. ///
  1514. /// 如果取消成功,返回物理地址和页表项的flags,否则返回None
  1515. pub unsafe fn unmap_phys(
  1516. &mut self,
  1517. virt: VirtAddr,
  1518. unmap_parents: bool,
  1519. ) -> Option<(PhysAddr, EntryFlags<Arch>, PageFlush<Arch>)> {
  1520. if !virt.check_aligned(Arch::PAGE_SIZE) {
  1521. error!("Try to unmap unaligned page: virt={:?}", virt);
  1522. return None;
  1523. }
  1524. let table = self.table();
  1525. return unmap_phys_inner(virt, &table, unmap_parents, self.allocator_mut())
  1526. .map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
  1527. }
  1528. /// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
  1529. fn visit<T>(
  1530. &self,
  1531. virt: VirtAddr,
  1532. f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
  1533. ) -> Option<T> {
  1534. let mut table = self.table();
  1535. unsafe {
  1536. loop {
  1537. let i = table.index_of(virt)?;
  1538. if table.level() == 0 {
  1539. return Some(f(&mut table, i));
  1540. } else {
  1541. table = table.next_level_table(i)?;
  1542. }
  1543. }
  1544. }
  1545. }
  1546. }
  1547. /// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
  1548. ///
  1549. /// ## 参数
  1550. ///
  1551. /// - vaddr 虚拟地址
  1552. /// - table 页表
  1553. /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
  1554. /// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
  1555. ///
  1556. /// ## 返回值
  1557. ///
  1558. /// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
  1559. unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
  1560. vaddr: VirtAddr,
  1561. table: &PageTable<Arch>,
  1562. unmap_parents: bool,
  1563. allocator: &mut impl FrameAllocator,
  1564. ) -> Option<(PhysAddr, EntryFlags<Arch>)> {
  1565. // 获取页表项的索引
  1566. let i = table.index_of(vaddr)?;
  1567. // 如果当前是最后一级页表,直接取消页面映射
  1568. if table.level() == 0 {
  1569. let entry = table.entry(i)?;
  1570. table.set_entry(i, PageEntry::from_usize(0));
  1571. return Some((entry.address().ok()?, entry.flags()));
  1572. }
  1573. let subtable = table.next_level_table(i)?;
  1574. // 递归地取消映射
  1575. let result = unmap_phys_inner(vaddr, &subtable, unmap_parents, allocator)?;
  1576. // TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
  1577. // as these mappings may become out of sync
  1578. if unmap_parents {
  1579. // 如果子页表已经没有映射的页面了,就取消子页表的映射
  1580. // 检查子页表中是否还有映射的页面
  1581. let x = (0..Arch::PAGE_ENTRY_NUM)
  1582. .map(|k| subtable.entry(k).expect("invalid page entry"))
  1583. .any(|e| e.present());
  1584. if !x {
  1585. // 如果没有,就取消子页表的映射
  1586. table.set_entry(i, PageEntry::from_usize(0));
  1587. // 释放子页表
  1588. allocator.free_one(subtable.phys());
  1589. }
  1590. }
  1591. return Some(result);
  1592. }
  1593. impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
  1594. fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
  1595. f.debug_struct("PageMapper")
  1596. .field("table_paddr", &self.table_paddr)
  1597. .field("frame_allocator", &self.frame_allocator)
  1598. .finish()
  1599. }
  1600. }
  1601. /// 页表刷新器的trait
  1602. pub trait Flusher<Arch: MemoryManagementArch> {
  1603. /// 取消对指定的page flusher的刷新
  1604. fn consume(&mut self, flush: PageFlush<Arch>);
  1605. }
  1606. /// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1607. /// 否则会造成对页表的更改被忽略,这是不安全的
  1608. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1609. pub struct PageFlush<Arch: MemoryManagementArch> {
  1610. virt: VirtAddr,
  1611. phantom: PhantomData<Arch>,
  1612. }
  1613. impl<Arch: MemoryManagementArch> PageFlush<Arch> {
  1614. pub fn new(virt: VirtAddr) -> Self {
  1615. return Self {
  1616. virt,
  1617. phantom: PhantomData,
  1618. };
  1619. }
  1620. pub fn flush(self) {
  1621. unsafe { Arch::invalidate_page(self.virt) };
  1622. }
  1623. /// 忽略掉这个刷新器
  1624. pub unsafe fn ignore(self) {
  1625. mem::forget(self);
  1626. }
  1627. }
  1628. impl<Arch: MemoryManagementArch> Drop for PageFlush<Arch> {
  1629. fn drop(&mut self) {
  1630. unsafe {
  1631. MMArch::invalidate_page(self.virt);
  1632. }
  1633. }
  1634. }
  1635. /// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
  1636. /// 否则会造成对页表的更改被忽略,这是不安全的
  1637. #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
  1638. pub struct PageFlushAll<Arch: MemoryManagementArch> {
  1639. phantom: PhantomData<fn() -> Arch>,
  1640. }
  1641. #[allow(dead_code)]
  1642. impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
  1643. pub fn new() -> Self {
  1644. return Self {
  1645. phantom: PhantomData,
  1646. };
  1647. }
  1648. pub fn flush(self) {
  1649. unsafe { Arch::invalidate_all() };
  1650. }
  1651. /// 忽略掉这个刷新器
  1652. pub unsafe fn ignore(self) {
  1653. mem::forget(self);
  1654. }
  1655. }
  1656. impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
  1657. /// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
  1658. fn consume(&mut self, flush: PageFlush<Arch>) {
  1659. unsafe { flush.ignore() };
  1660. }
  1661. }
  1662. impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
  1663. /// 允许一个flusher consume掉另一个flusher
  1664. fn consume(&mut self, flush: PageFlush<Arch>) {
  1665. <T as Flusher<Arch>>::consume(self, flush);
  1666. }
  1667. }
  1668. impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
  1669. fn consume(&mut self, _flush: PageFlush<Arch>) {}
  1670. }
  1671. impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
  1672. fn drop(&mut self) {
  1673. unsafe {
  1674. Arch::invalidate_all();
  1675. }
  1676. }
  1677. }
  1678. /// 未在当前CPU上激活的页表的刷新器
  1679. ///
  1680. /// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
  1681. ///
  1682. /// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
  1683. #[derive(Debug)]
  1684. pub struct InactiveFlusher;
  1685. impl InactiveFlusher {
  1686. pub fn new() -> Self {
  1687. return Self {};
  1688. }
  1689. }
  1690. impl Flusher<MMArch> for InactiveFlusher {
  1691. fn consume(&mut self, flush: PageFlush<MMArch>) {
  1692. unsafe {
  1693. flush.ignore();
  1694. }
  1695. }
  1696. }
  1697. impl Drop for InactiveFlusher {
  1698. fn drop(&mut self) {
  1699. // 发送刷新页表的IPI
  1700. send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
  1701. }
  1702. }
  1703. /// # 把一个地址向下对齐到页大小
  1704. pub fn round_down_to_page_size(addr: usize) -> usize {
  1705. addr & !(MMArch::PAGE_SIZE - 1)
  1706. }
  1707. /// # 把一个地址向上对齐到页大小
  1708. pub fn round_up_to_page_size(addr: usize) -> usize {
  1709. round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
  1710. }