kthread.rs 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. use core::{
  2. hint::spin_loop,
  3. sync::atomic::{compiler_fence, AtomicBool, Ordering},
  4. };
  5. use alloc::{
  6. boxed::Box,
  7. collections::LinkedList,
  8. string::{String, ToString},
  9. sync::{Arc, Weak},
  10. };
  11. use atomic_enum::atomic_enum;
  12. use log::info;
  13. use system_error::SystemError;
  14. use crate::{
  15. arch::CurrentIrqArch,
  16. exception::{irqdesc::IrqAction, InterruptArch},
  17. init::initial_kthread::initial_kernel_thread,
  18. libs::{once::Once, spinlock::SpinLock},
  19. process::{ProcessManager, ProcessState},
  20. sched::{schedule, SchedMode},
  21. };
  22. use super::{fork::CloneFlags, Pid, ProcessControlBlock, ProcessFlags};
  23. /// 内核线程的创建任务列表
  24. static KTHREAD_CREATE_LIST: SpinLock<LinkedList<Arc<KernelThreadCreateInfo>>> =
  25. SpinLock::new(LinkedList::new());
  26. static mut KTHREAD_DAEMON_PCB: Option<Arc<ProcessControlBlock>> = None;
  27. #[derive(Debug)]
  28. pub enum WorkerPrivate {
  29. KernelThread(KernelThreadPcbPrivate),
  30. }
  31. #[allow(dead_code)]
  32. impl WorkerPrivate {
  33. pub fn kernel_thread(&self) -> Option<&KernelThreadPcbPrivate> {
  34. match self {
  35. Self::KernelThread(x) => Some(x),
  36. }
  37. }
  38. pub fn kernel_thread_mut(&mut self) -> Option<&mut KernelThreadPcbPrivate> {
  39. match self {
  40. Self::KernelThread(x) => Some(x),
  41. }
  42. }
  43. }
  44. bitflags! {
  45. pub struct KernelThreadFlags: u32 {
  46. const IS_PER_CPU = 1 << 0;
  47. const SHOULD_STOP = 1 << 1;
  48. const SHOULD_PARK = 1 << 2;
  49. }
  50. }
  51. #[derive(Debug)]
  52. pub struct KernelThreadPcbPrivate {
  53. flags: KernelThreadFlags,
  54. }
  55. #[allow(dead_code)]
  56. impl KernelThreadPcbPrivate {
  57. pub fn new() -> Self {
  58. Self {
  59. flags: KernelThreadFlags::empty(),
  60. }
  61. }
  62. pub fn flags(&self) -> &KernelThreadFlags {
  63. &self.flags
  64. }
  65. pub fn flags_mut(&mut self) -> &mut KernelThreadFlags {
  66. &mut self.flags
  67. }
  68. }
  69. impl Default for KernelThreadPcbPrivate {
  70. fn default() -> Self {
  71. Self::new()
  72. }
  73. }
  74. /// 内核线程的闭包,参数必须与闭包的参数一致,返回值必须是i32
  75. ///
  76. /// 元组的第一个元素是闭包,第二个元素是闭包的参数对象
  77. ///
  78. /// 对于非原始类型的参数,需要使用Box包装
  79. #[allow(dead_code)]
  80. #[allow(clippy::type_complexity)]
  81. pub enum KernelThreadClosure {
  82. UsizeClosure((Box<dyn Fn(usize) -> i32 + Send + Sync>, usize)),
  83. StaticUsizeClosure((&'static fn(usize) -> i32, usize)),
  84. EmptyClosure((Box<dyn Fn() -> i32 + Send + Sync>, ())),
  85. StaticEmptyClosure((&'static fn() -> i32, ())),
  86. IrqThread(
  87. (
  88. &'static dyn Fn(Arc<IrqAction>) -> Result<(), SystemError>,
  89. Arc<IrqAction>,
  90. ),
  91. ),
  92. // 添加其他类型入参的闭包,返回值必须是i32
  93. }
  94. unsafe impl Send for KernelThreadClosure {}
  95. unsafe impl Sync for KernelThreadClosure {}
  96. impl KernelThreadClosure {
  97. pub fn run(self) -> i32 {
  98. match self {
  99. Self::UsizeClosure((func, arg)) => func(arg),
  100. Self::EmptyClosure((func, _arg)) => func(),
  101. Self::StaticUsizeClosure((func, arg)) => func(arg),
  102. Self::StaticEmptyClosure((func, _arg)) => func(),
  103. Self::IrqThread((func, arg)) => {
  104. func(arg).map(|_| 0).unwrap_or_else(|e| e.to_posix_errno())
  105. }
  106. }
  107. }
  108. }
  109. pub struct KernelThreadCreateInfo {
  110. /// 内核线程的入口函数、传入参数
  111. closure: SpinLock<Option<Box<KernelThreadClosure>>>,
  112. /// 内核线程的名字
  113. name: String,
  114. /// 是否已经完成创建 todo:使用comletion机制优化这里
  115. created: AtomicKernelThreadCreateStatus,
  116. result_pcb: SpinLock<Option<Arc<ProcessControlBlock>>>,
  117. /// 不安全的Arc引用计数,当内核线程创建失败时,需要减少这个计数
  118. has_unsafe_arc_instance: AtomicBool,
  119. self_ref: Weak<Self>,
  120. /// 如果该值为true在进入bootstrap stage2之后,就会进入睡眠状态
  121. to_mark_sleep: AtomicBool,
  122. }
  123. #[atomic_enum]
  124. #[derive(PartialEq)]
  125. pub enum KernelThreadCreateStatus {
  126. Created,
  127. NotCreated,
  128. ErrorOccured,
  129. }
  130. #[allow(dead_code)]
  131. impl KernelThreadCreateInfo {
  132. pub fn new(func: KernelThreadClosure, name: String) -> Arc<Self> {
  133. let result = Arc::new(Self {
  134. closure: SpinLock::new(Some(Box::new(func))),
  135. name,
  136. created: AtomicKernelThreadCreateStatus::new(KernelThreadCreateStatus::NotCreated),
  137. result_pcb: SpinLock::new(None),
  138. has_unsafe_arc_instance: AtomicBool::new(false),
  139. self_ref: Weak::new(),
  140. to_mark_sleep: AtomicBool::new(true),
  141. });
  142. let tmp = result.clone();
  143. unsafe {
  144. let tmp = Arc::into_raw(tmp) as *mut Self;
  145. (*tmp).self_ref = Arc::downgrade(&result);
  146. Arc::from_raw(tmp);
  147. }
  148. return result;
  149. }
  150. /// 创建者调用这函数,等待创建完成后,获取创建结果
  151. ///
  152. /// ## 返回值
  153. ///
  154. /// - Some(Arc<ProcessControlBlock>) 创建成功,返回新创建的内核线程的PCB
  155. /// - None 创建失败
  156. pub fn poll_result(&self) -> Option<Arc<ProcessControlBlock>> {
  157. loop {
  158. match self.created.load(Ordering::SeqCst) {
  159. KernelThreadCreateStatus::Created => {
  160. return self.result_pcb.lock().take();
  161. }
  162. KernelThreadCreateStatus::NotCreated => {
  163. spin_loop();
  164. }
  165. KernelThreadCreateStatus::ErrorOccured => {
  166. // 创建失败,减少不安全的Arc引用计数
  167. let to_delete = self.has_unsafe_arc_instance.swap(false, Ordering::SeqCst);
  168. if to_delete {
  169. let self_ref = self.self_ref.upgrade().unwrap();
  170. unsafe { Arc::decrement_strong_count(&self_ref) };
  171. }
  172. return None;
  173. }
  174. }
  175. }
  176. }
  177. pub fn take_closure(&self) -> Option<Box<KernelThreadClosure>> {
  178. return self.closure.lock().take();
  179. }
  180. pub fn name(&self) -> &String {
  181. &self.name
  182. }
  183. pub unsafe fn set_create_ok(&self, pcb: Arc<ProcessControlBlock>) {
  184. // todo: 使用completion机制优化这里
  185. self.result_pcb.lock().replace(pcb);
  186. self.created
  187. .store(KernelThreadCreateStatus::Created, Ordering::SeqCst);
  188. }
  189. /// 生成一个不安全的Arc指针(用于创建内核线程时传递参数)
  190. pub fn generate_unsafe_arc_ptr(self: Arc<Self>) -> *const Self {
  191. assert!(
  192. self.has_unsafe_arc_instance
  193. .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
  194. .is_ok(),
  195. "Cannot generate unsafe arc ptr when there is already one."
  196. );
  197. let ptr = Arc::into_raw(self);
  198. return ptr;
  199. }
  200. pub unsafe fn parse_unsafe_arc_ptr(ptr: *const Self) -> Arc<Self> {
  201. let arc = Arc::from_raw(ptr);
  202. assert!(
  203. arc.has_unsafe_arc_instance
  204. .compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
  205. .is_ok(),
  206. "Cannot parse unsafe arc ptr when there is no one."
  207. );
  208. assert!(Arc::strong_count(&arc) > 0);
  209. return arc;
  210. }
  211. /// 设置是否在进入bootstrap stage2之后,就进入睡眠状态
  212. ///
  213. /// ## 参数
  214. ///
  215. /// - to_mark_sleep: 是否在进入bootstrap stage2之后,就进入睡眠状态
  216. ///
  217. /// ## 返回值
  218. /// 如果已经创建完成,返回EINVAL
  219. pub fn set_to_mark_sleep(&self, to_mark_sleep: bool) -> Result<(), SystemError> {
  220. let result_guard = self.result_pcb.lock();
  221. if result_guard.is_some() {
  222. // 已经创建完成,不需要设置
  223. return Err(SystemError::EINVAL);
  224. }
  225. self.to_mark_sleep.store(to_mark_sleep, Ordering::SeqCst);
  226. return Ok(());
  227. }
  228. pub fn to_mark_sleep(&self) -> bool {
  229. self.to_mark_sleep.load(Ordering::SeqCst)
  230. }
  231. }
  232. pub struct KernelThreadMechanism;
  233. impl KernelThreadMechanism {
  234. pub fn init_stage1() {
  235. assert!(ProcessManager::current_pcb().pid() == Pid::new(0));
  236. info!("Initializing kernel thread mechanism stage1...");
  237. // 初始化第一个内核线程
  238. let create_info = KernelThreadCreateInfo::new(
  239. KernelThreadClosure::EmptyClosure((Box::new(initial_kernel_thread), ())),
  240. "init".to_string(),
  241. );
  242. let irq_guard: crate::exception::IrqFlagsGuard =
  243. unsafe { CurrentIrqArch::save_and_disable_irq() };
  244. // 由于当前是pid=0的idle进程,而__inner_create要求当前是kthread,所以先临时设置为kthread
  245. ProcessManager::current_pcb()
  246. .flags
  247. .get_mut()
  248. .insert(ProcessFlags::KTHREAD);
  249. create_info
  250. .set_to_mark_sleep(false)
  251. .expect("Failed to set to_mark_sleep");
  252. KernelThreadMechanism::__inner_create(
  253. &create_info,
  254. CloneFlags::CLONE_VM | CloneFlags::CLONE_SIGHAND,
  255. )
  256. .unwrap_or_else(|e| panic!("Failed to create initial kernel thread, error: {:?}", e));
  257. ProcessManager::current_pcb()
  258. .flags
  259. .get_mut()
  260. .remove(ProcessFlags::KTHREAD);
  261. drop(irq_guard);
  262. info!("Initializing kernel thread mechanism stage1 complete");
  263. }
  264. pub fn init_stage2() {
  265. assert!(ProcessManager::current_pcb()
  266. .flags()
  267. .contains(ProcessFlags::KTHREAD));
  268. static INIT: Once = Once::new();
  269. INIT.call_once(|| {
  270. info!("Initializing kernel thread mechanism stage2...");
  271. // 初始化kthreadd
  272. let closure = KernelThreadClosure::EmptyClosure((Box::new(Self::kthread_daemon), ()));
  273. let info = KernelThreadCreateInfo::new(closure, "kthreadd".to_string());
  274. info.set_to_mark_sleep(false)
  275. .expect("kthreadadd should be run first");
  276. let kthreadd_pid: Pid = Self::__inner_create(
  277. &info,
  278. CloneFlags::CLONE_VM | CloneFlags::CLONE_FS | CloneFlags::CLONE_SIGHAND,
  279. )
  280. .expect("Failed to create kthread daemon");
  281. let pcb = ProcessManager::find(kthreadd_pid).unwrap();
  282. ProcessManager::wakeup(&pcb).expect("Failed to wakeup kthread daemon");
  283. unsafe {
  284. KTHREAD_DAEMON_PCB.replace(pcb);
  285. }
  286. info!("Initialize kernel thread mechanism stage2 complete");
  287. });
  288. }
  289. /// 创建一个新的内核线程
  290. ///
  291. /// ## 参数
  292. ///
  293. /// - func: 内核线程的入口函数、传入参数
  294. /// - name: 内核线程的名字
  295. ///
  296. /// ## 返回值
  297. ///
  298. /// - Some(Arc<ProcessControlBlock>) 创建成功,返回新创建的内核线程的PCB
  299. #[allow(dead_code)]
  300. pub fn create(func: KernelThreadClosure, name: String) -> Option<Arc<ProcessControlBlock>> {
  301. let info = KernelThreadCreateInfo::new(func, name);
  302. while unsafe { KTHREAD_DAEMON_PCB.is_none() } {
  303. // 等待kthreadd启动
  304. spin_loop()
  305. }
  306. KTHREAD_CREATE_LIST.lock().push_back(info.clone());
  307. compiler_fence(Ordering::SeqCst);
  308. ProcessManager::wakeup(unsafe { KTHREAD_DAEMON_PCB.as_ref().unwrap() })
  309. .expect("Failed to wakeup kthread daemon");
  310. return info.poll_result();
  311. }
  312. /// 创建并运行一个新的内核线程
  313. ///
  314. /// ## 参数
  315. ///
  316. /// - func: 内核线程的入口函数、传入参数
  317. /// - name: 内核线程的名字
  318. ///
  319. /// ## 返回值
  320. ///
  321. /// - Some(Arc<ProcessControlBlock>) 创建成功,返回新创建的内核线程的PCB
  322. #[allow(dead_code)]
  323. pub fn create_and_run(
  324. func: KernelThreadClosure,
  325. name: String,
  326. ) -> Option<Arc<ProcessControlBlock>> {
  327. let pcb = Self::create(func, name)?;
  328. ProcessManager::wakeup(&pcb)
  329. .unwrap_or_else(|_| panic!("Failed to wakeup kthread: {:?}", pcb.pid()));
  330. return Some(pcb);
  331. }
  332. /// 停止一个内核线程
  333. ///
  334. /// 如果目标内核线程的数据检查失败,会panic
  335. ///
  336. /// ## 返回值
  337. ///
  338. /// - Ok(i32) 目标内核线程的退出码
  339. #[allow(dead_code)]
  340. pub fn stop(pcb: &Arc<ProcessControlBlock>) -> Result<usize, SystemError> {
  341. if !pcb.flags().contains(ProcessFlags::KTHREAD) {
  342. panic!("Cannt stop a non-kthread process");
  343. }
  344. let mut worker_private = pcb.worker_private();
  345. assert!(
  346. worker_private.is_some(),
  347. "kthread stop: worker_private is none, pid: {:?}",
  348. pcb.pid()
  349. );
  350. worker_private
  351. .as_mut()
  352. .unwrap()
  353. .kernel_thread_mut()
  354. .expect("Error type of worker private")
  355. .flags
  356. .insert(KernelThreadFlags::SHOULD_STOP);
  357. drop(worker_private);
  358. ProcessManager::wakeup(pcb).ok();
  359. // 忙等目标内核线程退出
  360. // todo: 使用completion机制优化这里
  361. loop {
  362. if let ProcessState::Exited(code) = pcb.sched_info().inner_lock_read_irqsave().state() {
  363. return Ok(code);
  364. }
  365. spin_loop();
  366. }
  367. }
  368. /// 判断一个内核线程是否应当停止
  369. ///
  370. /// ## 参数
  371. ///
  372. /// - pcb: 目标内核线程的PCB
  373. ///
  374. /// ## 返回值
  375. ///
  376. /// - bool 是否应当停止. true表示应当停止,false表示不应当停止. 如果目标进程不是内核线程,返回false
  377. ///
  378. /// ## Panic
  379. ///
  380. /// 如果目标内核线程的数据检查失败,会panic
  381. #[allow(dead_code)]
  382. pub fn should_stop(pcb: &Arc<ProcessControlBlock>) -> bool {
  383. if !pcb.flags().contains(ProcessFlags::KTHREAD) {
  384. return false;
  385. }
  386. let worker_private = pcb.worker_private();
  387. assert!(
  388. worker_private.is_some(),
  389. "kthread should_stop: worker_private is none, pid: {:?}",
  390. pcb.pid()
  391. );
  392. return worker_private
  393. .as_ref()
  394. .unwrap()
  395. .kernel_thread()
  396. .expect("Error type of worker private")
  397. .flags
  398. .contains(KernelThreadFlags::SHOULD_STOP);
  399. }
  400. /// A daemon thread which creates other kernel threads
  401. #[inline(never)]
  402. fn kthread_daemon() -> i32 {
  403. let current_pcb = ProcessManager::current_pcb();
  404. {
  405. // 初始化worker_private
  406. let mut worker_private_guard = current_pcb.worker_private();
  407. let worker_private = WorkerPrivate::KernelThread(KernelThreadPcbPrivate::new());
  408. *worker_private_guard = Some(worker_private);
  409. }
  410. // 设置为kthread
  411. current_pcb.flags().insert(ProcessFlags::KTHREAD);
  412. drop(current_pcb);
  413. loop {
  414. let mut list = KTHREAD_CREATE_LIST.lock();
  415. while let Some(info) = list.pop_front() {
  416. drop(list);
  417. // create a new kernel thread
  418. let result: Result<Pid, SystemError> = Self::__inner_create(
  419. &info,
  420. CloneFlags::CLONE_VM | CloneFlags::CLONE_FS | CloneFlags::CLONE_SIGHAND,
  421. );
  422. if result.is_err() {
  423. // 创建失败
  424. info.created
  425. .store(KernelThreadCreateStatus::ErrorOccured, Ordering::SeqCst);
  426. };
  427. list = KTHREAD_CREATE_LIST.lock();
  428. }
  429. drop(list);
  430. let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
  431. ProcessManager::mark_sleep(true).ok();
  432. drop(irq_guard);
  433. schedule(SchedMode::SM_NONE);
  434. }
  435. }
  436. }
  437. /// 内核线程启动的第二阶段
  438. ///
  439. /// 该函数只能被`kernel_thread_bootstrap_stage1`调用(jmp到该函数)
  440. ///
  441. /// ## 参数
  442. ///
  443. /// - ptr: 传入的参数,是一个指向`Arc<KernelThreadCreateInfo>`的指针
  444. pub unsafe extern "C" fn kernel_thread_bootstrap_stage2(ptr: *const KernelThreadCreateInfo) -> ! {
  445. let info = KernelThreadCreateInfo::parse_unsafe_arc_ptr(ptr);
  446. let closure: Box<KernelThreadClosure> = info.take_closure().unwrap();
  447. info.set_create_ok(ProcessManager::current_pcb());
  448. let to_mark_sleep = info.to_mark_sleep();
  449. drop(info);
  450. if to_mark_sleep {
  451. // 进入睡眠状态
  452. let irq_guard = CurrentIrqArch::save_and_disable_irq();
  453. ProcessManager::mark_sleep(true).expect("Failed to mark sleep");
  454. drop(irq_guard);
  455. schedule(SchedMode::SM_NONE);
  456. }
  457. let mut retval = SystemError::EINTR.to_posix_errno();
  458. if !KernelThreadMechanism::should_stop(&ProcessManager::current_pcb()) {
  459. retval = closure.run();
  460. }
  461. ProcessManager::exit(retval as usize);
  462. }
  463. /// 初始化内核线程机制
  464. #[inline(never)]
  465. pub fn kthread_init() {
  466. static INIT: Once = Once::new();
  467. INIT.call_once(|| {
  468. KernelThreadMechanism::init_stage1();
  469. });
  470. }