process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. extern void system_call(void);
  10. /**
  11. * @brief 切换进程
  12. *
  13. * @param prev 上一个进程的pcb
  14. * @param next 将要切换到的进程的pcb
  15. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  16. * 这里切换fs和gs寄存器
  17. */
  18. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  19. {
  20. initial_tss[0].rsp0 = next->thread->rbp;
  21. set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  22. initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  23. __asm__ __volatile__("movq %%fs, %0 \n\t"
  24. : "=a"(prev->thread->fs));
  25. __asm__ __volatile__("movq %%gs, %0 \n\t"
  26. : "=a"(prev->thread->gs));
  27. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  28. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  29. //wrmsr(0x175, next->thread->rbp);
  30. // kdebug("next=%#018lx", next);
  31. // kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  32. // kdebug("prev->thread->rsp0:%#018lx\n", prev->thread->rbp);
  33. // kdebug("next->thread->rsp0:%#018lx\n", next->thread->rbp);
  34. // kdebug("next->thread->rip:%#018lx\n", next->thread->rip);
  35. }
  36. /**
  37. * @brief 这是一个用户态的程序
  38. *
  39. */
  40. void user_level_function()
  41. {
  42. // kinfo("Program (user_level_function) is runing...");
  43. // kinfo("Try to enter syscall id 15...");
  44. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  45. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  46. //while(1);
  47. long ret = 0;
  48. // color_printk(RED,BLACK,"user_level_function task is running\n");
  49. char string[] = "Hello World!\n";
  50. /*
  51. __asm__ __volatile__("leaq sysexit_return_address(%%rip), %%rdx \n\t"
  52. "movq %%rsp, %%rcx \n\t"
  53. "sysenter \n\t"
  54. "sysexit_return_address: \n\t"
  55. : "=a"(ret)
  56. : "0"(1), "D"(string)
  57. : "memory");
  58. */
  59. for (int i = 0;; ++i)
  60. {
  61. long err_code;
  62. ul addr = (ul)string;
  63. __asm__ __volatile__(
  64. "movq %2, %%r8 \n\t"
  65. "int $0x80 \n\t"
  66. : "=a"(err_code)
  67. : "a"(SYS_PRINTF), "m"(addr)
  68. : "memory", "r8");
  69. }
  70. // enter_syscall_int(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  71. // kinfo("Return from syscall id 15...");
  72. while (1)
  73. ;
  74. }
  75. /**
  76. * @brief 使当前进程去执行新的代码
  77. *
  78. * @param regs 当前进程的寄存器
  79. * @return ul 错误码
  80. */
  81. ul do_execve(struct pt_regs *regs)
  82. {
  83. // 选择这两个寄存器是对应了sysexit指令的需要
  84. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  85. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  86. regs->cs = USER_CS|3;
  87. regs->ds = USER_DS|3;
  88. regs->ss = USER_DS |0x3;
  89. regs->rflags = 0x200246;
  90. regs->rax = 1;
  91. regs->es = 0;
  92. // kdebug("do_execve is running...");
  93. // 映射起始页面
  94. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  95. uint64_t addr = 0x800000UL;
  96. unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
  97. unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
  98. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  99. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  100. virtual = kmalloc(PAGE_4K_SIZE, 0);
  101. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  102. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  103. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  104. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  105. flush_tlb();
  106. /*
  107. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  108. */
  109. if (!(current_pcb->flags & PF_KTHREAD))
  110. current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
  111. // 将程序代码拷贝到对应的内存中
  112. memcpy((void *)0x800000, user_level_function, 1024);
  113. // kdebug("program copied!");
  114. return 0;
  115. }
  116. /**
  117. * @brief 内核init进程
  118. *
  119. * @param arg
  120. * @return ul 参数
  121. */
  122. ul initial_kernel_thread(ul arg)
  123. {
  124. // kinfo("initial proc running...\targ:%#018lx", arg);
  125. struct pt_regs *regs;
  126. current_pcb->thread->rip = (ul)ret_from_system_call;
  127. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  128. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  129. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  130. regs = (struct pt_regs *)current_pcb->thread->rsp;
  131. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  132. current_pcb->flags = 0;
  133. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  134. __asm__ __volatile__("movq %1, %%rsp \n\t"
  135. "pushq %2 \n\t"
  136. "jmp do_execve \n\t" ::"D"(regs),
  137. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  138. : "memory");
  139. return 1;
  140. }
  141. /**
  142. * @brief 进程退出时执行的函数
  143. *
  144. * @param code 返回码
  145. * @return ul
  146. */
  147. ul process_thread_do_exit(ul code)
  148. {
  149. kinfo("thread_exiting..., code is %#018lx.", code);
  150. while (1)
  151. ;
  152. }
  153. /**
  154. * @brief 导出内核线程的执行引导程序
  155. * 目的是还原执行现场(在kernel_thread中伪造的)
  156. * 执行到这里时,rsp位于栈顶,然后弹出寄存器值
  157. * 弹出之后还要向上移动7个unsigned long的大小,从而弹出额外的信息(详见pt_regs)
  158. */
  159. extern void kernel_thread_func(void);
  160. __asm__(
  161. "kernel_thread_func: \n\t"
  162. " popq %r15 \n\t"
  163. " popq %r14 \n\t"
  164. " popq %r13 \n\t"
  165. " popq %r12 \n\t"
  166. " popq %r11 \n\t"
  167. " popq %r10 \n\t"
  168. " popq %r9 \n\t"
  169. " popq %r8 \n\t"
  170. " popq %rbx \n\t"
  171. " popq %rcx \n\t"
  172. " popq %rdx \n\t"
  173. " popq %rsi \n\t"
  174. " popq %rdi \n\t"
  175. " popq %rbp \n\t"
  176. " popq %rax \n\t"
  177. " movq %rax, %ds \n\t"
  178. " popq %rax \n\t"
  179. " movq %rax, %es \n\t"
  180. " popq %rax \n\t"
  181. " addq $0x38, %rsp \n\t"
  182. /////////////////////////////////
  183. " movq %rdx, %rdi \n\t"
  184. " callq *%rbx \n\t"
  185. " movq %rax, %rdi \n\t"
  186. " callq process_thread_do_exit \n\t");
  187. /**
  188. * @brief 初始化内核进程
  189. *
  190. * @param fn 目标程序的地址
  191. * @param arg 向目标程序传入的参数
  192. * @param flags
  193. * @return int
  194. */
  195. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  196. {
  197. struct pt_regs regs;
  198. memset(&regs, 0, sizeof(regs));
  199. // 在rbx寄存器中保存进程的入口地址
  200. regs.rbx = (ul)fn;
  201. // 在rdx寄存器中保存传入的参数
  202. regs.rdx = (ul)arg;
  203. regs.ds = KERNEL_DS;
  204. regs.es = KERNEL_DS;
  205. regs.cs = KERNEL_CS;
  206. regs.ss = KERNEL_DS;
  207. // 置位中断使能标志位
  208. regs.rflags = (1 << 9);
  209. // rip寄存器指向内核线程的引导程序
  210. regs.rip = (ul)kernel_thread_func;
  211. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  212. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  213. return do_fork(&regs, flags, 0, 0);
  214. }
  215. /**
  216. * @brief 初始化进程模块
  217. * ☆前置条件:已完成系统调用模块的初始化
  218. */
  219. void process_init()
  220. {
  221. kinfo("Initializing process...");
  222. initial_mm.pgd = (pml4t_t *)global_CR3;
  223. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  224. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  225. initial_mm.data_addr_start = (ul)&_data;
  226. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  227. initial_mm.rodata_addr_start = (ul)&_rodata;
  228. initial_mm.rodata_addr_end = (ul)&_erodata;
  229. initial_mm.brk_start = 0;
  230. initial_mm.brk_end = memory_management_struct.kernel_end;
  231. initial_mm.stack_start = *(ul *)phys_2_virt(&_stack_start);
  232. // 向MSR寄存器组中的 IA32_SYSENTER_CS寄存器写入内核的代码段的地址
  233. wrmsr(0x174, KERNEL_CS);
  234. // 向MSR寄存器组中的 IA32_SYSENTER_ESP寄存器写入内核进程的rbp(在syscall入口中会将rsp减去相应的数值)
  235. wrmsr(0x175, current_pcb->thread->rbp);
  236. // 向MSR寄存器组中的 IA32_SYSENTER_EIP寄存器写入系统调用入口的地址。
  237. wrmsr(0x176, (ul)system_call);
  238. // 初始化进程和tss
  239. set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  240. initial_tss[0].rsp0 = initial_thread.rbp;
  241. /*
  242. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  243. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  244. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  245. */
  246. // 初始化进程的循环链表
  247. list_init(&initial_proc_union.pcb.list);
  248. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  249. initial_proc_union.pcb.state = PROC_RUNNING;
  250. // 获取新的进程的pcb
  251. struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  252. kdebug("Ready to switch...");
  253. // 切换到新的内核线程
  254. // switch_proc(current_pcb, p);
  255. }
  256. /**
  257. * @brief fork当前进程
  258. *
  259. * @param regs 新的寄存器值
  260. * @param clone_flags 克隆标志
  261. * @param stack_start 堆栈开始地址
  262. * @param stack_size 堆栈大小
  263. * @return unsigned long
  264. */
  265. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  266. {
  267. struct process_control_block *tsk = NULL;
  268. // 获取一个物理页并在这个物理页内初始化pcb
  269. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  270. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  271. memset(tsk, 0, sizeof(struct process_control_block));
  272. // 将当前进程的pcb复制到新的pcb内
  273. *tsk = *current_pcb;
  274. kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  275. // 将进程加入循环链表
  276. list_init(&tsk->list);
  277. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  278. tsk->priority = 2;
  279. ++(tsk->pid);
  280. tsk->state = PROC_UNINTERRUPTIBLE;
  281. list_init(&tsk->list);
  282. list_add(&initial_proc_union.pcb.list, &tsk->list);
  283. // 将线程结构体放置在pcb的后面
  284. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  285. memset(thd, 0, sizeof(struct thread_struct));
  286. tsk->thread = thd;
  287. // 将寄存器信息存储到进程的内核栈空间的顶部
  288. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  289. // 设置进程的内核栈
  290. thd->rbp = (ul)tsk + STACK_SIZE;
  291. thd->rip = regs->rip;
  292. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  293. thd->fs = KERNEL_DS;
  294. thd->gs = KERNEL_DS;
  295. kdebug("do_fork() thd->rsp=%#018lx", thd->rsp);
  296. // 若进程不是内核层的进程,则跳转到ret from system call
  297. if (!(tsk->flags & PF_KTHREAD))
  298. thd->rip = regs->rip = (ul)ret_from_system_call;
  299. else
  300. kdebug("is kernel proc.");
  301. kdebug("ret_from_system_call=%#018lx", (ul)ret_from_system_call);
  302. tsk->state = PROC_RUNNING;
  303. sched_cfs_enqueue(tsk);
  304. return 0;
  305. }